
Sketching Process Models
by Mining Participant Stories

Ana Ivanchikj and Cesare Pautasso

Software Institute, USI, Lugano, Switzerland
name.lastname@usi.ch

Abstract. Producing initial process models currently requires gather-
ing knowledge from multiple process participants and using modeling
tools to produce a visual representation. With traditional tools this can
require significant effort and thus delay the feedback cycle where the
initial model is validated and refined based on participants’ feedback.
In this paper we propose a novel approach for process model sketching
by applying existing process mining techniques to a sample process log
obtained directly from the process participants. To that end, we spec-
ify a simple natural language-like domain-specific language to represent
process traces or fragments of process traces. We also illustrate the ar-
chitecture of a live modeling tool, the Sketch Miner, implementing the
proposed approach. The tool produces a draft visual representation of
the control flow which is updated in real-time as the traces are written
down. The draft model generated by the tool can later be refined and
completed by the business analysts using traditional tools.

Keywords: Draft Process Model · Process Mining · Process Require-
ments · Textual Modelling DSL

1 Introduction

One of the identified challenges of business process management in a recent sur-
vey is the involvement of people with different skills and background [1], such as
process participants with business domain knowledge, the business analysts with
process modelling knowledge, and the software engineers with IT background.
In the requirements gathering phase for the implementation of a new process in
Process Aware Information Systems (PAIS), or when trying to model/improve
existing processes, the people with detailed knowledge about the AS-IS or TO-
BE business process are the participants in the process. Although they have deep
knowledge about the activities that they perform [15], they might lack global
knowledge about the end-to-end process [3]. Furthermore, abstracting from the
process instances and thinking on the process model level is not always straight-
forward, especially for people with little or no modelling experience.

Drafting a model of the process with traditional modelling techniques, re-
quires a dedicated person to step in the role of a business analyst, gather the
process knowledge from different participants and use a graphical editor to man-
ually create the initial draft process model. This requires time and significant

2 A. Ivanchikj et al.

cognitive effort by the business analyst, thus causing a delay in obtaining feed-
back on the draft model by the actual process participants. A comparative study
by Damij [5] has shown that the process participant’s role when using flowchart-
ing modeling techniques, boils down to observation. While when using more nat-
ural language like techniques, such as activity tables, the process participants
are actively involved to ensure that their activities are correctly captured in the
model. On the same note, the study by Ottensooser et.al. [18] has shown that
people with no formal training in business process modeling, understand better
textual notations describing business processes, such as written use-cases. How-
ever, their understanding of the described business process increases by reading
a BPMN diagram after having read the written use-cases. To summarize, the
existing state of the art process modelling techniques do not empower nor mo-
tivate process participants to become directly involved in the initial drafting of
the process model. Their only possible involvement is during the interviews with
the business analyst, who is then responsible for abstracting the concepts and
creating the general picture, which might not align with the reality. However, a
potential misalignment will only be discovered after the first draft of the model
is finished by the business analyst and shown to the participants, thus creating
delays in the feedback cycle.

With the work presented in this paper we would like to get the process par-
ticipants to become actively involved in drafting the model, thus speeding up
the feedback cycle. To that end, we propose a simple Domain Specific Language
(DSL) that would allow process participants to describe their user stories in
a predefined textual format, similar to task lists written in natural language.
By transforming these lists into a process log we leverage on existing process
mining algorithms to discover the process described by the participants. This
Model Sketching by Mining approach allows the mining algorithm to use the
unified knowledge of different participants to deduce the control flow branches
and to infer the presence of loops, and thus output in real-time an initial draft
of the business process in the visual language of choice. The role of the cre-
ator of the initial draft model is transferred from the business analysts to the
mining algorithm, while the business analyst steps in later, in the refinement
and finalization of the model, which can be done with the traditional model-
ing tools. This does not mean that the business analyst cannot use the DSL to
“take notes” and sketch the model while interviewing process participants. That
types of involvement allow for a quick initial draft of the process model which
can be used to facilitate the discussion and the validation of the model with the
stakeholders. While traditionally process mining has been used for discovery of
existing processes based on system logs [22], we propose to extend the use of
existing mining algorithms to sketch processes out of possible user scenarios or
hypothetical participant stories.

This paper is structured as follows. In Sec. 2 we discuss briefly the existing
textual notations for modelling business processes and motivate the need of
defining our own DSL for capturing process knowledge, which we present in
Sec. 3. In Sec. 4 we describe the architecture of the Sketch Miner, the proof

Sketching Process Models by Mining Participant Stories 3

of concept tool for Model Sketching by Mining, which translates the DSL into
complete process traces to be used as input to a mining algorithm. To show
the use of the DSL and the tool, in Sec. 5 we model a travel reimbursement
process, which we refer to when discussing the benefits and the limitations of
our approach in Sec. 6. In Sec. 7 we discuss the related work, while in Sec. 8 we
conclude the paper and present work that we plan to conduct in the future.

