
0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 13

Editor: Cesare Pautasso
University of Lugano
c.pautasso@ieee.org

Editor: Olaf Zimmerman
University of Applied Sciences
of Eastern Switzerland, Rapperswil

ozimmerm@hsr.ch

INSIGHTS

A Decade of Enterprise
Integration Patterns
A Conversation with the Authors

Olaf Zimmermann, Cesare Pautasso, Gregor Hohpe, and Bobby Woolf

IN AN INDUSTRY that thrives on
constant change, few books can sur-
vive the test of time. Enterprise In-
tegration Patterns (EIP)1—with its
highly in� uential collection of mes-
saging patterns—is de� nitely one of
those few. So, we interviewed the
authors Gregor Hohpe and Bobby

Woolf; here, we have the pleasure
of sharing their re� ections with you.
You can discover the inside story of
their book project as well as their
views on pattern language design
and on integration technology’s evo-
lution. We also thank them for their
precious advice for the next genera-
tion of pattern authors and integra-
tion solution designers.

A General Retrospective
Olaf Zimmermann: How did your
book come to be? How did you get
together, and how did you � nd your
contributors and reviewers?

Bobby Woolf: Martin Fowler was
the matchmaker. When he wrote
Patterns of Enterprise Application
Architecture,2 Kyle Brown pointed
out that his pattern language was
not addressing asynchronous mes-
saging. Martin felt that he already
had plenty of patterns to write,

which motivated Kyle and me to sub-
mit a collection of 27 patterns to the
2002 Pattern Language of Programs
[PLoP] conference under the title,
“Patterns of System Integration with
Enterprise Messaging.”3

Gregor Hohpe: I was based some
3,000 miles away, using enterprise
application integration [EAI] tools,
such as TIBCO and Vitria, in my
consulting job. I had a nagging feel-
ing that these tools share underlying
concepts, which are obfuscated by
different terminology. Martin en-
couraged me to document my � nd-

ings in the form of patterns, also to
be submitted to PLoP 2002,4 where I
� rst met Bobby and Kyle.

Bobby: So Kyle brought me into the
effort he’d started with Martin, then
Martin brought Gregor in. While
Martin and Kyle contributed a lot
of material and guidance, they even-
tually lessened their involvement,
leaving Gregor and me to write and
complete the book. Gregor and I
hadn’t known each other before, so
it was a crash getting-to-know-you
opportunity.

With encouragement from Martin
and Kyle, we decided to combine our
papers with the goal to turn them
into a book. While there was some
merging to be done, the two papers
complemented each other well. We
only had a handful of patterns that
overlapped: Kyle’s and my paper de-
scribed message patterns (“message
construction” in the book) and mes-
sage client patterns (later “messag-
ing endpoints”).

Gregor: Coming from the EAI per-
spective, my 17 patterns focused on
what was “between” the endpoints:
message routing, message transfor-
mation, and message management.
It also contained an early version of
the pattern icons.

Each pattern represents a decision, so
the language walks the reader through
the decisions that need to be made.

INSIGHTS

14 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Cesare Pautasso: In retrospect, what
do you still like best about your
book?

Bobby: The fact that the book’s con-
tent is still relevant after a dozen years
is quite a rarity for computer books
and a testament to the power of us-
ing patterns to document expertise.
Patterns capture common behavior

across products. The forces that in-
� uence the solution, packaged into
a consistent format with an expres-
sive name, do not depend on a spe-
ci� c technology. As a result, the book
has continued to stay relevant when
applied to new ESB-style products
and even to cloud integration.5 [ESB
stands for enterprise service bus.]

Gregor: The proudest moment was
easily when Grady Booch listed our
book as one of the great software
pattern books at the 2005 Object-
Oriented Programming, Systems,
Languages, and Applications confer-
ence, right next to Design Patterns.6

The visual language is one of the key
features of the book and has inspired
other software pattern authors to
use icons for their patterns.7

 Bobby: I agree; the diagrams with
an icon for each pattern are one of
the best features of the book. Gregor
clearly had a very good vision (liter-
ally!) for how to show these solutions
using what John Crupi, the coauthor

of Core J2EE Patterns,8 eventually
dubbed “Gregorgrams.” The Pipes
and Filters architectural style that
underlies the messaging pattern lan-
guage allows the icons to be easily
composed into larger solutions. This
style of diagramming integration so-
lutions became so popular that read-
ers even developed stencils for Visio
and Omnigraf� e for them.

