
0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E JANUARY/FEBRUARY 2018 | IEEE SOFTWARE 93

Editor: Cesare Pautasso
University of Lugano
c.pautasso@ieee.org

Editor: Olaf Zimmermann
University of Applied Sciences
of Eastern Switzerland, Rapperswil

ozimmerm@hsr.ch

INSIGHTS

The Web as a Software
Connector
Integration Resting on Linked Resources

Cesare Pautasso and Olaf Zimmermann

DECOMPOSING A SOFTWARE sys-
tem into a set of distributed services
to be integrated with each other has
been and still is a wicked problem,
despite the field’s presumed matu-
rity.1 Thousands of APIs use the web
today. However, HTTP’s expressive-
ness and universality make it not only
possible but also easy to use HTTP to
implement many integration styles.

Here, we discuss how the web, seen
as a graph of linked resources shared
between microservices, can serve as a
complementary integration style. Car-
rying this insight in your toolbox will
make you aware of all the options to
consider next time you build loosely
coupled integrated systems.

The State of the Practice
File transfer, shared databases, re-
mote procedure calls, and asynchro-
nous messaging are the four classic
integration styles commonly used to
stitch together heterogeneous, auton-
omous, and distributed software sys-
tems within and across enterprises
(see Figure 1).2 Together with data
streaming, they support different
forms of dataflow and control flow
across multiple integrated systems.
They also impact the degree of cou-
pling introduced in the integrated
architecture.

Over the past decades, we’ve wit-
nessed increased adoption of HTTP3
as a convenient, ubiquitous network
protocol for web-scale integration.
First, HTTP was used (some might
say misused) as a firewall-tunneling
solution for implementing remote
procedure calls and messaging
across the web. HTTP is expressive;
it can be and has been used to imple-
ment file transfers, streaming, and
shared databases as well. RESTful
HTTP4 became popular in the mid
2000s. (REST stands for Represen-
tational State Transfer.) It uses the
original features of the HTTP stan-
dard such as URIs, methods (GET, PUT,
POST, and so on), hypermedia, and
content type negotiation to address
recipients, control behavior, and rep-
resent information exchanged.

Still, some confusion remains on
how to properly use the web to build
loosely coupled integrated systems.
The rest of this article aims to clear
up that confusion.

For the most part, hypermedia
drives the design of RESTful APIs
that help individual clients dynami-
cally discover the business protocol
for interacting with them. Neverthe-
less, we noticed that many integra-
tion design discussions online and
in project rooms still focus on single

interactions between the individ-
ual client and a single API. These
happen using synchronous HTTP
request–responses—in other words,
hypermedia-driven remote proce-
dure calls.

However, when you look at the
integration’s end-to-end result, in
which multiple clients share and
manage their common state through
one or more linked web resources,
a different picture emerges. You
need this broader focus if you’re to
successfully use the web as an ad-
vanced integration style—for in-
stance, in monolith decomposition
and microservice recomposition, en-
terprise application integration, or
business-to-business conversations.
Choosing such a style is appealing
when data should be not only trans-
ferred between parties (as with file
transfers or message queues) but also
published so that it can be retrieved,
updated, or deleted by any number
of parties (as with a globally distrib-
uted shared database).

Dataflow
To view the web as an integra-
tion style, we need to go back to
the basics of what it means to ex-
change messages in integrated sys-
tems. Messaging aims to deliver

INSIGHTS

94 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

data from the sender to the
recipient (see Figure 2a) with
certain guarantees. Asynchronous-
messaging middleware (also known
as distributed message brokers imple-
menting the Message Bus pattern2)
conveniently deals with all kinds
of problems along the way. For ex-
ample, it can deal with unavailable
recipients (by store-and-forward
techniques such as queueing), net-
work failures (by retransmission and
deduplication), and security attacks
(by ensuring messages can’t be forged
or tampered with).