2 Textual Notations for Process Modeling

Using textual notations to generate visual models has been gaining on impor-
tance in the modelling languages that target primarily developers. For instance,
in Ballerina1, a programming language aimed at the implementation of microser-
vices and API integration, the textual and the visual syntax are kept synchro-
nized as they are being edited independently. There are also tools, such as Plan-
tUML, which support textual modeling of many of the Unified Modeling Lan-
guage (UML) visual diagrams which are aimed at documenting software systems
artifacts. One of these UML diagrams, the Activity diagram, is intended as a
graphical representation of workflows and as such can be used to model busi-
ness processes. It can be modelled graphically with tools such as StarUML2, but
it can also be modelled textually with tools such as PlantUML3, following the
syntax rules for distinguishing between different diagram constructs. The syntax
uses: 1) keywords, such as “start” and “stop” to denote the beginning and end
of a diagram, “if”, “then”, “else”, “elseif” for conditionals, “repeat”, “while”
for loops, or 2) punctuation signs, such as “:” to denote an activity, “()” to
denote a gateway, “| |” to denote swimlanes etc. A survey of textual notations
for UML is available in [19].

In the domain of process modelling, the Business Process Execution Lan-
guage (BPEL) is a textual XML based language for specifying process behaviour
with no standard graphical visual notation4. It uses nesting of constructs to
represent the control flow, using keywords to distinguish among different con-
trol structures such as <sequence>, <flow>, <if> etc. The target audience of
this language are developers. Nitzsche et.al. [17] have proposed BPELlight to
describe interactions only as message exchanges, regardless of the interface defi-
nition, thus separating the business logic from the technical protocols and mes-
saging infrastructure. BPELlight extends BPEL with the <conversation> and
<interactionActivity> elements which group the interaction activities and
thus simplify the original BPEL language, facilitating the modelling of business
processes at a more abstract level. However, also BPELlight does not provide a
visual rendering of the process model.

1 https://ballerina.io
2 http://staruml.io
3 http://plantuml.com/activity-diagram-beta
4 https://www.oasis-open.org/committees/download.php/23964/wsbpel-v2.0-

primer.htm

4 A. Ivanchikj et al.

The Business Process Model and Notation (BPMN) is a standard process
modelling language, designed starting from a visual syntax and later enhanced
with an XML-based serialization. Recently a textual representation of BPMN
has been proposed in plantBPMN [11]. Its target audience are developers, and
potentially business analysts, and thus it supports a large number of BPMN
constructs. It requires knowledge of BPMN terminology as specific keywords are
used for all the node constructs such as “pool”, “start”, “start timer”, “split”,
“task” etc. It also includes symbols that mimic the graphical constructs, such as
the “->” for denoting the sequence flow.

The above mentioned DSLs require the users to learn and remember a syntax
with different constructs, or rules for expressing different visualizations. As these
rules are often similar to expressions used in programming languages, they might
be intuitive for developers, but not necessarily for our primary target audience,
i.e., process participants. The process participants would use the DSL for model
sketching by mining only when mapping their everyday activities to a process,
which is expected to happen rarely in their career. Thus, the textual DSL to be
used by them should be as simple as possible and as close to natural language
as possible, so that it can be explained and memorized fast, with no need of
specialized training. The aim of such DSL is not to generate an executable pro-
cess model, but rather to rapidly paint a model sketch for discussion purposes
by inferring a process template from multiple scenarios representing individual
instances. To do so, it does not need the full expressiveness of an executable
process modeling language, such as BPMN or BPEL. Other authors have also
pointed to the benefits of a simpler notation when gathering requirements [14].
By using mining to deduce the control flow constructs, we can avoid having to
specify them in the textual DSL, and thus propose a simpler DSL than the ones
mentioned above.

3 A DSL for Process Model Sketching by Mining

When the goal is obtaining an initial draft model fast, an important decision
to make is what is the minimal necessary user input in order to maximize what
can be expressed in the output. The desired output in our case is a draft process
model, for which the required minimal input are the names of the activities in
the process and the sequence in which they have to be completed. Although
the DSL can be used by all involved parties, the primary targeted users are the
process participants, who are generally not computer scientist, and thus are not
familiar with the syntax of structured programming languages, and have limited
knowledge of process modelling languages and process modelling. Therefore, one
of the requirements for the DSL is that it should be as simple as possible and as
close to natural language as possible. Additionally, as we propose using a mining
algorithm to automatically generate the initial sketch of the process model, the
input to the algorithm needs to mimic a set of traces of process instances. To
get the full model, a complete process instance trace is required for each possible
path that can be taken in the process. There are several issues with obtaining

