asqium: A JavaScript Plugin Framework for
Extensible Client and Server-side Components

Vasileios Triglianos and Cesare Pautasso

Faculty of Informatics, University of Lugano (USI), Switzerland
{name.surname}Qusi.ch http://asq.inf.usi.ch/

Abstract. JavaScript has become a language for programming complex
Web applications, whose logic is deployed across both Web browsers and
Web servers. Current software packaging mechanisms for JavaScript en-
able a basic level of modularity and reuse. However, they have not yet
reached full maturity in terms of enabling system extensions with fea-
tures contributed as third-party plugins, while encapsulating them ad-
equately. In this paper we present a novel plugin system for JavaScript
applications, which integrate Node.js modules with HTML5 Web Com-
ponents. It provides abstractions for: real time and loosely coupled com-
munication between front-end and back-end components, persistent state
storage, and isomorphic usage of JavaScript. Plugins can use hooks and
events to contribute functionality and embed it into the main application
flow, while respecting the common asynchronous non-blocking program-
ming paradigm of JavaScript. We demonstrate the expressiveness of the
framework as it is used to build ASQ: an open, extensible educational
Web platform.

1 Introduction

Engineering extensible Web applications that span across the server and the
client tiers is a challenging task, which can be alleviated by introducing a suitable
plugin system. Reusable plugins [1] can thus be properly packaged to be deployed
to extend both tiers of the Web application, despite limitations of the current
Web technology platform. One limitation is the mismatch between the front and
back-end programming languages for implementing the business logic. With the
advent of Node.js, a JavaScript runtime environment for server-side applications,
the full stack of the application logic can be written in one language. However,
using one language for both the client- and server-side components of a plugin
is not adequate on its own to efficiently develop, deploy, version and publish
the plugin components so that they can be executed on their corresponding
hosts. Another issue related to the double scope of such a plugin system is the
asynchronous, event-based communication between the client- and server-side
components of the plugin.

On the front-end, the main objective is to create encapsulated components,
also known as widgets, that may feature User Interface and/or some business

logic implemented using HTML5, CSS, and respectively JavaScript. Until re-
cently, Web front-end technologies (e.g., AngularJS, jQuery) dealt poorly with
CSS styles and Javascript encapsulation: CSS styles and JavaScript global vari-
ables often bled, unintentionally affecting markup and code that was not in the
original scope of the author.

On the server-side, the existing Node package manager (npm) mechanism for
modularizing, packaging and distributing Node.js modules only ensures their
dependencies are satisfied. A complete plugin system would provide additional
Application Programming Interfaces (API) to interact with the core of the appli-
cation featuring decoupled interfaces, event-based communication, performance
isolation and failure containment, ease of deployment, avoidance of code repeti-
tion, all in compliance with the hosting system’s conventions and data flow.

While some of the problems mentioned in this section have individual so-
lutions, in this paper we present the first approach that, to our knowledge,
implements a JavaScript based plugin system for the client and the server that
offers a unified and integrated solution to all of these problems.

The work is motivated by the needs of the ASQ platform [2]. ASQ is a
research platform offering a Web-based lecture delivery system that aims to pro-
vide presenters with awareness of the audience’s comprehension of the presented
material. The flow of an ASQ presentation involves presenting slides, asking
questions, gathering real time feedback and discussing the results in class; we
call this the ‘present-ask-answer-assess-feedback’ cycle. Questions are an integral
part of ASQ, and one of the early design decisions was to allow content authors
to create custom question types that can fit into the existing flow and extend it
with new functionality, hence the need for a powerful plugin system to make the
platform versatile and extensible.

The rest of this paper is structured as follows. In Section 2 we present the
main requirements for extensible Web applications. Section 3 discusses the ar-
chitecture and implementation details of the proposed plugin system, while the
motivation for this work and a case study follow in section 4. Finally, we present
the state of the art in Section 5 and we conclude this paper with an overview of
future research directions for this work in Section 6.

2 Design Goals

From our experience with the design of ASQ and after analyzing the architec-
ture of several modern Web applications featuring real-time updates, we have
collected the following required characteristics that should be satisfied by a plu-
gin system to enhance the extensibility of the Web application.

Application Domain Compliance The domain of each application dic-
tates the respective entities and their privileges, the flow of information between
them and the security constraints that govern them. Plugins should adhere to
these constraints rules. As an example, in the case of ASQ, the presenter is in
control of information flow which follows variations of the present-ask-answer-

assess-feedback cycle. A plugin that would automatically show assessment results
without the presenter’s consent would violate the domain rules.

Open Event Model. Since plugins extend the application with new func-
tionality, it is likely that they may introduce new events which may not be part
of the existing ‘information flow‘ events of the application. While the latter are
expected to be gracefully handled by a plugin, it is also very important to be
able to extend the possible events exchanged within an application with custom
ones, as long as they do not violate the main application flow.