Once the message safely arrives at
an endpoint, its recipient consumes it
and the message, as a first approxi-
mation, disappears from the mes-
saging system. This might happen as
part of a transaction. (In advanced
scenarios, recipients might only peek
at a message without removing it
from the queue. With event sourcing,
the message queues might even turn

into distributed event logs collecting
all the messages that have ever been
exchanged.)

Messages can be delivered to
one or more recipients, and recipi-
ents can be addressed by a variety
of schemes (for example, message
queue names, subscription topics, or
recipient lists). So, in some cases, re-
cipients and senders don’t need to be
aware of one another. This is a facet
of loose coupling.

Queue-based messaging is asyn-
chronous, which further reduces
coupling because senders and recipi-
ents don’t have to be up and running
at the same time for the message ex-
change to be successful. This is be-
cause the messaging middleware acts
as an intermediary.

The web, on the other hand, was
born as a global document-sharing
platform. Web resources, identified
by global addresses, hold informa-
tion that can be published, read,

and updated multiple times by mul-
tiple interested parties and deleted
once it’s no longer relevant. When
viewed as an integration style, the
web helps construct a global, shared
data structure (a blackboard5) be-
tween the systems that need to be in-
tegrated (see Figure 2b). One system
publishes information on the web
so that others can retrieve it later.
Another system might update the
shared information, and yet another
one might remove it once the previ-
ous system has processed it (see the
bottom right of Figure 2b).

For example, Doodle lets you cre-
ate a poll resource by publishing the
available options when multiple par-
ties need to agree on something (for
example, a meeting location and
time).6 The link to the poll is dissemi-
nated among the interested parties,
who can retrieve the options and ex-
press their preferences. Once all the
votes are collected, the poll is updated
to reflect the decision outcome. As
long as all parties share the link to the
poll resource, they can proceed to read
or write from it in a completely asyn-
chronous and uncoordinated manner.

The web wasn’t designed to de-
liver information from senders to
recipients with the same quality
guarantees as queue-based messag-
ing. Rather, it was designed to pub-
lish information from one sender to
be read by potentially millions of
recipients either forever or until the in-
formation is removed from the web.7

Information stored in web re-
sources can be accessed with multi-
ple representations, fostering format
interoperability (because every sys-
tem can use content type negotia-
tion to retrieve the most appropriate
and compatible representation). In
messaging, format interoperability
is achieved by either standardizing
the message format or performing

FIGURE 1. Software integration styles. The boxes represent services or microservices
being integrated with each other. The arrows indicate the data flowing between them,
sometimes directly (as with data streaming or remote procedure calls) and sometimes
indirectly (as with the web, asynchronous messaging, file transfer, or shared databases).

Web Shared database

Streaming

Asynchronous messaging

Remote procedure call File transfer

INSIGHTS

 JANUARY/FEBRUARY 2018 | IEEE SOFTWARE 95

message translation. (Network pro-
tocol interoperability is a differ-
ent concern that’s addressed with
the corresponding HTTP or Ad-
vanced Message Queueing Protocol
[AMQP]8 standard.)

Seen as a global shared data
structure meant to be concurrently
accessed by multiple systems, the
web provides only optimistic lock-
ing because it assumes that most
interactions are read-only. So, the
level-of-consistency guarantees it
provides aren’t comparable to the
ACID (atomicity, consistency, isola-
tion, and durability) model that is,
for instance, prominently promoted
in the shared-database integration
style.2,9 Still, you could view the
web as a globally distributed key–
value store in which every key (URI)
can potentially be mapped to a sep-
arate webserver. To deal with non-
uniform access patterns such as key
hot spots, you can introduce layers
of caching to mirror popular keys,
again assuming that the correspond-
ing values don’t change often.

