
A Pattern Language for Workflow Engine Conformance and
Performance Benchmarking
SIMON HARRER, Distributed Systems Group, University of Bamberg, Germany
JÖRG LENHARD, Department of Mathematics and Computer Science, Karlstad University, Sweden
OLIVER KOPP, Institute for Parallel and Distributed Systems, University of Stuttgart, Germany
VINCENZO FERME and CESARE PAUTASSO, Software Institute, Faculty of Informatics, USI Lugano,
Switzerland

Workflow engines are frequently used in the domains of business process management, service orchestration, and cloud com-
puting, where they serve as middleware platforms for integrated business applications. Engines have a significant impact on the
quality of service provided by hosted applications. Therefore, it is desirable to compare them and to select the most appropriate
engine for a given task. To enable such a comparison, approaches for benchmarking workflow engines have emerged. Although
these approaches deal with different quality attributes, i.e., performance or standard conformance, they face many reoccurring
design and implementation problems, which have been solved in similar ways. In this paper, we present a pattern language that
captures such common solutions to reoccurring problems (e.g., from test identification, benchmarking procedure validation,
automatic engine interaction, and workflow execution observation) in the area of workflow engine conformance and performance
benchmarking. Our aim is to help future benchmark authors with the pattern language presented in this paper to benefit from
our experience with the design and implementation of workflow engine benchmarks and benchmarking tools.

CCS Concepts: •General and reference → Measurement; Performance; •Applied computing → Business process
management systems; •Software and its engineering → Software design engineering;
Additional Key Words and Phrases: workflow engines, benchmarking, performance, conformance, patterns

ACM Reference Format:
S. Harrer, J. Lenhard, O. Kopp, V. Ferme, C. Pautasso. 2017. A Pattern Language for Workflow Engine Conformance and
Performance Benchmarking. EuroPLoP (July 2017), 46 pages.
DOI: 10.1145/3147704.3147705

1. INTRODUCTION
The service-oriented computing paradigm envisions the usage of services to support the development of rapid,
low-cost, interoperable, evolvable, and distributed applications [Papazoglou et al. 2008]. An established part
of the field of service-oriented computing is the construction of composite services on the basis of message
exchanges between lower-level services [Alonso et al. 2004]. This composition is often achieved by capturing
the data- and control-flow between message exchanges of several services in a workflow [Peltz 2003]. The
workflow is subsequently deployed on a workflow engine, which provides the middleware execution platform,
context and cross-cutting functionality, message correlation, and many other features to the hosted workflow.
Today, several standards for workflow definition [Mili et al. 2010] and a multitude of engines have emerged1,
including implementations by global middleware vendors, open source solutions, research prototypes, and
even cloud-based engines. The range of solutions makes it important for users to compare existing engines
with the aim of selecting the best engine for their purpose. The problem is that engines are highly complex
products, resulting in an equally complex comparison and selection problem [Harrer 2014]. To address this

1Lists of engines are maintained at Wikipedia: https://en.wikipedia.org/wiki/List_of_BPEL_engines and https://en.wikipedia.
org/wiki/List_of_BPMN_2.0_engines. The second lists has been built in the context of the BenchFlow project, which is one of
our primary sources of patterns here.

EuroPLoP’17: European Conference on Pattern Languages of Programs, July 12–16, 2017, Irsee, Germany

https://en.wikipedia.org/wiki/List_of_BPEL_engines
https://en.wikipedia.org/wiki/List_of_BPMN_2.0_engines
https://en.wikipedia.org/wiki/List_of_BPMN_2.0_engines


2 � S. Harrer, J. Lenhard, O. Kopp, V. Ferme, C. Pautasso

problem, work�ow engine benchmarking approaches have emerged [Geiger et al. 2016a; Ferme et al. 2015].
Several research groups are developing such approaches and tools that target varying quality properties of
work�ow engines, such as performance [Ferme et al. 2015; Rosinosky et al. 2016; Daniel et al. 2011; Dujmovi¢
2010] or standard conformance [Geiger et al. 2016a].

When developing approaches and benchmarks, the aforementioned research groups are often facing the
same problems, regardless of the actual property that lies in the focus of the benchmark. Such common
problems are, for instance, how to identify suitable tests or workloads for engine benchmarks, or how to ensure
the correctness of test implementations and benchmarking procedures. Moreover, solutions to such common
problems are often similar, leading to the unfortunate situation that multiple groups invest signi�cant e�ort
to solve the same problem and to re-implement duplicate solutions. Since proven solutions to reoccurring
problems exist and can be inferred from existing engine benchmarks, it is possible to capture these solutions as
patterns. The notion of patterns originated from the �eld of architecture [Alexander 1978], where patterns were
used to describe reoccurring structures in buildings. Years later, the idea to describe reoccurring structures
in the design of software in the form of patterns [Gamma et al. 1995a] had a huge impact on software
development. Since then, patterns have been applied in many areas and contexts, and a multitude of pattern
catalogs and languages have been published.

