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INSIGHTS

The Web as a Software 
Connector
Integration Resting on Linked Resources

Cesare Pautasso and Olaf Zimmermann

DECOMPOSING A SOFTWARE sys-
tem into a set of distributed services 
to be integrated with each other has 
been and still is a wicked problem, 
despite the field’s presumed matu-
rity.1 Thousands of APIs use the web 
today. However, HTTP’s expressive-
ness and universality make it not only 
possible but also easy to use HTTP to 
implement many integration styles.

Here, we discuss how the web, seen 
as a graph of linked resources shared 
between microservices, can serve as a 
complementary integration style. Car-
rying this insight in your toolbox will 
make you aware of all the options to 
consider next time you build loosely 
coupled integrated systems.

The State of the Practice
File transfer, shared databases, re-
mote procedure calls, and asynchro-
nous messaging are the four classic 
integration styles commonly used to 
stitch together heterogeneous, auton-
omous, and distributed software sys-
tems within and across enterprises 
(see Figure 1).2 Together with data 
streaming, they support different 
forms of dataflow and control flow 
across multiple integrated systems. 
They also impact the degree of cou-
pling introduced in the integrated 
architecture.

Over the past decades, we’ve wit-
nessed increased adoption of HTTP3 
as a convenient, ubiquitous network 
protocol for web-scale integration. 
First, HTTP was used (some might 
say misused) as a firewall-tunneling  
solution for implementing remote 
procedure calls and messaging 
across the web. HTTP is expressive; 
it can be and has been used to imple-
ment file transfers, streaming, and 
shared databases as well. RESTful 
HTTP4 became popular in the mid 
2000s. (REST stands for Represen-
tational State Transfer.) It uses the 
original features of the HTTP stan-
dard such as URIs, methods (GET, PUT, 
POST, and so on), hypermedia, and 
content type negotiation to address 
recipients, control behavior, and rep-
resent information exchanged.

Still, some confusion remains on 
how to properly use the web to build 
loosely coupled integrated systems. 
The rest of this article aims to clear 
up that confusion.

For the most part, hypermedia 
drives the design of RESTful APIs 
that help individual clients dynami-
cally discover the business protocol 
for interacting with them. Neverthe-
less, we noticed that many integra-
tion design discussions online and 
in project rooms still focus on single 

interactions between the individ-
ual client and a single API. These 
happen using synchronous HTTP  
request–responses—in other words, 
hypermedia-driven remote proce-
dure calls.

However, when you look at the 
integration’s end-to-end result, in 
which multiple clients share and 
manage their common state through 
one or more linked web resources, 
a different picture emerges. You 
need this broader focus if you’re to 
successfully use the web as an ad-
vanced integration style—for in-
stance, in monolith decomposition 
and microservice recomposition, en-
terprise application integration, or 
business-to-business conversations. 
Choosing such a style is appealing 
when data should be not only trans-
ferred between parties (as with file 
transfers or message queues) but also 
published so that it can be retrieved, 
updated, or deleted by any number 
of parties (as with a globally distrib-
uted shared database).

Dataflow
To view the web as an integra-
tion style, we need to go back to 
the basics of what it means to ex-
change messages in integrated sys-
tems. Messaging aims to deliver  
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data from the sender to the  
recipient (see Figure 2a) with  
certain guarantees. Asynchronous- 
messaging middleware (also known 
as distributed message brokers imple-
menting the Message Bus pattern2) 
conveniently deals with all kinds 
of problems along the way. For ex-
ample, it can deal with unavailable 
recipients (by store-and-forward 
techniques such as queueing), net-
work failures (by retransmission and 
deduplication), and security attacks 
(by ensuring messages can’t be forged 
or tampered with).

Once the message safely arrives at 
an endpoint, its recipient consumes it 
and the message, as a first approxi-
mation, disappears from the mes-
saging system. This might happen as 
part of a transaction. (In advanced 
scenarios, recipients might only peek 
at a message without removing it 
from the queue. With event sourcing, 
the message queues might even turn 

into distributed event logs collecting 
all the messages that have ever been 
exchanged.)

Messages can be delivered to 
one or more recipients, and recipi-
ents can be addressed by a variety 
of schemes (for example, message 
queue names, subscription topics, or 
recipient lists). So, in some cases, re-
cipients and senders don’t need to be 
aware of one another. This is a facet 
of loose coupling.