Persistence Flexibility. Web applications often use more than one storage
technology to tailor the way different parts of their data model are managed.
For example, some aggregation operation is performed on some data and the
extracted result gets propagated to the clients in real-time; similarly we may
also store the raw data for deferred processing. These could result in using a
simple fast in-memory key-value storage and slower document-based disk storage
respectively. Plugins should be able to take advantage of both strategies.

Encapsulation and Theming. While encapsulation seems like an obvious
desirable characteristic which is readily available by most modern programming
languages and Web frameworks, until recently it was very hard to create encap-
sulated front-end components due to limitations of the HTML/CSS platform.
Even if the component authors are careful enough to use high specificity CSS
selectors there is no guarantee that the rest of the third-party style rules present
in a page will not target the widget markup. To avoid bleeding JavaScript global
variables [3], developers may choose to use closures. But this approach will make
it harder to expose functionality of their widget to third-party code. Some of
these problems have workarounds that fail to conceal the fact that JavaScript
was not designed for large scale applications. For example the CommonJS and
AMD! standards allow better encapsulation of JavaScript code at the cost of
precompilation which negates the role of JavaScript as an interpreted language.
Theming could make matters worse, since rules should either be very specific,
which leads to hard-to-maintain codebases; or generic which could result in un-
intentional style rule leaks towards non-target elements.

Isomorphism. Developing isomorphic [4] Web applications has the benefits
of using the same code both on the front-end and the back-end, a milder learning
curve for new developers, better communication between front-end and back-end
teams and smaller technology stack. JavaScript is the de-facto browser language
and demonstrates good asynchronous performance server-side which renders it
an ideal candidate for isomorphic applications.

Easy Deployment and Publication As any piece of software, plugins
may go through many iterations and releases, undergoing common steps such
as: testing the code in isolation, followed by functional testing within the host
system. If everything is complete in terms of target features and successful test-
ing, the plugin gets released so that its users can update to the latest version.
This process can be tiresome and error prone since there are many file transfers
involved and a lot points of failure: moving code between the plugin’s source code

1 Asynchronous Module Definition

directory, which in most cases is under some kind of revision control, and the
target host system; deploying to remote servers; separating the client-side from
the server-side components; and ensuring the compatibility of different versions
in plugin-to-plugin dependencies. Streamlining these processes can help both
plugin developers and consumers.

3 Plugin Architecture

In this section we present the architecture of our plugin system, asqium, and how
it fulfills the design goals of the previous section (Table 1). The proposed design
tries to strike a balance between expressiveness and compliance. An increasingly
popular approach to achieve expressive freedom without sacrificing compliance
to domain constraints is the curation (or screening) of plugins by a dedicated
curator team or directly by the community that consumes the plugins [5]. This
shifts the weight from the architectural design to the publishing process thus,
resulting in less restrictive APIs where most of the restrictions’ focus is on cre-
ating plugins that are safe (for example to prevent them, where possible, from
accidentally deleting data or unintentionally slowing down the User Interface)
rather than secure.

The server-side architectural units of our design are: the core and its ex-
posed APIs, the proxy objects and the plugins. The core implements APIs to be
consumed by plugins and a very minimal set of business logic. The majority of
business logic that is fundamental to the operation of the system is implemented
as bundled plugins, as opposed to optional extensions that are implemented as
third-party plugins. The exposed APIs are hooks, events, database and settings.
The hooks end events APIs undertake the duty of communication and message
passing. The database API gives access to the models and the persistence stores
of the application. The settings API allows plugins to store and access settings
information for a wide range of system and plugin related tasks. Proxy objects
act as the interface to the core APIs. The back-end components of a plugin
are Node.js modules. On the client-side we distinguish the Event middleware,
the core application and the plugins. The core application implements the in-
formation flow of the application. It is in control of the WebSocket layer and
is also responsible for establishing the initial communication with the front-end
components of plugins. The front-end components of plugins are based on the
Web Components technology. For the rest of the paper, in the context of plugin
components, ‘modules’ refers to back-end components and ‘Web Components’
to front-end components (Fig. 1).

3.1 Server-side Plugins

Server plugins are implemented as npm modules. The only mandatory depen-
dency from the plugin system is extending a base class which offers some conve-
niences for the developers like declarative mapping of hook names to callbacks
and lifecycle methods. There are four lifecycle methods: install, uninstall,

Table 1: Architectural Decisions and Design Goals

Design Goal Architectural Decisions for Plugins
Application Domain Curation of plugins by the community.

Compliance Hooks to support the information flow of the application.
Open Event Model Front-end and back-end code of plugins can exchange cus-

tom event types.
Persistence Flexibility =~ Implementation-agnostic persistence API.
Web components mitigate the problem of CSS and
Javascript bleeding.
Custom elements like core-style can be shared across
plugins to support theming.

Encapsulation and Theming

Isomorphism Business logic in both client and server implemented in
Javascript

Single repository for both the front- and back-end.
Front-end component installed with bower.