Such a massively scalable system
deals with discovery through decen-
tralized referral, in which the keys of
related resources are found thanks to
hypermedia. Links are embedded in
a representation of a resource point-
ing to one or more related resources,
without any guarantee that the re-
lated resource actually exists. Mes-
sages in asynchronous-messaging
systems also carry unique identifiers
and can point to related messages
(for instance, through Correlation
Identifiers2). However, those identi-
fiers server other purposes related
to message delivery guarantees (pri-
marily to avoid duplicate delivery
and establish chains of replies or
conversations).

In terms of the time dimen-
sion of coupling, the web shares the

asynchronous nature of messaging.
Systems publishing information on a
particular web resource can be long
gone when other systems retrieve that
information from the shared web re-
source. In other words, relaying in-
formation through a shared web
resource requires two synchronous
HTTP request–response interactions
with the resource (see Figure 3) but no
direct interaction between the sender
and receiver. Such behavior also oc-
curs between two systems integrated
through a message queue.

Likewise, as long as the systems
agree on the shared resource’s ad-
dress, they don’t need to be aware
of one another because they use the
resource to exchange information. In
messaging, the queue address must

be correctly configured for both the
sender and recipient. On the web,
thanks to hypermedia, resource

FIGURE 2. Dataflow integration primitives. (a) Asynchronous messaging. The top
shows a message delivered to one recipient; the bottom shows a message delivered to
multiple recipients. (b) The web. The top shows a resource shared between one writer
and one reader, the middle shows a resource shared by one writer and two readers, and
the bottom shows a complex multiparty conversation (with GET, PUT, and DELETE) over the
same shared resource.

(a)

Send

Receive

Receive

PUT GET

GET

GET

GET

PUT
PUT

PUT

DELETEGET

(b)

FIGURE 3. Refining the conceptual
end-to-end dataflow of the web
integration style (from Figure 2) to the
HTTP network protocol, as a sequence of
basic request–response interactions. (200
is the HTTP OK status code.)

PUT

PUT

GET

GET

200

200

INSIGHTS

96 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

identifiers (URIs) can be dynami-
cally discovered by being looked
up from other web resources (play-
ing the role of directory). URIs have
global validity and, thanks to the
Domain Name System (DNS), are
assigned in a decentralized manner.
Message queue identifiers are valid
within the context of one particular
messaging system, where naming
conventions such as topic://unique.queue
.name can be used but aren’t enforced
globally.

Control Flow
When messages arrive at a recipi-
ent, they’re processed. The message
delivery event triggers the execution
of the code in charge of consuming

the message. In other words, send-
ing a message not only transfers in-
formation from the sender to one or
more recipients but also explicitly or
implicitly provokes the invocation of
processing logic in the recipient.

Unlike with remote procedure
calls, the transfer of execution (or
control) flow is asynchronous in
messaging. Senders and recipients
don’t have to be available at the
same time, and the sender doesn’t
have to wait for the message de-
livery to complete before carrying
on. Recipients either can be no-
tified as soon as messages arrive
(push control flow) or will need
to periodically check their inbox
(pull control flow). Furthermore,

the implementation details of the
server-side processing logic are hid-
den from the sender and the mes-
saging infrastructure.

On the web, similar strategies are
possible to react to state transitions
of shared resources. Resources can
be polled so that code executes when
interesting updates are detected
(pull). Conversely, it’s possible to in-
tercept resource state changes and
execute code as soon as they happen
(push). This used to be possible only
if the code was deployed “together”
with the resource on the webserver
hosting it. Additionally, WebHook
callbacks let resources notify in-
terested clients when state changes
occur. Also in this case, the client

and the HTTP server are unaware of
the implementation platform that ex-
ecutes the processing logic.

Comparison Criteria
Table 1 compares asynchronous
messaging and the web regarding
quality attributes and other decision-
making criteria. The table is orga-
nized according to viewpoints and
cross-cutting quality concerns.

Asynchronous messaging and the
web share many characteristics in
terms of

• the many-to-many integration
topologies they enable,

• the data representation syntax’s
flexibility,

• the presence of standard net-
work protocols (such as HTTP
and AMQP), and

• the coupling implications
(they’re both asynchronous from
an end-to-end perspective).