Queue-based messaging is asyn-
chronous, which further reduces 
coupling because senders and recipi-
ents don’t have to be up and running 
at the same time for the message ex-
change to be successful. This is be-
cause the messaging middleware acts 
as an intermediary.

The web, on the other hand, was 
born as a global document-sharing 
platform. Web resources, identified 
by global addresses, hold informa-
tion that can be published, read, 

and updated multiple times by mul-
tiple interested parties and deleted 
once it’s no longer relevant. When 
viewed as an integration style, the 
web helps construct a global, shared 
data structure (a blackboard5) be-
tween the systems that need to be in-
tegrated (see Figure 2b). One system 
publishes information on the web 
so that others can retrieve it later. 
Another system might update the 
shared information, and yet another 
one might remove it once the previ-
ous system has processed it (see the 
bottom right of Figure 2b).

For example, Doodle lets you cre-
ate a poll resource by publishing the 
available options when multiple par-
ties need to agree on something (for 
example, a meeting location and 
time).6 The link to the poll is dissemi-
nated among the interested parties, 
who can retrieve the options and ex-
press their preferences. Once all the 
votes are collected, the poll is updated 
to reflect the decision outcome. As 
long as all parties share the link to the 
poll resource, they can proceed to read 
or write from it in a completely asyn-
chronous and uncoordinated manner.

The web wasn’t designed to de-
liver information from senders to 
recipients with the same quality 
guarantees as queue-based messag-
ing. Rather, it was designed to pub-
lish information from one sender to 
be read by potentially millions of  
recipients either forever or until the in-
formation is removed from the web.7

Information stored in web re-
sources can be accessed with multi-
ple representations, fostering format 
interoperability (because every sys-
tem can use content type negotia-
tion to retrieve the most appropriate 
and compatible representation). In 
messaging, format interoperability 
is achieved by either standardizing 
the message format or performing 

FIGURE 1. Software integration styles. The boxes represent services or microservices 
being integrated with each other. The arrows indicate the data flowing between them, 
sometimes directly (as with data streaming or remote procedure calls) and sometimes 
indirectly (as with the web, asynchronous messaging, file transfer, or shared databases).

Web Shared database

Streaming

Asynchronous messaging

Remote procedure call File transfer



INSIGHTS

 JANUARY/FEBRUARY 2018  |  IEEE SOFTWARE  95

message translation. (Network pro-
tocol interoperability is a differ-
ent concern that’s addressed with 
the corresponding HTTP or Ad-
vanced Message Queueing Protocol 
[AMQP]8 standard.)

Seen as a global shared data 
structure meant to be concurrently 
accessed by multiple systems, the 
web provides only optimistic lock-
ing because it assumes that most 
interactions are read-only. So, the 
level-of-consistency guarantees it 
provides aren’t comparable to the 
ACID (atomicity, consistency, isola-
tion, and durability) model that is, 
for instance, prominently promoted 
in the shared-database integration 
style.2,9 Still, you could view the 
web as a globally distributed key–
value store in which every key (URI) 
can potentially be mapped to a sep-
arate webserver. To deal with non-
uniform access patterns such as key 
hot spots, you can introduce layers 
of caching to mirror popular keys, 
again assuming that the correspond-
ing values don’t change often.

Such a massively scalable system 
deals with discovery through decen-
tralized referral, in which the keys of 
related resources are found thanks to 
hypermedia. Links are embedded in 
a representation of a resource point-
ing to one or more related resources, 
without any guarantee that the re-
lated resource actually exists. Mes-
sages in asynchronous-messaging  
systems also carry unique identifiers 
and can point to related messages 
(for instance, through Correlation 
Identifiers2). However, those identi-
fiers server other purposes related 
to message delivery guarantees (pri-
marily to avoid duplicate delivery 
and establish chains of replies or 
conversations).

In terms of the time dimen-
sion of coupling, the web shares the 

asynchronous nature of messaging. 
Systems publishing information on a 
particular web resource can be long 
gone when other systems retrieve that 
information from the shared web re-
source. In other words, relaying in-
formation through a shared web 
resource requires two synchronous 
HTTP request–response interactions 
with the resource (see Figure 3) but no 
direct interaction between the sender 
and receiver. Such behavior also oc-
curs between two systems integrated 
through a message queue.