Easy Deployment and

Publication Back-end component installed with npm.
Server Browser
> . s
'g Node modules Plugln Web Components g

R [" "Hooks/Events -] " WebSockets [""" Events J T
)

—>
Core Pub/Sub [Core

Fig. 1: Plugin structure: Back-end modules and Front-end Web components

activate and deactivate, which are called from core when a system user tries
to perform one of the corresponding actions. This allows plugins to perform tasks
like creating settings, populating the persistent store or performing cleanup.

Proxy object Proxy objects are used as a single fagade interface between
plugin modules and the host system. A proxy object (Fig. 2) exposes all the
available APIs that a plugin may use to interface with the core, like hooks,
events, settings and database APIs. The implementation of a proxy object is
provided by the core. Each time the core instantiates a plugin, it passes the
plugin constructor a new instance of a proxy object. Conversely, the core does
not directly call methods on plugins: instead it executes hooks or publishes events
to which the plugin can subscribe. This ensures that the core remains decoupled
from the plugins.

Hooks API

System Plugin

Third party Plugin

Business - Business
.) P
[Logic roxy R Logic
API

E | Events API I
: |

Settings API

Fig.2: Proxy object used as the entry point facade for the plugin contributed
business logic to access the core APIs

3.2 Front-End Components

Web Components is an umbrella term covering four Web Technologies: Cus-
tom elements [6], Shadow DOM [7], the HTML template element and HTML
imports [8]. The synthesis of these technologies allows the creation of HTML el-
ements that have encapsulated CSS styles, their own DOM tree (Shadow DOM)
and are also JavaScript objects which helps mitigate the global variables bleeding
problem which affects many Web applications. Custom elements can be accessed
and manipulated with regular DOM methods since they reside and are part of
the DOM [9]. Shadow DOM allows us to separate markup that describes con-
tent from markup that is purely presentational. Implementation details can be
hidden from the user which results to components with succinct markup [10].

We use the Polymer library [11] which builds on top of the Web Components
technology. Polymer polyfills [12] missing Web Components Technologies in case
they are not available in a browser and adds some functionalities like data-
binding and declarative element registration. A typical Web Component defines
one or more Custom Elements that encapsulate the User Interface and front-
end business logic of the plugin. The plugin subscribes and publishes events
to communicate with the rest of the application. Thus, the only dependency
between front-end components and the front-end core of the application is the
pub/sub implementation which is already present in the form of the EventTarget
interface that most DOM Elements implement.

3.3 Communication and Message Passing

Server-side We distinguish two modes of server-side task execution and dis-
cuss the corresponding communication patterns between participating plugins
to accomplish them:

1. Input transformation tasks with completion acknowledgement
These are tasks where each participating plugin applies a transformation to
some input. The result is passed to the next participating plugin until there is

time ! proxy : icore
={ hooks = {

Plugin 1 :
1 . (D 1 P2 . h_name_1": [
. .registerHook(”h_name_ 1", cbP2); . i -
Plugin2 ——2 (*h_name 17,)i ! cbPl,
5 g 0 cbpP2,

registerHook(“h_name_1”, cbPl)

[ngHWS } registerHook(“h_name_ 1", ch3)f=4 cbP3]

Plugin 4 |—

doHook (“h_name_1", arg)

cbP1(arg);

result1

ﬂ

cbP2(result1);

result2

Plugin 4 }Af result3 i cbP3(result2);

|

Fig. 3: Hook lifecycle: registration and chained invocation

no plugin left in which case the final output is returned to the initiator of the
task. Here we only consider the case where order is not important. Participating
components can process these tasks in parallel or asynchronously. This is because
all participating components are operating on the same data which can lead
to unexpected results. Nevertheless, a plugin may execute asynchronous code,
which is encouraged for I/O operations, as long as it returns control to the callee
when it has finished execution in order to proceed with the next plugin. This
can be implemented with callbacks and/or Promises [13]. Examples of such tasks
are: knowing when an answer from a student has been processed and persisted
to the database in order to update progress information; composing a piece of
information that needs to be sent as part of a single HTTP response to the
client, like the head of an HTML document.

To target this type of execution, we implemented a hook system. The hook
system allows plugins to register for a hook providing the name of the hook and
the function (callback) to be invoked when this hook is executed. Hooks identify
specific tasks of the Application that require sequential execution and result
passing between chained invocations of logic that is contributed by one or more
plugins. Hook callbacks have an arity of one, with the only argument being the
result of the previous callback execution for the same hook. The initial value
for the argument is provided from the initiator of the hook execution similar
to a reduce function. Any plugin can initiate a hook execution and any plugin
can register. The doHook function in Listing 1.1 executes all callbacks for a
specific hook. Notice the use of Promise.reduce that waits for each task to
return either a Promise or a value and then continues with the next callback.