Work�ow engine benchmarking is an area, where, to the best of our knowledge, patterns are still lacking.
The huge momentum in the development of pattern languages has also led to work that theorizes on pattern
structure [Kohls 2010; Kohls 2011] and how to write a pattern [Meszaros and Doble 1998]. Here, we build on
these works to specify our patterns. Meszaros and Doble [Meszaros and Doble 1998] proposename, problem,
context, forces, and solution as the mandatory elements of patterns.Examplesand relations are considered
as optional elements. In our pattern description, we usename, summary, context, problems, forces, solution,
consequences, known uses, and relations as elements. By describing such solutions as patterns, it should
be possible to reduce the e�ort for implementing new work�ow engine benchmarks and also to ease the
communication among benchmark authors through a shared vocabulary.

During the last two decades, there has been a lot of momentum in the development of work�ow languages.
Prominent examples of such languages are theWeb Services Business Process Execution Language 2.0
(BPEL) [OASIS 2007] or the Business Process Model and Notation 2.0(BPMN) [ISO/IEC 2013]. Moreover,
new languages are still being developed. For instance, in the area of application management, the current
draft of version 1.1 of the TOSCA standard [OASIS 2017] describes a new work�ow language. This will
trigger the development of new work�ow engines, which have to be benchmarked to be able to compare them.
The concepts and patterns behind existing benchmarks should be understood in order to implement a new
suitable benchmark for such new engines.

This paper is an extension of a �rst proposal of work�ow engine benchmarking patterns [Harrer et al. 2016].
Here, we are building upon some of the previously published patterns, formulate them in a broader and
more reusable fashion, and also include additional patterns related to work�ow performance benchmarking.
We extend the pattern description and add a discussion of forces and consequences. Moreover, we sketch
the relationships between the patterns to connect them into a pattern language. Some of the patterns from
our �rst proposal [Harrer et al . 2016] have been excluded from this paper in favor of new patterns. The
group of authors has also been extended to include additional researchers from the �eld of work�ow engine
performance benchmarking. Since all of the authors have been working on work�ow engine conformance and
performance benchmarks and tools for several years, we are con�dent that the presented patterns can help
the authors of future standardized work�ow engine benchmarks.

The paper is structured as follows. First, we describe the participants and challenges in work�ow engine
benchmarking in Sect. 2, and we provide an overview of Betsy and BenchFlow, the two projects used as the
main source of experience and knowledge to build the pattern language. Thereafter, we outline the structure
of the pattern language in Sect. 3. Sect. 4 describes the patterns, which act as a set of alternative and

EuroPLoP'17: European Conference on Pattern Languages of Programs, July 12�16, 2017, Irsee, Germany



A Pattern Language for Work�ow Engine Conformance and Performance Benchmarking � 3

Fig. 1: Big Picture of Work�ow Engine Benchmarking

competing solutions to the challenges from Sect. 2. After that, we outline the types of relationships among the
singular patterns in Sect. 5. This is followed by a discussion of related pattern languages in Sect. 6. Finally,
the paper is concluded with a summary and an outlook on future work in Sect. 7.

2. CHALLENGES IN WORKFLOW ENGINE BENCHMARKING

In the following, we clarify the reoccurring challenges one faces when building a conformance or performance
benchmark for work�ow engines. These challenges are the crucial sources and motivation for gathering
work�ow engine benchmarking patterns. We then introduce Betsy and BenchFlow, the main source of
knowledge and experience for the proposed patterns.

2.1 Big Picture of Work�ow Engine Benchmarking

Work�ows and work�ow engines, or more abstract, process-aware information systems [van der Aalst 2013],
are commonly used in the service-oriented computing domain to orchestrate services [Peltz 2003]. In short, a
work�ow is the machine-readable and executable representation of a business process in whole or part and a
work�ow engine is the software runtime environment that manages and controls the execution of work�ow
instances [WfMC 1995]. Today, two language standards are predominantly used for work�ow speci�cation
and execution. These are BPEL [OASIS 2007] and BPMN [ISO/IEC 2013].

Benchmarks are an important tool in computer science that is needed to compare and analyze the quality
provided by software systems [Huppler 2009]. Many aspects of software can be benchmarked, but often the
focus resides on performance-related aspects, such as latency or throughput. When it comes to work�ow
engines, two major aspects have been in the spotlight. As indicated above, one of these is performance [Ferme
et al. 2015; Bianculli et al. 2010b; Rosinosky et al. 2016; Daniel et al. 2011]. The second aspect is standard
conformance, which re�ects the fact that work�ow engines are often standards-based products [Harrer et al.
2012; Geiger et al. 2015]. Benchmarking approaches for both aspects exist for both languages mentioned in
the previous paragraph, for BPEL [Bianculli et al. 2010b; Harrer et al. 2012] and BPMN [Ferme et al. 2015;
Geiger et al. 2015].