However, they differ fundamen-
tally in terms of the basic abstrac-
tion (message versus resource). This
difference impacts the semantics of
the primitives provided to perform
the integration (for example, send–
receive versus GET–PUT–DELETE). Spe-
cifically, with messaging it’s pos-
sible to notify recipients of a
message’s arrival (push control
flow), whereas on the web, mi-
croservices interested about re-
source state transitions must resort
to polling unless they’re deployed
on the same webserver hosting the
resource. WebHooks are a com-
mon, albeit clumsy, way to work
around this limitation.

Other differences concern how
to achieve payload interoperability
(message translation versus content
type negotiation) and achieve reli-
ability (message retransmission and
duplicate removal versus retrying
GET, PUT, and DELETE requests whose
idempotence is made explicit in the
protocol).

Overall, a conscious architectural
decision selecting an integration
style is necessary, providing ratio-
nale rooted in the project context
and requirements, as Uwe Zdun and
his colleagues described.10

M ost research in apply-
ing HTTP for software
integration focuses on

understanding and controlling the
interaction and state transfers be-
tween one client and the individual
resources that make up RESTful

The web of linked resources is a
global blackboard for asynchronous
application and service integration.

INSIGHTS

 JANUARY/FEBRUARY 2018 | IEEE SOFTWARE 97

Table 1. A comparison of asynchronous messaging and the web regarding quality
attributes and other decision-making criteria.*

Criterion Aspect Asynchronous messaging The web

Logical viewpoint (defining
concepts)

Integration abstractions • Message
• Message queue

• Resource
• Graph of linked resources (hypermedia)

Integration architecture • Message endpoints as clients of a
messaging server

• Federation of message brokers

Client-server

Implementation viewpoint Transfer syntax Any (text, binary, and SOAP XML) Any IETF RFC’ed media type (for example, JSON
and XML, but also binary)

Endpoint-to-broker API
primitives

• Nine AMQP performatives (including
open, transfer, and close)

• JMS API calls (for instance,
implementing message selectors)

• Send and receive
• Publish, subscribe, and notify

HTTP verbs (methods) such as GET, PUT,
DELETE, and POST

Deployment viewpoint Single-connector topology 1:N (many endpoints per messaging broker) 1:N (many clients to a shared resource)

End-to-end topology (endpoint
landscape and services)

M:N (Multiple senders can reach multiple
recipients.)

M:N (Multiple microservices share common
resources.)

Process viewpoint Dataflow Yes, via the message payload Yes, via resource representations

Pull control flow Yes (queue polling) Yes (resource polling)

Push control flow Yes (message delivery notifications) Yes (only on the same webserver or using
WebHooks)

Coupling dimensions and
quality attributes (cross-
cutting concerns)

Coupling in time (end to end) Asynchronous (The message queue
decouples the message’s sender and
recipients.)

Asynchronous (The resource decouples the
state transfer’s source and destinations; see
Figure 3.)

Addressing Local to each messaging middleware
(message queue names)

Global (resource URIs)

Discovery • Directory lookup
• Referral via protocol headers

• Directory lookup
• Referral via links in the payload

Format interoperability Message transformation patterns such as
the Canonical Data Model and Message
Translator2

Multiple resource representations (content type
negotiation)

Network protocol
interoperability

• AMQP
• Proprietary interbroker protocols

HTTP

Reliability • Store-and-forward
• Message retransmission
• Duplicate removal

• Request–retry
• Idempotency

Security Message-level and/or in-or-by messaging
middleware plus underlying protocols

• Message-level and/or HTTPS (TLS/SSL)
• OAuth, OpenID, and so on

Transactions Endpoints may (but don’t have to)
participate in single-phase-commit and
two-phase-commit transactions (for
ACID-style strict consistency).