O~ O O Wi

function doHook(name){
if (! this.hookCbs[name]) return Promise.resolve(true);
var args = Array.prototype.slice.call(arguments, 1);
//execute callbacks sequentially
return Promise.reduce(this.hookCbs[name], function(arg, hookFn){
return Promise.resolve(hookFn(arg));
}, args);

Listing 1.1: Executing a hook by triggering contributed callbacks

2. Decoupled asynchronous tasks These are tasks that are executed as
response to some significant change in the state of the system (event). The ini-
tiator of the state change has no knowledge of the other components that are in-
terested in the change. This approach has the benefits of loosely coupled compo-
nents and asynchronous executions of tasks (which can boost performance [14]).
Examples of such state changes that components may want to subscribe to are:
"a new user has come online’ or ‘a checkbox was ticked’. Event notifications are
produced and propagated with message passing according to the pub/sub pat-
tern. A plugin subscribes for an event which may be triggered from the core or
other plugins. The dispatcher of the event has no expectations for a completion
acknowledgement or some result to be returned. Event-based communication is
encouraged in JavaScript development since there’s native support in both the
server (Node.js - EventEmitter) and the client (DOM - EventTarget).

Client-side Our approach is to use pub/sub style communication for plugins
and the core using an EventEmitter-like library, and within the plugins a combi-
nation of DOM events communication and method invocation. The reason we do
not use EventTarget DOM elements as event producers and consumers for non-
DOM-related events is to maintain a uniform (isomorphic) interface for event
creation and handling across both modules and Web Components. More in de-
tail, the host application awaits for all plugins to be instantiated by listening for
a polymer-ready event (Listing 1.2). Then it dispatches through the document
an app-ready event for which plugins should have a listener for. As a payload to
the event message is the EventEmitter instance that is going to be used as the
event bus of the whole application. Plugins can subsequently publish/subscribe
to events on the EventEmitter instance (Listing 1.3). The app-ready event is
the only document dispatched event between a plugin and the application. The
rest of the communication is carried out through the EventEmitter.

var eventBus = new EventEmitter2();
document .addEventListener ("polymer-ready", function(){
var event = new CustomEvent(’app-ready’, { ’detail’: {appEventBus :
eventBus} 1});
document .dispatchEvent (event) ;

B;

Listing 1.2: Seeding the EventEmitter instance to front-end plugins

1
2

3

document .addEventListener (’app-ready’, function(evt){
evt.detail.appEventBus.on(’asq:question_type’,
this.onQuestionType.bind(this));
}.bind(this));

Listing 1.3: A front-end plugin receiving the EventEmitter instance and using it
to subscribe for events

Server-client plugin communication Real-time Web applications es-
tablish low-latency, low-overhead bidirectional communication streams between
client and server through WebSockets. Plugins from both sides register for events
on an intermediate layer that receives events from the WebSockets layer. The
intermediate layer is tasked with filtering events and only re-emitting those that
can be consumed by plugins. An EventEmitter-like instance is used to publish or
subscribe to events. To send custom messages to the server, Web components use
dedicated events, specifying their unique plugin name in the ‘type‘ field of the
event. This ensures that modules will process this event since they can subscribe
to receive it.

Server generated events targeted to client counterparts of a plugin use the
same event structure but an extended identification mechanism. The rationale
behind this is that there can be many connected clients that have an instance of
the target Web Component and that may be in the scope of a specific event. For
example a user may have opened two instances of our application in two separate
browser windows; or we may want to target all users that have a specific role in
our application, e.g. all the administrators. Our system uses the Socket.IO library
to provide WebSocket functionality which allows grouping socket connections in
rooms and namespaces [15]. This allows a server plugin to easily target logically
grouped clients. Listing 1.9 demonstrates a simple use case of this pattern where a
server-side plugin emits an event which targets its client-side counterpart running
on clients that belong to the ctrl event namespace.

3.4 Persistence

The persistence APIs and behaviour is designed under the assumption that the
persistence layer comprises schema-less document or key-value stores like Mon-
goDB and Redis. Enforcing the schema of the data is possible, and recommended,
at the business logic layer.

API interface Proxy objects provide plugins with an interface to the data
stores used by the core. The interface is intended to help to accelerate common
development tasks for plugins and mitigate common pitfalls.In our experience,
a plugin usually needs two types of persistent data. The first concerns general
settings for controlling the plugins’ behaviour, for example: activated vs deacti-
vated states, options of the control panel of the plugin, or general configuration
options. RDBMS-based applications offer one or more tables dedicated to this
cause. RDBMS require data stored in tables to conform to strict schemas. A com-
mon strategy to enable storage of arbitrary data in a single table, is to serialize

all data types, including hashmaps and arrays, into strings. Such a concession
is not required in document based databases, therefore all types of setting data
from all plugins and the core can be stored in one collection (the equivalent of
a table)?.

The second type is data for the plugin business logic. In this case plugin data
may either share the same structure as the core generated data or introduce new
structures. Again, small mismatches in similar data can be mitigated, as we will
demonstrate in the evaluation section, by the schema-less nature of document
stores; allowing the plugins to share the same collections as the core. There are
cases however, where plugins need to store data that are unrelated with the
existing data. In such cases plugins can create their own collections.