Sketching Process Models by Mining Participant Stories 5

Input Participant Log EOF

Participant Log participant name EOL EOL Trace EOL

Trace Dots activity name EOL Dots

Dots ... EOL

Fig. 1. Model Sketching by Mining DSL Grammar Definition (EOL indicates the end
of the text line; EOF the end of the input file).

such traces directly from the user. First of all, although it is highly likely that
individual process participants are at least aware of the activities that they
need to perform and the immediate predecessor / successor activities, they may
lack knowledge of the end-to-end process, and thus all the possible paths in the
process. Another issue is that stating all the possible paths becomes repetitive
when there are many alternative paths which have many shared activities.

The standard IEEE format for event logs used in process mining is the eX-
tensible Event Stream (XES) format5. XES is a tag-based language, where the
information about the events belonging to a determined process instance lie
inside a trace element, which contains one to many event elements. Different
attributes can be defined for the event element, the timestamp and the activity
name being the most frequently used ones. Although XES is human readable, it
requires the knowledge of XML syntax, the specific tags and their meaning and
is rather verbose for human users to write manually. Thus, we could not use this
standard as a format for the user input, but nonetheless we used it as a target
into which our DSL can be transformed.

Namely, in the DSL for Model Sketching by Mining we require the user to
write the name of each new activity in a new line, in the order in which the
activities are completed. No time-stamp is required as the sequential order is
deduced from the order in which the activities’ names are written. While system
event logs would have a process instance ID and a participant ID associated with
each event, in our DSL a new empty line in the text separates traces of different
process instances, and the participant keyword followed by the name of a par-
ticipant denotes who performs the activities listed after naming the participant.
In Fig. 1 we provide a formal definition of the syntax of the DSL specifying
the correct usage of the language constructs. Essentially, the allowed values in
a single line of text are: 1) the participant keyword followed by the name of

5 http://www.xes-standard.org

6 A. Ivanchikj et al.

a participant; or 2) the name of the activity (empty spaces are allowed), or 3)
an empty line (to mark the start of a new process instance); or 4) the dots “...”
symbol (to indicate unknown fragments). While the names of the activities are
sufficient to capture any complete trace of a process instance whose activities
are performed by the same participant, we need the participant keyword as a
construct to represent the hand-over of activities between participants. Further-
more, we need a construct to allow shortening the log by avoiding the repetition
of the same sequences of activities in traces of process instances of different paths
in the process. To that end, we introduce the “...” symbol. This symbol at the
same time tackles the above mentioned issue of possible lack of knowledge of
what the other participants are doing, which gives rise to the need to represent
in the DSL fragments of process instance traces. The “...” symbol is essentially
a placeholder for missing parts of the trace which are defined elsewhere. The
precise semantics of the “...” symbol depends on its position relative to the start
or end of the process instance trace, i.e., relative to the empty line. Following are
the possible types of fragments of process instance traces and their semantics:

– Process instance trace that does not contain the “...” symbol: a sequence
of activities which are all known to the user and which show a complete possible
execution path of the process from the start to an end;

– Process instance trace that starts with the “...” symbol: the start of the
process instance is not known to the user, or has been defined in the trace of other
process instances. This fragment of a process instance trace states a sequence of
activities that leads to the end of the process;

– Process instance trace that ends with the “...” symbol: the end of the
process instance is not known to the user, or has been defined in the trace
of other process instances. This fragment of a process instance trace states a
sequence of activities that follows from the start of the process;

– Process instance trace that contains the “...” symbol: there is a part of
the process instance that is not known to the user, or that has been defined in
the trace of other process instances. This fragment of a process instance trace
states a sequence of activities that starts and ends the process, but skips the
middle of the process instance trace;

– Process instance trace that starts and ends with the “...” symbol: this
type of trace is used as a fragment to fill in the placeholders in other traces in
order to complete them. It does not correspond to a separate process instance.

4 Sketch Miner - A Tool for Model Sketching by Mining

As a proof of concept for the applicability of the proposed approach to use mining
for sketching process models, we have designed the Sketch Miner, a tool which
takes as input a process described with the DSL presented in Sec. 3 and provides
as an output a draft BPMN model of the process (Fig. 2).