Various models have been proposed (such as
Transaction as Resource, WebDAV, and Try-
Cancel/Confirm).9

* IETF RFC ! Internet Engineering Task Force Request for Comments, JSON ! JavaScript Object Notation, AMQP ! Advanced Message Queueing Protocol, JMS ! Java Message Service, TLS/SSL ! Transport Layer
Security/Secure Sockets Layer, WebDAV ! Web Distributed Authoring and Versioning, and ACID ! atomicity, consistency, isolation, and durability.

INSIGHTS

98 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

HTTP hypermedia APIs. In this ar-
ticle, we reminded you to look at the
bigger picture of end-to-end integra-
tions of multiple parties such as ser-
vice and microservice compositions,
which asynchronously maintain a
shared data structure published on
the web. This usage and reinterpre-
tation makes the web a first-class
citizen in the land of integration
styles. This complementary style
shares many of its advantages with
asynchronous, queue-based mes-
saging. But, as a shared-memory
blackboard, it opens additional op-
portunities owing to the massively
scalable and decentralized nature of
the web.

There’s more to integration than
choosing an integration style. Once
you decide how to control the cou-
pling by introducing an appropriate
integration style, more decisions are
necessary. For example, how do you
decompose the monolith? (One way
is to look for bounded contexts with
strategic domain-driven design.1) How
do you define the corresponding

business protocols? (One way is with
conversations and interaction se-
quencing rules.) How do you design
the individual interactions? (One way
is to use interface representation pat-
terns.)

References
1. C. Pautasso et al., “Microservices in

Practice, Part 1: Reality Check and Ser-
vice Design,” IEEE Software, vol. 34,
no. 1, 2017, pp. 91–98; ieeexplore
.ieee.org/document/7819415.

2. O. Zimmerman et al., “A Decade
of Enterprise Integration Patterns:
A Conversation with the Authors,”
IEEE Software, vol. 33, no. 1,
2016, pp. 13–19; ieeexplore.ieee
.org/document/7368007.

3. “Hypertext Transfer Protocol—
HTTP/1.1,” Internet Soc., 1999;
tools.ietf.org/html/rfc2616.

4. R.T. Fielding et al., “Reflections on
the REST Architectural Style and
‘Principled Design of the Modern
Web Architecture,’” Proc. 11th Joint
Meeting Foundations of Software
Eng. (ESEC/FSE 17), 2017, pp. 4–14;

research.google.com/pubs/archive
/46310.pdf.

5. F. Buschmann et al., Pattern-Oriented
Software Architecture, vol. 1, John
Wiley & Sons, 1998.

6. “What Is Doodle and How Does It
Work: An Introduction,” Doodle,
2017; help.doodle.com/customer
/portal/articles/761313-what-is
-doodle-and-how-does-it-work-an
-introduction.

7. T. Berners-Lee and M. Fischetti,
Weaving the Web: The Original
Design and Ultimate Destiny of the
World Wide Web, Harper Business,
2000.

8. “ISO and IEC Approve OASIS
AMQP Advanced Message Queu-
ing Protocol,” OASIS, 1 May 2014;
www.oasis-open.org/news/pr/iso
-and-iec-approve-oasis-amqp-advanced
-message-queuing-protocol.

9. N. Mihindukulasooriya et al., “A
Survey of RESTful Transaction Mod-
els: One Model Does Not Fit All,” J.
Web Eng., vol. 15, no. 1, 2016, pp.
140–169.

10. U. Zdun et al., “Sustainable Architec-
tural Design Decisions,” IEEE Soft-
ware, vol. 30, no. 6, 2013, pp. 46–53;
ieeexplore.ieee.org/document/6576117.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

CESARE PAUTASSO is a full professor at the new Software Institute
at the University of Lugano’s Faculty of Informatics. Contact him at
c.pautasso@ieee.org.

OLAF ZIMMERMANN is a professor and institute partner at the
University of Applied Sciences of Eastern Switzerland, Rapperswil.
Contact him at ozimmerm@hsr.ch.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