Gregor: The icons bring the qual-
ity of Christopher Alexander’s pat-
tern sketches9 to the software world.
Most other software pattern books
use class or sequence diagrams,
which resemble blueprints. Alexan-
der’s hand-drawn sketches highlight
the essence of the pattern and remind
the reader that a pattern is not a copy-
and-paste solution. For example, Al-
exander’s Bed Alcove pattern does
not specify that the alcove has to be
6′8″ long and 3′ wide. Rather, it de-
picts the essence in a rough sketch.

Olaf: And what would you do differ-
ently now?

Gregor: I would make an icon for
the Idempotent Receiver pattern,
which describes a receiver that can
process the same message multiple
times without any harm. Somehow
we seem to have missed that one.

Bobby: Nah, we didn’t miss that
one. We tried to create an icon but
couldn’t think of how to draw idem-

potency. If you couldn’t draw it, I
certainly couldn’t!

Gregor: Regarding the icons, I would
have liked to re� ect that an endpoint
can combine multiple patterns; for
example, an idempotent consumer
can also be transactional and poll-
ing. The composition of endpoint
patterns is different from Pipes and
Filters, so it might have bene� tted
from a different visualization.

Bobby: I wish we had better sepa-
rated transport concepts from in-
tegration to cover messaging with
unqueued transports. A lot of the
techniques in the book do apply to
both queued and unqueued messag-
ing, as we see with HTTP-style mes-
saging or representational state trans-
fer [REST]. For example, the root
pattern of our language is Messaging.
I’d like to re� ne that into Messaging,
Queued Messaging, and Unqueued
Messaging. Most of the patterns in
the language apply to both queued
and unqueued messaging. With
queued messaging, you get some ad-
ditional qualities and techniques.

Gregor: We also didn’t include much
on error handling, except Dead Let-
ter Channel. That’s where all the
bad messages go—but then what
happens? Describing error-handling
strategies requires a broader vocab-
ulary that includes state,10 which
would have expanded the scope of
the book signi� cantly. We felt that
700 pages is plenty!

Pattern-Language Design
Cesare: How are your patterns dif-
ferent from others from an organiza-
tional viewpoint?

Gregor: We documented a pattern
language, not a pattern catalog,

Pattern icons bring the quality
of Alexander’s pattern sketches
to the software world.

INSIGHTS

 JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 15

meaning the patterns build on each
other and form an ecosystem. Our
pattern language is structured into
six major sections, which are essen-
tially arranged chronologically along
the flow of a message. First, a mes-
sage is created, then placed on a chan-
nel, then routed and transformed,
and finally consumed. The illustra-
tion on the inside back cover reflects
this nicely (see Figure 1). It is different
from Alexander, who used a progres-
sion from the macroscopic view to
the microscopic view: from large-city
planning down to small details like
the placement of ceiling lights.

Bobby: Actually, the root patterns
in Chapter 3 [of EIP] provide a mac-
roscopic big-picture view, which is

detailed by the subsequent patterns.
We explained this in the diagram
“Relationship of Root Patterns and
Chapters” in the book’s introduc-
tion. The pattern language guides
readers in decomposing the problem:
to first make major decisions, then
minor ones.

Olaf: Talking about stepwise re-
finement and architectural deci-
sions, how do you suggest choosing
or combining patterns? Do some of
them exclude one another?

Bobby: When designing an integra-
tion solution, you are likely to com-
bine patterns that derive from dif-
ferent root patterns. You’ll want to
create messages, place them on a

channel, route and transform them,
and so on. For a specific problem,
you are likely to choose between
alternatives—for example, by us-
ing the decision tree in the “Mes-
sage Routing” chapter. It guides you
to the right pattern on the basis of
whether the router handles one mes-
sage at a time or multiple messages,
whether it publishes as many mes-
sages as it consumed, and so on. The
introduction to each pattern chapter,
as well as the related-patterns sec-
tion for each pattern, helps guide
the reader on which patterns can be
used in combination and which are
alternative choices.