Schema and data migration Plugins for traditional Relational Database
Management Systems (RDBMS) usually have some logic that migrates the
schema and stored data of related database tables from one version of the plugin
to another. A lot of modern document based or key-value stores are schema-
less and as such there is no need for schema migration. However, for simplicity,
data should be kept consistent in structure, so a data migration plan remains
necessary. Migration operations can be performed during the install lifecycle
method of a plugin.

3.5 Plugin Isolation

At runtime, a plugin’s code should run in isolation from the code of other plugins
and in case of failure, if possible, it should not cause the rest of the application
to fail as well. To minimize dependencies and thus the possibility for failures
the only way a plugin can interface with the core is through the proxy object
instance. The event and hooks systems are agnostic of the presence of plugins. All
lifecycle methods of plugin modules that are called from the core are contained
in try-catch blocks. This holds true for hooks as well: when a hook is executed
the code that initiates the hook execution should catch and handle any errors
that may occur from invoking a registered callback contributed by a potentially
faulty plugin.

3.6 Deployment and Release Engineering

Npm is the package manager for Node.js modules. It is configured via a
package.json file. Bower is a package manager for front-end assets like
JavaScript libraries and CSS frameworks. It is configured by a bower. json file.
Our plugin framework uses both to specify the modules and Web components
contributed by the plugin respectively (see Fig. 1). The host system can specify
the plugin as a dependency using the respective package managers. This design
has a number of benefits:
1. reuses established package managers.

2 In some cases performance may be affected if some conditions are not met. For exam-
ple collections with documents that vary greatly in size may induce write penalties.

2. allows for a single code repository for the entire plugin.

3. enables to ignore files that are not required by a specific counterpart of the
plugin. Npm uses either the files field in the package. json file for an inclusive
list of files or a .npmignore file in the project’s root directory that lists files to
be excluded. Bower supports an ignore field in the bower. json file to specify
which files to exclude.

4. makes it convenient to use the latest version of the plugin code while

testing. This can be achieved either by using the tip of a specific code branch
or by symlinking the package (be it an npm or a bower package) using built-in
package manager commands.
The npm module part of the plugin can be deployed by the command npm
install <package-name> which will install it in the node_modules directory
of the server-side code. Given correct implementation of the server-side plugin
lifecycle methods, plugins can be installed, uninstalled, activated and deacti-
vated while the application is executing, allowing us to hot-swap implementa-
tions while testing. The Web Component part of the plugin can be installed by
specifying it as a dependency in the bower. json file or the front-end components
of the host system. Additional building steps can be implemented to allow code
transformation, minification and other release engineering tasks.

4 Evaluation

In this section we present a concrete use case to show that the plugin system
delivers the extensibility we need as part of the ASQ [2] project.

4.1 ASQ Application Flow

ASQ is principally aimed at computer science lectures but can be used in any
context where presenters require real-time fine grained audience feedback. Pre-
senters add questions to the slides of their presentation, which are implemented
in HTML5 and JavaScript, and broadcast the presentation. The audience mem-
bers connect, follow the slides and answer questions. Continuous feedback is
provided to the presenter who may choose to share parts or all of it with the
audience. Examples of feedback include incoming answer events, automatic as-
sessment results and more. There might be additional steps involved in the cycle,
e.g., peer or self assessment of answers.

Overall, ASQ is designed to take advantage of the plugin system described
in this paper to address the following extensibility requirements:

— Content authors should be able to create custom question types or extend
existing ones. Types can range from simple multiple choice questions to advanced
code editing questions with automatic unit-test assessment.

— Content authors should be able to create custom feedback logic and visu-
alizations to target different presentational needs and accommodate for hetero-
geneous data coming from different question types. To better illustrate this, let

us assume two different question types: multiple choice questions, where the an-
swer is the combination of the checked options; and a highlight question, where
the answer is the highlighted parts of a given text. Whereas it makes sense to
render audience responses as a barchart or a pie chart in the former case it may
not provide a meaningful visual representation for a heatmap question. A bet-
ter choice may be to create a heatmap which maps each character position of
the text with a color intensity that is proportional to the number of times the
specific character position was highlighted by the audience.

— Presenters should be able to enable lecture flow and interaction patterns
that match the usage context, their teaching style, the applied pedagogy and the
nature of the question types. Examples include: the ability to have synchronized
slides between presenter and audience within the classroom and free navigation
for viewers during studying (presentation context); the ability to display assess-
ment results in real time versus a specific point in time, or individual versus
aggregated results (teaching style); the ability to allow students to work indi-
vidually or in groups (applied pedagogy); the ability to have automatic, self or
peer assessment strategies (applied pedagogy and question type complexity).

— Easily swap data-mining and analytics plugins to compare different tech-
niques and algorithms to increase teacher awareness.

— Easy integration of complex external services and data sources without
polluting the system architecture.