The tool first expands the traces written in the DSL to obtain the complete
traces of all the possible paths that can be taken in the process. Namely, the DSL

Sketching Process Models by Mining Participant Stories 7

user input is parsed and each time the “...” symbol is encountered, depending
on its position, the algorithm performs one of the following actions:

– If the “...” symbol is at the start of the process instance trace the algorithm
searches for the first activity which is after the “...” symbol in all the other
expanded process instance traces. When it finds it, it takes all the activities
which precede it, thus creating one or more missing process fragments, which
are then used to expand the initial process instance trace;

– If the “...” symbol is at the end of the process instance trace the algorithm
searches for the last activity which is before the “...” symbol in all the other
expanded process instance traces. When it finds it, it takes all the activities
which succeed it, thus creating one or more missing process fragments, which
are then used to expand the initial process instance trace;

– If the “...” symbol is in the middle of the process instance trace the algo-
rithm searches for the first activity which is before the “...” symbol and the first
activity which is after the “...” symbol in all the other expanded process instance
traces. When it finds both these activities in the correct order, it takes all the
activities which are between them, thus creating one or more missing process
fragments, which are then used to expand the initial process instance trace.

As the trace expansion algorithm acts recursively and searches all expanded
traces, if different sequences are identified as a match in different process instance
traces, then they will all be used to expand the analyzed trace resulting with