Figure 1 o�ers a big picture of work�ow engine conformance and performance benchmarking, highlighting
its four main elements: tests, the enginesto be tested, the benchmarking procedure, and the benchmarkresults.

When a benchmark is conducted,tests are used to specify requirements, workloads, expectations or desired
behavior of the engines under test. Next to the tests, a set ofenginesis the second input to the benchmark.
They are the objects of study (i.e., the systems under test) that are to be evaluated so that they can be

EuroPLoP'17: European Conference on Pattern Languages of Programs, July 12�16, 2017, Irsee, Germany



4 � S. Harrer, J. Lenhard, O. Kopp, V. Ferme, C. Pautasso

compared in a fair way. The benchmarking procedureis the tool for evaluating engines according to the
tests and produces the corresponding benchmarkresults. These results should be constructed in an easily
comprehensible fashion to allow for a straightforward interpretation. In the simplest case, they provide
a ranking between the engines, supported by empirical evidence obtained through measurements and a
calculation of key performance indicators.

2.2 Challenges

During work�ow engine benchmarking, several challenges arise related to each element listed in Sect. 2.1.
These challenges are non-trivial and correspond to reoccurring problems that need to be solved for every
benchmark. Hence, they are the problems for which we propose patterns as a solution here. In total, we
identi�ed six challenges, numbered from C1 to C6, which we present in the following.

Regarding the tests, the major issues are aboutTests Identi�cation (C1) and Correct Test Creation (C2) .
The tests should be suitable and representative of realistic usage scenarios. If this is not the case, the results
produced by the benchmark are of no use. Since realistic tests can be non-trivial, it is important to ensure
that they are free of issues, since even minor issues could have a considerable impact on the benchmark
results.

Major challenges regarding the benchmarking procedure areBenchmarking Procedure Validation (C3),
Guaranteed Test Isolation and Reproducibility (C4), and Work�ow Execution Observation (C5) . As for the
tests, quality assurance needs to be in place to make sure that there are no errors in the benchmarking
procedure that might have an impact on the benchmark results. Since realistic test sets might be large, it
is important to make sure that tests can be executed independently, regardless of the execution order, and
regardless of whether execution takes place sequentially or in parallel. Moreover, as outlined by Kistowski
et al. [v. Kistowski et al . 2015], reproducibility has to be ensured. Finally, a mechanism needs to be in place
that helps to identify how and if the benchmark and singular tests are progressing. Since a benchmark might
push an engine to its limits, it can easily be the case that an engine fails to make progress during execution,
which needs to be detected and acted upon.

Regarding the engines, the major issue isAutomatic Engine Interaction (C6) . The sixth challenge concerns
the ability of the engine to participate in a benchmark in the �rst place. Test execution requires the evaluation
of assertions or observation of behavior, so it is necessary that the engine has facilities in place that allow to
communicate its state to the outside. Moreover, the engine needs to be properly installed and con�gured at
the start of the benchmark so that it can operate correctly, otherwise meaningful results are unlikely.

2.3 Work�ow Engine Benchmarking with BenchFlow and Betsy

We derived the patterns presented here from our long-standing work on work�ow engine benchmarking in
the context of two benchmarking systems or projects. Firstly, this is the BPEL/BPMN Engine Test System
(Betsy)2, which implements a conformance benchmark for work�ow engines. Secondly, this isBenchFlow3,
which implements a performance benchmark in this area. Although these two systems are the initial motivators
for developing this pattern language, there are more uses of the patterns in other systems as well. These uses
are listed in the respective parts of the pattern descriptions.

Betsy has been introduced as a conformance evaluation tool for engines supporting BPEL [OASIS 2007]
in 2012 [Harrer et al. 2012]. The initial aim of the tool was to judge the maturity of the standard support
for BPEL in the industry, i.e., to see how well the standard is implemented by work�ow engines in practice.
Subsequently, the tool was extended with support for more and more BPEL engines [Harrer et al. 2013].
Eventually, we added support for benchmarking engines for BPMN [ISO/IEC 2013] in 2015 [Geiger et al.

2https://github.com/uniba-dsg/betsy
3https://github.com/bench�ow/bench�ow

EuroPLoP'17: European Conference on Pattern Languages of Programs, July 12�16, 2017, Irsee, Germany



A Pattern Language for Work�ow Engine Conformance and Performance Benchmarking � 5

Fig. 2: A Pattern Language For Engine Conformance and Performance Benchmarking

2015]. During this evolution, we tested many di�erent approaches for tackling common problems that we
faced. The multi-language support forced us to �nd reusable solutions that work for multiple engines which
build on very di�erent paradigms. Some of the solutions that we found useful during this work are now
described in the form of patterns in this paper.