Gregor: Indeed, some chapters pre-
sent clear alternatives. For example,

Message Construction

Messaging Channels

Application
A

Application
B

Message
Channel

Translator
Endpoint Endpoint

Monitoring

Messaging Endpoints

Message Routing
Message

Transformation

Systems Management

Message
Command Message
Document Message
Event Message
Request-Reply
Return Address
Correlation Identifier
Message Sequence
Message Expiration
Format Indicator

Message Channel
Point-to-Point Channel
Publish-Subcr. Channel
Datatype Channel
Invalid Message Channel
Dead Letter Channel
Guaranteed Messaging
Channel Adapter
Messaging Bridge
Message Bus

Pipes-and-Filters Aggregator
Message Router Resequencer
Content-Based Router Composed Msg. Processor
Message Filter Scatter-Gather
Dynamic Filter Routing Slip
Recipient List Process Manager
Splitter Message Broker

Message Translator
Envelope Wrapper
Content Enricher
Content Filter
Claim Check
Normalizer
Canonical Data Model

Control Bus
Detour
Wire Tap
Message History
Message Store
Smart Proxy
Test Message
Channel Purger

Message Endpoint Competing Consumers
Messaging Gateway Message Dispatcher
Messaging Mapper Selective Consumer
Transactional Client Durable Subscriber
Polling Consumer Idempotent Receiver
Event-Driven Consumer Service Activator

Router

FIGURE 1. The messaging pattern language follows a message’s flow, presenting root patterns for each major component of an

integration solution. The root patterns guide more detailed design decisions toward selecting from alternative patterns for concrete

problems. (Source: www.enterpriseintegrationpatterns.com/patterns/messaging; used with permission.)

INSIGHTS

16 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

you will need to decide between
Messaging and File Transfer to
solve a speci� c problem. Such pat-
terns share the same pattern context.
Other chapters are designed to com-
bine multiple patterns. For example,
an Idempotent Receiver may also be
a Polling Consumer. These relation-
ships are described in the chapter in-
troductions. In hindsight, we could
have formalized this a bit.

Cesare: Did you consider including
messaging antipatterns? Why or why
not?

Gregor: Despite the accessible for-
mat, patterns have an elaborate
structure where dissecting the prob-
lem reveals forces that are resolved
in the solution. The resulting context
alerts you to implementation pitfalls
and guides you to subsequent pat-
terns. I � nd it dif� cult to incorporate
this type of tension and resolution
into antipatterns. Therefore, they of-
ten end up being less rich.

Bobby: We avoided antipatterns be-
cause they tell the reader what not

to do. We wanted to focus on what
to do. For instance, I think ambigu-
ously structured data, where the
sender and receiver can use any mes-
sage format they’d like, is an antipat-
tern. It’s better to structure message
data such that its schema can be de-
termined and ensure that all senders

and receivers follow that structure.
But an antipattern that says “Don’t
use message formats with ambigu-
ously structured data” doesn’t pro-
vide good guidance on what to do.

Another antipattern we continue
to see is to not consider messaging.
Remote, synchronous connections
between distributed components are
brittle and make the interaction less
reliable. Yet developers use them ex-
tensively. I hear “messaging is slow,”
when actually it optimizes through-
put. Simpler messaging products
like RabbitMQ and MQ Light [MQ
stands for message queueing] may
increase adoption, but only if de-
velopers overcome the synchronous
mindset.

Gregor: Another worry of mine is
that some people want to solve ev-
ery problem with messaging and our
patterns. That was not the intent. If
you need low-latency, synchronous
interaction, by all means use a syn-
chronous protocol and no message
queues. You may still bene� t from
many of the patterns, as Bobby out-
lined earlier.

Message-Oriented Middleware
and Technology Evolution
Cesare: Did your patterns get im-
plemented faithfully, or have any of
your patterns been misused or mis-
interpreted? Can your patterns serve
as a benchmark to compare compet-
ing messaging offerings?

Bobby: Most open source ESBs have
embraced our pattern language. It
has given these products a much-
needed reference point and has cer-
tainly bene� ted our book as well. It’s
a symbiotic relationship.

Our patterns document best prac-
tices, which products should imple-
ment and support. It’s not surprising
and in fact bene� cial for products
to be similar to our product-neutral
documentation.