DSL Logs

Expanded
Logs

Mining AlgorithmDraft BPMN Model

User Input

Tool Output

…
~~~~~~~~~
~
~~~~~~~~~
~

~~~~~~~~~
~

…
~~~~~~~~~
~

~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~

~~~~~~~~~~
~~~~~~~~~~
~~~~~~~~~~

Compressed	

DSL	
 process	

instance	
 log

Expanded
process	

instance	

log

Process	

instance	

number

Assigned
tasks to	

participant

participant	
 X

A
B
C

A
B
C

1

A
B
C

participant Y

…
C
D

…
C
E
…
I
J

A
B
C
D

A
B
C
E
F
G
H
I
J

2

3

D
E
I
J

participant	
 Z

…
E
F
G
H
I
…

Not	

expanded,	

only	
 used	

to	
 expand	

compresse
d	
 logs

F
G
H

Fig. 2. Architecture of the Sketch Miner

8 A. Ivanchikj et al.

multiple expanded traces per one compressed trace. A simple example of how
compressed traces are expanded by the Sketch Miner before passing them to
the mining algorithm is provided in Fig. 2. As evident from the example, the
assumption used by the expansion algorithm is the existence of at least one
common activity between the compressed trace and the other traces, as the
algorithm uses the common activity to identify the missing part of the path.

In order to enable automatic deduction of the activity role mapping, while
keeping the DSL as simple as possible, we have introduced the constraint that the
participant starting the process, when writing the traces, can only write down
the activities (s)he is responsible for, using the “...” symbol when necessary. That
way the algorithm can assign the activity to the first participant that mentions
it. The other participants in the process, when using the “...” symbol, should
state one activity preceding and/or following their activities depending on the
position of the “...” symbol (beginning, end or middle of a process instance trace).
In Fig. 2 there is a simple example showing which of the activities are assigned to
which participant following the above mentioned constraints. Thus, we use the
minimal assumption that process participants know all the activities they are
responsible for as well as at least one activity preceding/following their activities
so that log fragments of different participants can be connected. Nonetheless,
participants may be aware of additional activities and they are free to state
them.

The requirements for embedding a process mining algorithm within the Sketch
Miner architecture involve the existence of an API to automatically feed the min-
ing algorithm with the expanded traces. Additionally, users typing the traces
should not have to wait to see the resulting model, but the model should be
updated live as new entries of the traces are added. This could be achieved with
an incremental mining approach [16].

The current version of the Sketch Miner uses the Alpha algorithm for mining
the expended traces and produces as output a BPMN diagram, serialized as an
SVG image using the dagre-d3 library6, so that it can be immediately displayed
in a Web browser. Aiming at a proof of concept of this novel modeling approach,
the validation of different mining algorithms for its implementation was not in
the scope of this work. Furthermore, the approach of using mining for process
model sketching is not intended to depend on the target language and can be
potentially applied to other process modelling languages, such as Petri Nets, or
proprietary flowcharting languages. The Sketch Miner is available at Github7.

5 Travel Reimbursement Use-case

To show the use of the DSL proposed in Sec. 3 we will use the example of a travel
costs reimbursement process. In this process, after returning from a business trip,
Employees need to fill in the reimbursement request form, mark the bills with
the expense number, scan and attach them to the form, print the form, and

6 https://github.com/dagrejs/dagre-d3
7 https://github.com/USI-INF-Software/RESTfulConversationMining

Sketching Process Models by Mining Participant Stories 9

Fig. 3. Model Sketching by Mining in the Travel Reimbursement Use-case

together with the bills send it to their Head of Department for approval. After
receiving the dossier the Head of Department checks the travel description and
the stated costs, and can reject the request, or where needed ask the Employee to
perform changes and resend the dossier. When the dossier is approved the Head
of Department sends it to the Finance Department. After receiving it the Fi-
nance Department checks whether the submitted dossier is complete and whether
the reported costs are reimbursable. If all the controls are passed successfully,
the Finance Department sends the payment to the Employee. Otherwise they
contact the Employee inquiring for additional information/documentation and
re-performing the checks.

In the above described use-case there are three participants, the Employee,
the Head of Department and the Finance Department. Probably none of them
would know in detail what the other participants are doing as part of the de-
scribed process, but we can assume that they all know at least the activity
preceding/following the activities they are involved in. For instance, as can be
seen in the left-hand side of Fig. 3, the Employees might not know the detailed
steps that are taken by the Head of Department or the Finance Department, and

10 A. Ivanchikj et al.

thus they simply mark them with the “...” symbol. They know that some checks
happen after they send the documents and that they can be asked to modify
the request or to provide additional information, but they might not know the
precise activities. On the other hand, the Head of Department can decide be-
tween three different paths after checking the documents, which is why (s)he
specifies three different process instance traces. As two of the possible paths do
not lead to an end of the process, they are placed in between the “...” symbols.
On the other hand, the use of the “...” symbol at the beginning of the process
instance traces allows the Head of Department to only state the new activities in
the last two process instances, without repeating the activities already stated in
the previous instance traces. Last but not least, the Finance Department, after
performing the checks, can choose between asking for more information or send-
ing the reimbursement payment, thus it only states two process instance traces.
There are five possible paths assembled by the DSL log expansion, as evident
in the central part of Fig. 3, and they are all passed to the mining algorithm in
order to obtain the draft model presented in the right-hand side of Fig. 3.

6 Discussion

In real world scenarios, a written natural language description of the process is
not always available, or when it is available it is not always up to date. In the
travel reimbursement use-case mentioned in Sec. 5, with the traditional process
modeling approach, such situation would require the business analyst to inter-
view the three process participants in order to make the first draft model of the
process. Then (s)he would need to identify the relevant activities at a meaning-