4.2 ASQ Architectural Overview

ASQ is a client/server application that uses both HTTP and WebSocket proto-
cols for communication. An overview of the architecture is depicted in figure 4. In
the back-end, an HTTP server coupled with the business logic of the application
serves static assets, bootstrap data (such as WebSocket connection configura-
tion) and initial HTML which is first rendered server-side using a dynamic tem-
plate framework. Subsequent client-server communication is WebSocket based
for reduced latency and higher throughput. Different roles connect to different
‘namespaces’, which are pools of connection ids implemented by a software layer
on top of WebSockets, albeit in the same host and port.

The business layer persists model data like users, presentations and questions
in MongoDB, a document based storage. The application also utilizes a Redis
server tasked with two functions: storing simple key-value data like session iden-
tifiers and providing a pub/sub implementation that helps scale the WebSocket
component of the application.

In the front-end, after an initial page load through HTTP, the application
uses mostly WebSocket for communication. The core of the business logic is role-
based, so presenters get a different main script than the viewers; and also view-
based. For example presenters currently have two discrete views: the ‘beamer’
view which displays the presenter’s version of the presentation and the ‘con-
trol panel’ which displays feedback information like number of connected users,
incoming answers, statistics, next and previous slides and more.

BACKEND PERSISTENCE

Model
Plugin [Module Components] o0e
"""""" [""'"""'Hébk's'/é'v'éﬁt's"'"'"'""]" PUB/SUB
Core ’ Session
HTTP Server I WebSockets]

Static assets,
Templates,
Bootstrap data

Presenter &
Viewer Events

FRONTEND e e e e e aaaaaaas,

Core

iPlugin [WebComponens).
[Event middleware]
| |
l J

AJAX I WebSockets

o Slides
(T Questions
m'm

Viewers

- Slides
Slld(.es Questions
Questions Statistics
Statistics
Control Panel

Control

Results
panel

Presenter

Fig.4: ASQ architecture with the plugin system

4.3 Crafting a Plugin for ASQ

In this section we demonstrate how we can use the presented plugin system to
craft a question type plugin for a highlight question. We will name the plugin
‘asq-highlight’.

Creating the User Interface A custom question type has different ap-
pearance and functionality based on the role and view of the user. In our case,
an audience viewer faces a text editor with highlight capabilities showing the
text to be highlighted (left of Fig. 5). On the beamer view (right of Fig. 5) the
presenter can toggle between two modes: a heatmap over all audience answers or
the correct solution. On the control panel, the presenter can display the highlight
solution for any of the audience members or compare two or more answers with
a heatmap.

To implement the User Interface we create a Custom Element,
<asq-highlight>, that will be the fagade for two role-based elements
<asq-highlight-viewer> and <asq-highlight-presenter>; Listing 1.4 shows
this in effect. The template of <asq-highlight> uses a conditional template (a
Polymer feature) to render the appropriate element based on the role attribute

N =

N O Uk W

o]

10

[

© 00 NS ot

Highlight with the appropriate color the following:

. Visibility Modifiers
. Variable Declarations
Other keywords

B N Working on "Visibiity Modifiers* Ranges

Occurences

m - public CHD

1 - class C {
2 public void m() {
3 W i-=i+5+ (D505 g o int
4 3
5
¥ - class CEED

Highlight with the appropriate color the following:
[¥A visibility Modifiers
[l Variable Declarations
QOther keywords

m Heatmap for Visibility Modifiers W
1 class C {

2 p oid m() {

3 int i =1+ 5+ ((int)5.08);

4 1

5%

Fig.5: Viewer (left) and Presenter (right) views of a highlight question

of <asq-highlight>. Then it forwards related attributes and the content (also

known as distributed nodes) to the role-based elements.

Content authors can embed an <asq-highlight> element in their presenta-
tion using code similar to Listing 1.5. Notice the definition of two more elements,
<asqg-stem> and <asq-hl-color-task>. We can define more than one elements
that can be distributed with a Web Component to create structural elements

that encapsulate presentation resulting in cleaner and shorter markup.

<template if="{{role == roles.VIEWER}}">

<asq-highlight-viewer mode="{{mode}}" theme="{{themel}}"

fontSize="{{fontSizel}}">
<content></content>
</asq-highlight-viewer>
</template>

<template if="{{role == roles.PRESENTER}}">
<asq-highlight-presenter mode="{{model}}" theme="{{theme}}"

fontSize="{{fontSizel}}">
<content></content>
</asq-highlight-presenter>
</template>

Listing 1.4: Template of the <asq-highglight> element.

<asq-highlight theme="textmate" mode="java" fontSize="lem">
<asq-stem><h3>Highlight with the appropriate color the
following:</h3></asq-stem>
<asq-hl-color-task color="d9534f">Visibility
Modifiers</asq-hl-color-task>
<asq-hl-color-task color="428bca">Variable

Declarations</asq-hl-color-task>

<asq-hl-color-task color="fOad4e">0ther keywords</asq-hl-color-task>

<code>public class C {
public void m() {
int i =
}
}</code></asq-highlight>

i + 5 + ((int)5.0) + ((int)5f);

Listing 1.5: Markup to create the showcased highlight question

O~ O Tk Wi+

== = e
= wNn = O o

0~ O O Wi

Implementing server-side business logic The server-side module of asqg-
highlight will respond to two hooks: parse_html which is triggered when a user
uploads an HTML presentation file; and answer_submission, triggered when an
audience member submits an answer to a question.