Early products in� uenced us, and
our documentation in� uenced later
products—it’s a circle of life. Later
users bene� t from products that bet-
ter � t the best practices for using
them and may not even recognize
how easy they’ve got it or whom to
thank. Some early feedback on our
book drafts claimed, “That’s not a
pattern; that’s a feature.” But Sean
Neville stated that when a pattern
is implemented as a feature or as a
standard, it’s still a pattern, just one
that’s become much easier to apply.1

Gregor: I never considered our pat-
terns to be a feature checklist—pat-
terns are implementation advice,
not guidance on product selection.
It certainly helps integration devel-
opers that many of our patterns are
implemented in the ESB platforms,
but this is not required for all pat-
tern languages. For example, in the
early days of the “Gang of Four”
(GoF) book,6 some companies tried
to implement those patterns inside
the integrated development environ-
ment (“Make me an Observer”), but
that did not work well. Being soft
around their edges, patterns are not
copy-and-paste code snippets.

Olaf: Let’s look at the state of the
practice in integration and messag-
ing. What works well, and what’s
still missing?

When a pattern is implemented
as a feature or as a standard,
it’s still a pattern.

INSIGHTS

JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 17

Gregor: A wire-level protocol like
AMQP [Advanced Message Queue-
ing Protocol] has long been missing
from the messaging world. MQTT
expands messaging to the Inter-
net of Things (IoT). While messag-
ing has many elegant properties,
of course it is not meant for every-
thing—streaming and synchronous
protocols have their place, too. Doc-
umenting streaming patterns would
be a great exercise to understand
commonalities and differences be-
tween streaming and messaging pat-
terns. My guess would be that we
would see some overlap.

Bobby: I agree. As much of com-
puting has evolved—� rst to service-
oriented architecture (SOA) and
more recently to cloud, mobile, the
IoT, microservices, and the API econ-
omy—integrating the parts has be-
come as important an aspect of ap-
plication design and development as
automating business logic. Queued
messaging products have been fairly
stable, whereas unqueued protocols
are constantly evolving, from Corba
and Enterprise JavaBeans (EJB) to
SOAP and RESTful HTTP.

Cesare: Along those lines, how are
trends such as cloud computing,
digitalization, and the IoT affecting
messaging and your patterns? Can
they bene� t from your patterns?

Bobby: As I pointed out already, the
more things change, the more they
stay the same, and EIP remains rel-
evant. SOA drove the adoption of
ESBs, which incorporate our pat-
terns. Now microservices require in-
tegrating the process components, so
messaging solutions will be needed
for those as well. Hybrid cloud ap-
plications with components deployed
across multiple clouds will need mes-

saging. Hybrid IT applications with
systems of engagement hosted in the
cloud connecting to systems of record
hosted in private datacenters will need
messaging. Mobile devices tenuously

connected to their back-end applica-
tions can bene� t from messaging. The
IoT is a massive set of components dy-
namically joining and leaving sponta-
neous networks communicating via
low-bandwidth, unreliable connec-
tions; that’s the full-employment act
for messaging solutions. Even when
the messaging is synchronous, it helps
decouple the components. Queued
messaging and asynchronous invoca-
tion decouple components even more.

Gregor: I agree. I found many of
our patterns in the recently released
Google Cloud Pub/Sub service.11 As
systems become more distributed
and more interconnected, integra-
tion is not only remaining relevant
but also becoming more important.

Looking Ahead
Cesare: What are you working on
these days? Do you have any plans
for a second edition, or do you think
about other pattern languages or
book projects?

Bobby: These days, I’m focused on
cloud computing, especially for en-
terprises with existing IT systems
running in datacenters. Applications
running in the cloud need to inte-

grate with those running in private
datacenters, and the parts of hybrid
applications running in separate
clouds need to integrate with each
other. Same dance, different tune.

Gregor: I rebooted my career a few
times. When writing EIP, I was in
consulting, which provided me with
valuable input for the book. Be-
coming tired of travel, I switched to
Internet-scale software development
at Google. Now I am the chief archi-
tect at a large insurance company to
bring that Internet-scale development
and many of the topics Bobby men-
tioned into large-company IT. Essen-
tially, I am now Bobby’s customer.

Bobby: Lucky you!

Gregor: I was considering updating
EIP with contemporary examples—
those are the only parts of the book
that aged. Sean may also want to re-
write the “futures” section after 12
years. On the other hand, readers
still � nd the book useful as it is—it
has become a classic. So we might not
mess with it too much and (humbly)
follow the footsteps of the GoF, who
also never published a second edition.