ful level of granularity and name them. Bear in mind that in this toy example
process there are already 20 activities, while in real world processes there can be
many more. Then the business analyst, who is required to have prior knowledge
of the visualization and the semantics of different BPMN constructs, or another
process modelling language, should identify the divergence/convergence in the
control flow and any possible loops. In the use-case model there are four exclusive
gateways connected by two loops. Identifying them requires a cognitive effort,
that as can be seen in Tab. 1, the business analyst is not spared of when using
existing textual process modeling languages (described in Sec. 2). However, with
our Model Sketching by Mining approach that part of the work is done by the
mining algorithm in order to get the first draft of the process model. With this
approach the active role of the business analyst can be postponed to after the
first draft of the model, when (s)he would need to refine the draft model based
on the discussion and the feedback from the process participants.

The Model Sketching by Mining approach enables the process participants to
become directly involved in the modeling effort by writing the traces, regardless
of the fact that they might lack the process modelling language knowledge. The
DSL encourages them to think in terms of sequences of work units that they
perform, and how they should compose them into activities and name those
activities in a manner that is meaningful to them. For instance, in the travel

Sketching Process Models by Mining Participant Stories 11

Table 1. Textual process modelling languages comparison

Target
users

Users identify
and name
activities

Users identify
the control

flow

Modelling
language
support

Output
format
type

Model
visualized

PlantUML Developers Yes Yes Full PNG, SVG On request
plantBPMN Developers Yes Yes High BPMN On save
BPELight Business analysts Yes Yes Full BPEL N/A
Model Sketching
by Mining

Process
participants

Yes No Basic SVG Real time

reimbursement process described in our use-case, for a business analyst the “Scan
and attach the bills” step might not seem important as (s)he might not be aware
of the average number of bills per request. Thus, (s)he might compose it together
with the previous step “Mark the bills with the expense number” into a single
activity. However, for the employees it might be important to single out this step
as a separate activity as it is time consuming and they might want to keep track
of the time they spend scanning. Providing meaningful names to the activities
is also not an easy task for a business analyst, but it might come more natural
for the actual participants executing the activities.

6.1 Usability vs. Expressiveness Trade-off

The trade-off between usability and expressiveness is not inherent only to the
domain of business process modelling [10]. The fundamental reason for this trade-
off is the fact that greater expressiveness requires more language constructs,
which hinders the usability as the users need more time and effort to learn the
language. In existing textual process modeling languages the user typically needs
to write text which mimics the graphical constructs of the modelling language
(e.g., “->” to denote an edge in plantBPMN) or use the terminology of the
modelling language (e.g., pool, task etc. in plantBPMN, fork in PlantUML) in
order to obtain the visual model. This requires the user to have prior knowledge
of the visual process modelling language. Usability, and fast learnability as part of
it, is particularly important in our approach as we are primarily targeting process
participants who are not frequently exposed to the visual process modelling
language in their daily job. Thus, we do not aim at providing full support for
all BPMN constructs. BPMN is a very expressive and rather complex language
with over 100 constructs. As such providing a full support in our DSL would
be likely to increase the complexity of the syntax, and drift the DSL design
away from the original concept of using mining to infer the structure of the
process as much as possible, as opposed to using the DSL to give a textual
representation of the same, as in the case of PlantUML or plantBPMN. This is
an important trade-off, which we have resolved favouring simplicity to enable
process participants who have no knowledge of process modeling to state their
user stories [14]. Furthermore, in order to both facilitate the learning of the
basic BPMN constructs, and to provide fast feedback to the users, we have
opted for generating the visual output at real time, as the users are typing their
stories using the DSL. As evident in Tab. 1, this is not the case with existing

12 A. Ivanchikj et al.

textual process modeling languages. Namely, in PlantUML the textual model
gets synchronized with the visual model only upon request, while plantBPMN
generates a file in a BPMN XML format which then needs to be imported into
a dedicated tool, such as Signavio8 or an Eclipse plug-in, for visualization and
further editing.

Even though we favour the DSL simplicity to expressiveness, we still aim to
empower the process participants to tell their story by writing activity traces
from their perspective. To that end, we have introduced the “...” symbol as a
placeholder for parts of the process performed by others, and thus unknown
to whoever is writing the story. The use of the “...” symbol is also meant to
make the writing down of traces more time efficient, as it allows the users to
avoid repeating sequences of activities which they have already written down.
This is especially handy when there are alternative flows. For instance, in our
travel reimbursement use-case, the Head of Department needs to make a decision
whether to reject the request, ask for modification or send it to the Finance
Department. Before making such decision the Head of Department would need
to receive the reimbursement request dossier, check the travel description and
check the stated costs. Writing down this sequence of activities three times would
be too repetitive, so the Head of Department, when using the DSL, can avoid
doing so by simply stating the above mentioned sequence in the first process
instance trace and then starting a new instance trace using the “...” symbol
followed by the “check the state costs” activity (see Fig. 3).

6.2 Potential Improvement of Modeling Efficiency

Wasana et.al. [2] have identified the modelling methodology and the modelling
tool as two factors impacting the success of a process modelling project. While
the methodology refers to the modelling approach being followed (e.g., how is
the requirements and information gathering phase performed), the modelling
tool refers to the software being used for the design of the models. Each of
these factors has its related costs in terms of efficiency and cognitive load. When
modeling business processes, we can differentiate between the cognitive load for
1) identifying and naming the process activities, and 2) identifying the correct