For parse html we are interested in extracting the representation of all
<asq-highlight> elements present in an HTML string and persisting them in
the ‘questions‘ collection of our models persistence store (MongoDB). Listing
1.6 shows the implementation of the callback for parse_html. this.asq refers
to the proxy instance used to persist the extracted question metadata.

function parseHtml (html){
//cheerio is a Node.js library for HTML manipulation
var $ = cheerio.load(html, {decodeEntities: false});
var hlQuestions = [];
// extract question metadata from custom elements
$(this.tagName) .each(function(idx, el){
hlQuestions.push(this.processEl($, el));
}.bind(this));
//store metadata via persistance API
return this.asq.db.model("Question").create(hlQuestions)
.then(function(){
return Promise.resolve($.root().html());
b;
}

Listing 1.6: parse-html hook callback for asq-highlight

When a viewer submits an answer to a set of questions, a core plugin fires
the exercise_submission hook and for each individual question an answer_-
submission hook (Listing 1.7). Asq-highlight provides a callback for answer_-
submission in order to persist the Answer to the database as in Listing 1.8.

Notice the invocation of this.calculateProgress which calculates how
many of the audience members have answered the question identified by
questionUid and brodcasts the result to all connected clients. This method
executes asynchronously and is a good example of event notification. The ab-
breviated version in Listing 1.9 shows how the event published from the server
can target multiple clients.

function handleSubmitEvent (submission){
//execute ‘exercise_submission‘ hook
yield hooks.doHook("exercise_submission", submission)
//execute ‘answer_submission‘ hook for each answer
yield Promise.map(submission.answers, function(answer){
return hooks.doHook("answer_submission", answer);

B;

Listing 1.7: triggering submission hooks in plugins, server-side

O~ O O Wi

11
12
13
14

N O U W N

answerSubmission: coroutine(function *answerSubmissionGen (answer){
var questionUid = answer.questionUid
this.validateAnswer (answer) ;
yield this.asq.db.model("Answer").create({

question : questionUid,
answeree : answer.answeree,
session . answer.session,

submitDate : Date.now(),
submission : answer.submission,
b;
this.calculateProgress(answer.session, ObjectId(questionUid));
//this will be the argument to the next hook
return answer;

Listing 1.8: submission hook execution

var event = {
questionType: ’asq-highlight’,
type: ’progress’,
questionUid: question_id.toString(),
heatmapData: JSON.stringify(heatmapData),
}
this.asq.sendSocketEventToNamespaces(’asq:question_type’, event,
session_id.toString(), ’ctrl’)

Listing 1.9: sending an event to all presenter clients

5 Related Work

Architect [16], Intravenous [17], Seneca [18] and Wire [19] are all Node.js ar-
chitectural frameworks that handle well dependency injection and offer ways to
declare modules and their dependencies. They are positioned in the application
composition layer on top of the npm modules layer. Front-end components are
not in the scope of these frameworks.

This work is heavily influenced by the plugin systems of popular Web-based
content management systems. More specifically the hooks construct can be found
in similar contexts in Wordpress [20], Ghost [21] and Moodle [22] which are two
blogging platforms and an open-source learning platform respectively. Moodle
has also the notion of event-driven communication between back-end plugins
and the core [23]. In these systems client-server communication between plugin
components is performed mainly through HTTP/AJAX. By default, the back-
end components cannot push any data to the front-end without the latter having
issued an AJAX request first to pull the data [24].

Hoodie [25] is a Node.js framework with CouchDB store technology, whose
main goal is to abstract away the back-end to facilitate the job of front-end de-

velopers. To accomplish this, the front-end application communicates with the
back-end only through the Hoodie Javascript API. Using CouchDB’s changes
feed Hoodie is always aware of things that happen to the user’s data and makes
them available via events which allows keeping multiple devices syncronized. It
support plugins which have a: a) frontend component; b) backend component;
and ¢) an admin view. Frontend components communicate with back-end com-
ponents through tasks similar to the client-server event mechanism described in
Section 3.3. A task is a special object that can be saved into the database from
the Hoodie front-end. Front-end plugin components deal only with the Hoodie
APIT and do not have visual entities. Any related markup or CSS styles live in
the static assets of the main application outside of the plugin directory. Hoodie
thus lacks a way to encapsulate markup and styles for front-end plugins. Hoodie
also does not have the concept of hooks.