At the same time, integration is
much more than just messaging. For
example, on top of messaging, sys-
tems engage in stateful conversations,
execute work� ows, or publish events
in an event-driven architecture. There
are a lot more patterns to be mined in

Queued messaging products have
been fairly stable, whereas unqueued
protocols are constantly evolving.

INSIGHTS

18 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

this space, which would also do the
full scope of the title “Enterprise In-
tegration Patterns” justice. I started
collecting patterns on stateful conver-
sations,12 which one day may become
EIP volume 2. I am also thinking
about documenting IT transforma-
tion patterns that help traditional IT
shops enable digital business. You can
tell I like the patterns format for cap-
turing and disseminating expertise.

Olaf: Do you have any advice for as-
piring technical writers and prospec-
tive pattern authors?

Bobby: Pick your audience. A eureka
moment early on was when we dis-
covered that we’re not documenting
how to implement a messaging sys-
tem, but how to use one.

Gregor: Writing well is hard, but
worth the effort. Complex techni-
cal topics need the reader’s complete
attention, so the text must be free
from noise and clutter. The curse of
writing is that text is linear but most
concepts aren’t. This is one reason
our book includes many navigation
aids: the front and back inside cover
plus the decision trees and tables in
the chapter introductions. These al-
low readers to navigate the book in
the order of their problem, not the
order of the pages.

Bobby: Indeed. With a rich pattern
language, each reader may take a
different path through the book to
best address the particular situation
he or she is trying to solve. The same
reader may take different paths de-
veloping different solutions.

Gregor: It’s a myth that technical
books are written by someone hid-
ing in a corner, typing away. During
the review phase alone, our material

grew from 400 to 700 pages, based
on feedback. It made the book much
stronger and well rounded.

Bobby: Our material was extensively
reviewed by experienced pattern au-
thors, such as Ralph Johnson and
Martin Fowler, and integration ex-
perts, such as Mike Rettig and Sean
Neville, both of whom ended up con-
tributing to the book. Such feedback
not only helps improve the content but
also helps the authors know when the
material is becoming solid enough to
be published. After 18 months of por-
ing over your own words, you really
need that external reference point.

Gregor: As you would have guessed,
writing a book is a lot of work, so
you need perseverance and strong
commitment. Martin was a great
mentor who kept us going in those
tough moments when we assumed
we were done, but suddenly realized
the real work still lay ahead of us.
Also, having a coauthor really helps.
We certainly did not agree on every-
thing, but whenever one person lost
steam, the other person kept going.
When you write alone, there is big-
ger risk your effort will stall.

Bobby: Having a coauthor doesn’t
mean your work drops by half,
though! The workload is still 80 to
120 percent of writing the book by
yourself, because you’re constantly
reviewing, merging, and adding to
each other’s work. The difference is
not a lower workload but a higher-
quality result. Two heads are simply
better than one. And with a lot of
reviewers and constant feedback, a
hundred heads are even better.

Come to think of it, we wrote the
book in a rather agile manner, with
frequent releases where our cus-
tomer gave us feedback we incorpo-

rated into subsequent releases. When
our customer indicated the material
was “good enough,” we deployed to
“production”—that is, the printer.

Olaf and Cesare: Thank you very
much for your insights, Bobby and
Gregor. Is there anything else you
would like to share with us—for
example, a summary of your EIP
experience?

Gregor: Having a big toolbox is im-
pressive. Knowing when to use what
tool and why separates the true ex-
pert from the show-off.

Bobby: Patterns capture exper-
tise that is timeless. Skills learned
through patterns remain applicable
even as the products and technolo-
gies evolve.

References
 1. G. Hohpe and B. Woolf, Enterprise

Integration Patterns: Designing,

Building, and Deploying Messaging

Solutions, Addison-Wesley Profes-

sional, 2003.

 2. M. Fowler, Patterns of Enterprise

Application Architecture, Addison-

Wesley, 2003.

 3. B. Woolf and K. Brown, “Patterns of

System Integration with Enterprise

Messaging,” 2002; www.hillside.net

/plop/plop2002/final/woolfbrown2.pdf.

 4. G. Holpe, “Enterprise Integration

Patterns,” 2002; www.hillside.net

/plop/plop2002/final/Enterprise%

20Integration%20Patterns%20-%20

PLoP%20Final%20Draft%203.pdf.

 5. A.C. Oliver, “Long Live SOA in the

Cloud Era,” Infoworld, 21 June 2012;

www.infoworld.com/article/2615838

/service-oriented-architecture/long

-live-soa-in-the-cloud-era.html.