Likewise, as long as the systems 
agree on the shared resource’s ad-
dress, they don’t need to be aware 
of one another because they use the 
resource to exchange information. In 
messaging, the queue address must 

be correctly configured for both the 
sender and recipient. On the web, 
thanks to hypermedia, resource 

FIGURE 2. Dataflow integration primitives. (a) Asynchronous messaging. The top 
shows a message delivered to one recipient; the bottom shows a message delivered to 
multiple recipients. (b) The web. The top shows a resource shared between one writer 
and one reader, the middle shows a resource shared by one writer and two readers, and 
the bottom shows a complex multiparty conversation (with GET, PUT, and DELETE) over the 
same shared resource.
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FIGURE 3. Refining the conceptual 
end-to-end dataflow of the web 
integration style (from Figure 2) to the 
HTTP network protocol, as a sequence of 
basic request–response interactions. (200 
is the HTTP OK status code.)
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identifiers (URIs) can be dynami-
cally discovered by being looked 
up from other web resources (play-
ing the role of directory). URIs have 
global validity and, thanks to the 
Domain Name System (DNS), are 
assigned in a decentralized manner. 
Message queue identifiers are valid 
within the context of one particular  
messaging system, where naming 
conventions such as topic://unique.queue 
.name can be used but aren’t enforced 
globally.

Control Flow
When messages arrive at a recipi-
ent, they’re processed. The message 
delivery event triggers the execution 
of the code in charge of consuming 

the message. In other words, send-
ing a message not only transfers in-
formation from the sender to one or 
more recipients but also explicitly or 
implicitly provokes the invocation of 
processing logic in the recipient.

Unlike with remote procedure 
calls, the transfer of execution (or 
control) flow is asynchronous in 
messaging. Senders and recipients 
don’t have to be available at the 
same time, and the sender doesn’t 
have to wait for the message de-
livery to complete before carrying 
on. Recipients either can be no-
tified as soon as messages arrive 
(push control flow) or will need 
to periodically check their inbox 
(pull control flow). Furthermore, 

the implementation details of the 
server-side processing logic are hid-
den from the sender and the mes-
saging infrastructure.

On the web, similar strategies are 
possible to react to state transitions 
of shared resources. Resources can 
be polled so that code executes when 
interesting updates are detected 
(pull). Conversely, it’s possible to in-
tercept resource state changes and 
execute code as soon as they happen 
(push). This used to be possible only 
if the code was deployed “together” 
with the resource on the webserver 
hosting it. Additionally, WebHook 
callbacks let resources notify in-
terested clients when state changes  
occur. Also in this case, the client 

and the HTTP server are unaware of 
the implementation platform that ex-
ecutes the processing logic.

Comparison Criteria
Table 1 compares asynchronous 
messaging and the web regarding 
quality attributes and other decision-
making criteria. The table is orga-
nized according to viewpoints and 
cross-cutting quality concerns.

Asynchronous messaging and the 
web share many characteristics in 
terms of

• the many-to-many integration 
topologies they enable,

• the data representation syntax’s 
flexibility,

• the presence of standard net-
work protocols (such as HTTP 
and AMQP), and

• the coupling implications 
(they’re both asynchronous from 
an end-to-end perspective).

However, they differ fundamen-
tally in terms of the basic abstrac-
tion (message versus resource). This 
difference impacts the semantics of 
the primitives provided to perform 
the integration (for example, send– 
receive versus GET–PUT–DELETE). Spe-
cifically, with messaging it’s pos-
sible to notify recipients of a 
message’s arrival (push control 
flow), whereas on the web, mi-
croservices interested about re-
source state transitions must resort 
to polling unless they’re deployed 
on the same webserver hosting the 
resource. WebHooks are a com-
mon, albeit clumsy, way to work 
around this limitation.

Other differences concern how 
to achieve payload interoperability 
(message translation versus content 
type negotiation) and achieve reli-
ability (message retransmission and 
duplicate removal versus retrying 
GET, PUT, and DELETE requests whose 
idempotence is made explicit in the 
protocol).