6 Conclusion

In this paper we present the design of asqium: a plugin system for JavaScrip-
t/HTML5 Web applications that need to be extended with components running
both as back-end modules and as front-end Web components. In addition to
achieving the extensibility of the resulting Web application, the plugin system
takes care also of basic infrastructural chores, such as event-based communica-
tion, persistent storage, and composition of synchronous and asynchronous func-
tions contributed by multiple plugins. The plugin system has been implemented
as the foundation of the ASQ educational Web platform, which has provided the
motivation for the work and has been used as a case study to evaluate the plugin
APT expressiveness. We are looking forward to involve the Web Engineering com-
munity in further developments. The code for the plugin system implementation
is available at https://github.com/ASQ-USI/ASQ/tree/master/lib/plugin.
The back-end plugin base is an npm package which can be found at https:
//github.com/ASQ-USI/asq-plugin.

As a future research direction, we want to explore ways to enable seamless
plugin data and state synchronization between different devices and the ability
to cache plugin data that are produced when the client is offline and synchro-
nize them upon re-establishing internet connectivity. This will provide a solid
foundation on which liquid Web applications [26] can be engineered.

We are also working on ways for plugin authors to prioritize the callback
execution associated with hooks and in general specify temporal dependencies
between events of different plugins. Finally, we also want to shift our focus
towards security and access control. We aim to introduce execution contexts for
plugins, that correspond to user-granted privileges, by introducing Role-based
Access Control (RBAC) at the plugin level.

Acknowledgment The work is partially supported by the Swiss Commission for
Technology and Innovation with the Spottedmap project (Grant Nr. 16328.1).

References

1.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
22.

23.

24.

25.
26.

Mayer, J., Melzer, 1., Schweiggert, F.: Lightweight plug-in-based application devel-
opment. In: Objects, Components, Architectures, Services, and Applications for a
Networked World. Springer (2003) 87-102

Triglianos, V., Pautasso, C.: Interactive scalable lectures with ASQ. In: Proc. of
the 14th International Conference on Web Engineering (ICWE 2014), Toulouse,
France, Springer (July 2014) 515-518

kangax: Detecting global variable leaks. http://perfectionkills.com/
detecting-global-variable-leaks// (2009)

Bédard, J.: Isomorphic javascript. http://isomorphic.net/ (2015)

Onishi, A.: Plugins: When the time is right. In: Pro WordPress Theme Develop-
ment. Apress (2013) 273-295

Dimitri, G.: Custom elements. W3¢ working draft, W3C (December 2014)
http://www.w3.org/TR/2014/WD-custom-elements-20141216//.

Dimitri, G., Ito, H.: Shadow dom. W3c working draft, W3C (June 2014)
http://www.w3.org/TR/2014/WD-shadow-dom-20140617/.

Dimitri, G., Hajime, M.: Html imports. W3c working draft, W3C (March 2014)
http://www.w3.org/TR/2014/WD-html-imports-20140311/.

Penades, S.: An Introduction to Web Components. In: Web Components London,
webcomponents.org (jan 2015)

Walton, P.: Web components and the future of CS. In: Proc. of
SFHTMLS5. (Nov 2014) http://webcomponents.org/presentations/
web-components-and-the-future-of-css/.

Polymer, p.: Polymer Homepage. https://www.polymer-project.org/ (2015)
Sharp, R.: Detecting global variable leaks. https://remysharp.com/2010/10/08/
what-is-a-polyfill (October 2010)

ECMA: Draft specification for es.next (ecma-262 edition 6). Ecmascript working
draft, ECMA (February 2015)

Bonetta, D., Binder, W., Pautasso, C.: TigerQuoll: parallel event-based JavaScript.
In: Proc. of PPoPP. (2013) 251-260

Rauch, G.: Rooms and Namespaces. http://socket.io/docs/
rooms-and-namespaces/ (2014) Accessed: 2015-02-25.

c9: architect. https://github.com/c9/architect (2015)

Jacobs, R.: intravenous. https://github.com/RoyJacobs/intravenous (2015)
Rodger, R.: seneca. https://github.com/rjrodger/seneca (2015)

cujoJS: wire. https://github.com/cujojs/wire (2015)

Mullenweg, M., Boren, R., Jaquith, M., Ozz, A., Westwood, P.: Wordpress. https:
//wordpress.org/ (2011)

Wolfe, H., O’Nolan, J., Davis, P., Williams, J.: Ghost. https://ghost.org/ (2015)
Dougiamas, M.: Moodle: A virtual learning environment for the rest of us. TESL-
EJ 8(2) (2004) 1-8

Moodle developer documentation, M.: Event 2. https://docs.moodle.org/dev/
Event_2 (2015) Accessed: 2015-02-25.

Mesbah, A., Van Deursen, A.: A component-and push-based architectural style for
ajax applications. Journal of Systems and Software 81(12) (2008) 2194-2209
Hoodie, H.: Hoodie Homepage. http://hood.ie/ (2015) Accessed: 2015-02-25.
Mikkonnen, T., Systa, K., Pautasso, C.: Towards liquid Web applications. In: Proc.
of the 15th International Conference on Web Engineering (ICWE), Rotterdam, NL,
Springer (June 2015)