topology of the control flow graph. The intrinsic cognitive load of people de-
pends on their prior knowledge and the complexity of the task that they need
to perform [21]. It has been shown that, when it comes to understanding visual
models, readers first identify smaller submodels and later connect everything to-
gether [13]. Our DSL design takes advantage of this by allowing participants to
specify sub-models they have first-hand knowledge about. These are then assem-
bled by the mining algorithm to build the end-to-end process model. We expect
this approach should decrease the cognitive load of the business analysts thanks
to the use of a mining algorithm for reconstructing the control flow graph, which
is an especially complex task in larger process models. There are various tech-
niques for measuring the cognitive load, such as self-reported scales about the

8 https://www.signavio.com

Sketching Process Models by Mining Participant Stories 13

mental effort, or the difficulty of the tasks, as well as through response time [6],
or eye movement tracking and pupillary response [4]. We plan to conduct such
experiments in the future.

The type of modelling tool on the other hand, in addition to the cognitive
load, can also impact the time efficiency of the modelling task per se. In
a graphical editor a modeler would need to select the correct constructs from
the available palette, place them in the modeling space, frequently using the
drag&drop functionality, connect them in the correct order, and type the name
of the activities. In the Sketch Miner, the user still needs to type the name
of the activities as when working with the graphical editor. However, there is
no drag&drop involved, thus there is no repositioning of the cursor within the
activity shapes as all names are written on different lines of the same text editor.
In other words, for equally experienced users we expect our textual entry to be
more efficient than drawing graphical models, as argued in [12, 11]. In the future,
we plan to conduct controlled experiments where one group is asked to use the
Sketch Miner and another group is asked to use a graphical editor to construct
the same model with only the core BPMN constructs. By limiting the use of the
BPMN constructs in the graphical editor we ensure that any potential overhead
is not caused by the complexity of BPMN as a modeling language.

6.3 Limitations

One limitation of our current tool is that it uses the assumption that the partic-
ipants know at least the last activity preceding/following their involvement in
the process. This assumption requires that different participants use the same
name to identify such activities. However, one of the main disadvantages of the
natural language is its ambiguity. To deal with this limitation in future versions
of the Sketch Miner we can leverage on work done in the creation of domain
ontology and semantic annotation of process models expressed in BPMN. For
instance, in [7] the authors propose using natural language parsing combined
with information content similarity for generating suggestions for the semantic
annotation of business process elements. We can use similar approach for sugges-
tions or auto-completion of activity names. Another complementary solution is
to enable collaborative editing of the traces so that participants can input them
at the same time and resolve conflicts as soon as they appear.

As supporting parallel flows is only planned for future extensions of the
Sketch Miner, we currently do not introduce the explicit notion of an instance
id, which could be an approach for dealing with situations when work done by
two different process participants is done in parallel.

Our current approach can lead to over-fitting, i.e., the automatically derived
model might allow for process instances which are not described in the DSL. To
deal with this limitation in the future we plan to generate the traces of such over-
fitting instances and present them to the user so that the process participants
can decide if some of those traces should be excluded from the model.

14 A. Ivanchikj et al.

7 Related Work

Visual vs. textual modelling of processes has been long studied. Damij [5] studies
the appropriateness of flowcharts vs activity tables for capturing the reality of
a process using two case-study processes. Her work advises business analysts to
start with the activity table and then transform the table into a flowchart. Otten-
sooser et.al. [18] use an experimental study with different types of participants to
evaluate the impact of modeling with BPMN vs modelling with written use-cases
on the understandability of the process. As Damij, Ottensooser et.al. also advise
to start with the textual technique. Namely, they show that the process under-
standing of all participants benefited from reading the textual model, while only
BPMN trained participants benefited from the visual model. However, they also
observed that untrained participants who read the BPMN model after reading
the textual model did improve their understanding based on the BPMN model.
These studies have inspired our approach of using a textual DSL to automati-
cally generate a visual BPMN model. Effektif9 started with an idea similar to
ours, i.e., hiding complexity from the users by allowing them to create task lists
by simply naming tasks while the tool would create the corresponding visual
BPMN task constructs. Users would then use Signavio as a standard graphical
editor to modify the control flow topology, e.g., by connecting the tasks and
introducing the appropriate gateways. Their goal was to facilitate the automa-
tion of simple processes so that it can be done by any process participant, even
without technical background. In our work we aim at simplifying and speeding
up the creation of the initial model sketch by also deducing and drawing the
control flow constructs, and not only the task constructs as in the case of Effek-
tif. However, as in Effektiv the draft model generated with our approach may
also need to be refined using a traditional graphical editor.

When it comes to related work in using process traces, in Test Driven Mod-
elling (TDM) [23] for declarative process models, traces are used for creating
test cases. A test case is a complete trace of a process instance that takes the
form of a list of a sequence of activities that has to be supported by the de-
fined process model. The completeness of traces requirement is relaxed in the
recent work in [20]. However, in TDM traces are used for validation of an exist-
ing process model, while our primary goal is the sketching of the process model
itself. In the past, scenarios and process fragments, called example runs [3] or
oclets [9], have been used to create process models. While we propose a DSL for
stating such process fragments, in [3] labelled partial orders and in [9] Petri Nets
oclets are used. For the composition of the fragments we use a mining algorithm,