Overall, a conscious architectural 
decision selecting an integration 
style is necessary, providing ratio-
nale rooted in the project context 
and requirements, as Uwe Zdun and 
his colleagues described.10

M ost research in apply-
ing HTTP for software 
integration focuses on 

understanding and controlling the 
interaction and state transfers be-
tween one client and the individual 
resources that make up RESTful 

The web of linked resources is a 
global blackboard for asynchronous 
application and service integration.
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Table 1. A comparison of asynchronous messaging and the web regarding quality 
attributes and other decision-making criteria.*

Criterion Aspect Asynchronous messaging The web

Logical viewpoint (defining 
concepts)

Integration abstractions • Message
• Message queue

• Resource
•  Graph of linked resources (hypermedia)

Integration architecture •  Message endpoints as clients of a 
messaging server

•  Federation of message brokers

Client-server

Implementation viewpoint Transfer syntax Any (text, binary, and SOAP XML) Any IETF RFC’ed media type (for example, JSON 
and XML, but also binary)

Endpoint-to-broker API 
primitives

•  Nine AMQP performatives (including 
open, transfer, and close)

•  JMS API calls (for instance, 
implementing message selectors)

• Send and receive
• Publish, subscribe, and notify

HTTP verbs (methods) such as GET, PUT, 
DELETE, and POST

Deployment viewpoint Single-connector topology 1:N (many endpoints per messaging broker) 1:N (many clients to a shared resource)

End-to-end topology (endpoint 
landscape and services)

M:N (Multiple senders can reach multiple 
recipients.)

M:N (Multiple microservices share common 
resources.)

Process viewpoint Dataflow Yes, via the message payload Yes, via resource representations

Pull control flow Yes (queue polling) Yes (resource polling)

Push control flow Yes (message delivery notifications) Yes (only on the same webserver or using 
WebHooks)

Coupling dimensions and 
quality attributes (cross-
cutting concerns)

Coupling in time (end to end) Asynchronous (The message queue 
decouples the message’s sender and 
recipients.)

Asynchronous (The resource decouples the 
state transfer’s source and destinations; see 
Figure 3.)

Addressing Local to each messaging middleware 
(message queue names)

Global (resource URIs)

Discovery • Directory lookup
• Referral via protocol headers

• Directory lookup
• Referral via links in the payload

Format interoperability Message transformation patterns such as 
the Canonical Data Model and Message 
Translator2

Multiple resource representations (content type 
negotiation)

Network protocol 
interoperability

• AMQP
• Proprietary interbroker protocols

HTTP

Reliability • Store-and-forward
• Message retransmission
• Duplicate removal

• Request–retry
• Idempotency

Security Message-level and/or in-or-by messaging 
middleware plus underlying protocols

• Message-level and/or HTTPS (TLS/SSL)
• OAuth, OpenID, and so on

Transactions Endpoints may (but don’t have to) 
participate in single-phase-commit and 
two-phase-commit transactions (for 
ACID-style strict consistency).

Various models have been proposed (such as 
Transaction as Resource, WebDAV, and Try-
Cancel/Confirm).9

* IETF RFC ! Internet Engineering Task Force Request for Comments, JSON ! JavaScript Object Notation, AMQP ! Advanced Message Queueing Protocol, JMS ! Java Message Service, TLS/SSL ! Transport Layer 
Security/Secure Sockets Layer, WebDAV ! Web Distributed Authoring and Versioning, and ACID ! atomicity, consistency, isolation, and durability.
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HTTP hypermedia APIs. In this ar-
ticle, we reminded you to look at the 
bigger picture of end-to-end integra-
tions of multiple parties such as ser-
vice and microservice compositions, 
which asynchronously maintain a 
shared data structure published on 
the web. This usage and reinterpre-
tation makes the web a first-class 
citizen in the land of integration 
styles. This complementary style 
shares many of its advantages with 
asynchronous, queue-based mes-
saging. But, as a shared-memory 
blackboard, it opens additional op-
portunities owing to the massively 
scalable and decentralized nature of 
the web.

There’s more to integration than 
choosing an integration style. Once 
you decide how to control the cou-
pling by introducing an appropriate 
integration style, more decisions are 
necessary. For example, how do you 
decompose the monolith? (One way 
is to look for bounded contexts with  
strategic domain-driven design.1) How  
do you define the corresponding 

business protocols? (One way is with 
conversations and interaction se-
quencing rules.) How do you design 
the individual interactions? (One way 
is to use interface representation pat-
terns.)
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