 6. E. Gamma et al., Design Patterns,

Addison- Wesley, 1995.

INSIGHTS

 JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 19

 7. C. Fehling et al., Cloud Computing

Patterns: Fundamentals to Design,

Build, and Manage Cloud Applica-

tions, Springer, 2014.

 8. D. Alur, J. Crupi, and D. Malks, Core

J2EE Patterns: Best Practices and

Design Strategies, 2nd ed., Prentice

Hall, 2003.

 9. C. Alexander et al., A Pattern Lan-

guage: Towns, Buildings, Construc-

tion, Oxford Univ. Press, 1977.

 10. G. Hohpe, “Your Coffee Shop

Doesn’t Use Two-Phase Commit,”

IEEE Software, vol. 22, no. 2, 2005,

pp. 64–66.

 11. G. Hohpe, “Google Cloud Pub/Sub,”

blog, 8 Apr. 2015; www.enterprise

integrationpatterns.com/ramblings

/82_googlepubsub.html.

 12. G. Hohpe, “Conversation Patterns:

Overview,” 2015; www.enterprise

integrationpatterns.com/patterns

/conversation.

OLAF ZIMMERMANN is a professor and

institute partner at the Institute for Software at

the University of Applied Sciences of East-

ern Switzerland, Rapperswil. Contact him at

 ozimmerm@hsr.ch.

CESARE PAUTASSO is an associate professor

at the Faculty of Informatics at the University of

Lugano. Contact him at c.pautasso@ieee.org.

GREGOR HOHPE is the chief IT architect

at Allianz. Contact him at info@

enterpriseintegrationpatterns.com.

BOBBY WOOLF is an IT specialist in cloud

platform services at IBM. Contact him at woolf@

acm.org.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

IEEE SOFTWARE CALL FOR PAPERS

Special Issue on the Software Architect’s Role in the Digital Age
Submission deadline: 1 April 2016 • Publication: November/December 2016

After more than a decade of technical development and
training programs, have we managed to clarify a software
architect’s roles, responsibilities, skills, competencies, and
career paths? Even if we have, the architect’s role will likely
be a moving target in light of recent technology innovations
and advances in method engineering. Architects must also
deal with constantly changing social and organizational inter-
actions. These trends provide more and richer information
channels but significantly extend the design space. Changing
technologies, software becoming ubiquitous, and a comput-
ing-empowered industrial revolution must be mastered by
software architects, whose roles and responsibilities are also
changing at the same time.

IEEE Software seeks submissions for a theme issue on the
software architect’s role in software development. Possible
topics include, but aren’t limited to,

• the architect’s impact, including social, organizational,
and technical aspects;

• architect career paths and competencies;
• the skills and responsibilities that belong and don’t be-

long to architects, for educating undergraduate students
and graduates to be successful architects;

• growing and managing the body of knowledge related to
software architecture practice;

• empirical studies of how practitioners use software
architecture tools and techniques;

• practical experiences and industry case studies on how
the architect’s role has facilitated or hindered success;

• industry experiences from software architecture educa-
tion, certification, and career development initiatives;
and

• industry case studies from application domains requiring
specific skills.

Questions?
For more information about the focus, contact the guest edi-
tors:

• Gregor Hohpe, ghohpe@gmail.com
• Ipek Ozkaya, ozkaya@sei.cmu.edu
• Uwe Zdun, uwe.zdun@univie.ac.at
• Olaf Zimmermann, ozimmerm@hsr.ch

Submission Guidelines
Manuscripts must not exceed 4,700 words, including figures
and tables, which count for 250 words each. Submissions
exceeding these limits may be rejected without refereeing.
Articles deemed within the theme and scope will be peer-
reviewed and subject to editing for magazine style, clarity,
organization, and space. We reserve the right to edit the title
of all submissions. Include the name of the theme or theme
issue for which you’re submitting.

Articles should be novel, have a practical orientation,
and be written in a style accessible to practitioners. Overly
complex, purely research-oriented or theoretical treatments
aren’t appropriate. IEEE Software doesn’t republish material
published previously in other venues, whether previous publi-
cation was in print or electronic.

General author guidelines:
http://www.computer.org/web/peer-review/magazines

Submission details: software@computer.org

Submit an article: https://mc.manuscriptcentral.com/cs-ieee