while in the mentioned works the domain experts need to do the composition
using composition operators (sequence, alternative, iteration, concurrency) [3]
or combining actions enabled for extension [9].

Instead of the traditional process mining approach, whose output is automat-
ically discovered process model, recent approaches tend to include the domain
experts in the discovery of the process models, by allowing the user full control

9 https://www.signavio.com/post/introducing-effektif/

Sketching Process Models by Mining Participant Stories 15

over the creation of the process model and simply providing suggestions regard-
ing next activities based on the probabilities discovered with process mining
algorithms [8]. While our work also requires domain experts’ input, it does not
require the existence of real-world, system generated process execution logs, thus
it can also be applied for processes which are still not supported by PAIS.

8 Conclusions and Future Work

Gathering requirements for the design of a new PAIS can be a time consuming
task as it requires the cooperation of software technology experts with business
domain experts. In a traditional approach, the requirements gathering phase
starts with interviews with process participants conducted by a business analyst
who, based on those interviews, needs to sketch a process model to be discussed
and agreed upon with the process participants. To facilitate the work of the
business analyst, in this paper we have proposed an approach for process model
sketching by mining activity log written down directly by the process participants
using a textual DSL we have designed for this purpose. The DSL lists traces
with activity names on separate lines and it uses only one keyword to specify
participant names and one symbol to indicate trace fragments. We have also
presented the Sketch Miner, a proof of concept implementation of the approach,
using BPMN for the model visualization. The novelty of this approach is that
the control flow is deduced automatically by a mining algorithm, based on the
participants’ user stories, and the draft process model is rendered in real-time
as the users type in the activity traces. In a traditional approach the discovery
of the control flow is done mentally by the business analyst who then needs to
use graphical tools to represent it.

While working on the DSL in the future we plan to investigate how far we
can go with increasing the expressiveness of the language, without making it
too complex to be learned and effectively used by process participants, while
utilizing as much as possible the mining technique to deduce the topology of the
control flow graph. We also plan to empirically validate the approach. Namely,
we expect that this new model sketching approach can speed up the feedback
cycles in the process design as a result of the automatic process model generation
which could reduce the cognitive load of the business analyst. However, we will
need to run controlled experiments to systematically validate and quantify these
expected benefits.

References

1. Youseef Alotaibi and Fei Liu. Survey of business process management: challenges
and solutions. Enterprise Information Systems, 11(8):1119–1153, 2017.

2. Wasana Bandara, Guy G Gable, and Michael Rosemann. Factors and measures of
business process modelling: model building through a multiple case study. European
Journal of Information Systems, 14(4):347–360, 2005.

16 A. Ivanchikj et al.

3. Robin Bergenthum, Jörg Desel, Sebastian Mauser, and Robert Lorenz. Construc-
tion of process models from example runs. In Transactions on Petri Nets and
Other Models of Concurrency II, pages 243–259. Springer, 2009.

4. Ricardo Buettner. Analyzing mental workload states on the basis of the pupillary
hippus. NeuroIS, 14:52, 2014.

5. Nadja Damij. Business process modelling using diagrammatic and tabular tech-
niques. Business process management journal, 13(1):70–90, 2007.

6. Krista E DeLeeuw and Richard E Mayer. A comparison of three measures of cog-
nitive load: Evidence for separable measures of intrinsic, extraneous, and germane
load. Journal of educational psychology, 100(1):223, 2008.

7. Chiara Di Francescomarino et al. Supporting ontology-based semantic annotation
of business processes with automated suggestions. In Enterprise, Business-Process
and Information Systems Modeling, pages 211–223. Springer, 2009.

8. PM Dixit, HMW Verbeek, JCAM Buijs, and WMP van der Aalst. Interactive data-
driven process model construction. In International Conference on Conceptual
Modeling, pages 251–265. Springer, 2018.

9. Dirk Fahland. Oclets–scenario-based modeling with petri nets. In Int’l Conference
on Applications and Theory of Petri Nets, pages 223–242. Springer, 2009.

10. Andre Freitas et al. Querying heterogeneous datasets on the linked data web:
challenges, approaches, and trends. IEEE Internet Computing, 16(1):24–33, 2012.

11. Nicole Freund. Development of a Text-Based Representation of BPMN Models.
Master’s thesis, Leibniz Universität Hannover, Hannover, Germany, 2018.

12. Hans Grönninger, Holger Krahn, et al. Textbased modeling. In Proc. of the 4th
International Workshop on Software Language Engineering, 2007.

13. Volker Gruhn and Ralf Laue. Reducing the cognitive complexity of business process
models. In 2009 8th IEEE International Conference on Cognitive Informatics,
pages 339–345. IEEE, 2009.

14. Michael Havey. Keeping bpm simple for business users: power users beware. BP-
Trends (January 2006), 2006.

15. Jerry Luftman. Assessing it/business alignment. Information Systems Manage-
ment, 20(4):9–15, 2003.

16. Florent Masseglia, Pascal Poncelet, et al. Incremental mining of sequential patterns
in large databases. Data & Knowledge Engineering, 46(1):97–121, 2003.

17. Jörg Nitzsche, Tammo Van Lessen, et al. BPEL light. In International Conference
on Business Process Management, pages 214–229. Springer, 2007.

18. Avner Ottensooser, Alan Fekete, et al. Making sense of business process descrip-
tions: An experimental comparison of graphical and textual notations. Journal of
Systems and Software, 85(3):596–606, 2012.

19. Stephan Seifermann and Henning Groenda. Survey on the applicability of textual
notations for the unified modeling language. In International Conference on Model-
Driven Engineering and Software Development, pages 3–24. Springer, 2016.

20. Tijs Slaats, Søren Debois, and Thomas Hildebrandt. Open to change: A theory for
iterative test-driven modelling. In International Conference on Business Process
Management, pages 31–47. Springer, 2018.

21. John Sweller. Element interactivity and intrinsic, extraneous, and germane cogni-
tive load. Educational psychology review, 22(2):123–138, 2010.

22. Wil van der Aalst. Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer, 2011.

23. Stefan Zugal, Jakob Pinggera, and Barbara Weber. Creating declarative process
models using test driven modeling suite. In International Conference on Advanced
Information Systems Engineering, pages 16–32. Springer, 2011.