BenchFlow4 has been developed as an end-to-end framework to simplify and automate reliable performance
benchmarking of BPMN engines [Ferme et al. 2015; Skouradaki et al. 2016; Ferme et al. 2016a]. It reuses
and integrates state of the art technologies, such as Docker5, Faban6, and Apache Spark7 to reliably execute
performance tests, automatically collect performance data, and compute performance metrics and statistics,
as well as to validate the reliability of the obtained results.

3. WORKFLOW ENGINE BENCHMARKING PATTERN LANGUAGE

The pattern language for conformance and performance benchmarking we propose covers all the elements of
a benchmark from Fig. 1, namely tests, benchmarking procedure, engines, and results, and is based on the
challenges described in Sect. 2.2.

We organize the patterns we include in the language per challenge, as presented in Fig. 2, where the
mapping to the speci�c benchmarking element is highlighted with the same set of colors used in Fig. 1.
Patterns to identify the tests (C1) and correctly create tests (C2) are related to the test element of the
benchmark, and concern the identi�cation and quality assurance of test cases for a benchmark. The patterns

4https://github.com/bench�ow
5http://docker.com
6http://faban.org
7http://spark.apache.org

EuroPLoP'17: European Conference on Pattern Languages of Programs, July 12�16, 2017, Irsee, Germany



6 � S. Harrer, J. Lenhard, O. Kopp, V. Ferme, C. Pautasso

Configuration Permutation (P1.1), Reoccurring Process Fragments (P1.2), and Representative
Workflows (P1.3) help to identify the tests (C1). To correctly create tests (C2), the relevant patterns are
Stub Extension (P2.1) and Dry Run Workflows (P2.2).

Patterns that help to validate the benchmarking procedure (C3), guarantee test isolation and reproducibil-
ity (C4), and observe the work�ow execution (C5) concern benchmarking procedure guidelines for enabling
comparability of results, and automating the benchmark environment. The patterns related to validating the
benchmarking procedure (C3) areAptitude Test (P3.1), and Comparable Configuration (P3.2). The
one related to guaranteeing test isolation and reproducibility (C4) is Virtual Machines (P4.1). Patterns
related to observing the work�ow (C5) are Message-based Evaluation (P5.1), Execution Trace
Evaluation (P5.2), and Engine API-based Evaluation (P5.3).

Engine related patterns, which deal with the challenges related to automating the interaction with the
engines (C6), describe ways to instrument work�ow engines for using them in a benchmark. These patterns
are Engine Layer Abstraction (P6.1), Failable Timed Action (P6.2), Timeout Calibration (P6.3),
and Detailed Logs (P6.4).

4. WORKFLOW ENGINE CONFORMANCE AND PERFORMANCE BENCHMARKING PATTERNS

In this section, we present the work�ow engine conformance and performance benchmarking patterns,
mirroring the mapping of patterns to challenges introduced in Sect. 3.

For each pattern, we provide a uniquename, a summary, the context and a list of the problemsit addresses,
which correspond to the challenges from Sect. 2.2. Furthermore, we describe theforces, the solution to said
problems, outlining what the pattern does in an abstract form, and the consequencesof applying the pattern.
Lastly, we outline the known usesof a pattern and the relations it has to other patterns of our proposed
pattern language.

4.1 Tests Identi�cation (C1) Patterns

To identify the tests (C1), one can determine the constructs of a modeling and/or execution language and
apply Configuration Permutation (P1.1). Alternatively, if a process model collection is available, one
can useReoccurring Process Fragments (P1.2) or Representative Workflows (P1.3) to identify
the most frequently used process fragments and work�ows within a given collection.

EuroPLoP'17: European Conference on Pattern Languages of Programs, July 12�16, 2017, Irsee, Germany



A Pattern Language for Work�ow Engine Conformance and Performance Benchmarking � 7

Con�guration Permutation (P1.1)

Summary
Determine all variants, in which a construct of a work�ow language (e.g., a language construct for conditional
branching, such as anexclusive gateway8 in BPMN) can be used, and cover them with test cases. The
pattern captures how such test cases are derived from the de�ned structure of language constructs.

Context
Work�ow modeling language speci�cations such as BPMN or BPEL contain a variety of language constructs
including control-�ow constructs such as conditionals and loops as well as data-�ow constructs such as
sending and receiving events. Language constructs may have many con�guration options that modify their
execution behavior. These con�guration options are often not independent and result in di�erent behavior
when they are combined. In conformance benchmarking it is desirable to determine whether the con�guration
options of these language constructs are supported by the work�ow engines implementing the speci�cation.
In this case, benchmarking means that the work�ow engines are compared against standardized speci�cations
and it is determined how well they conform to those speci�cations. In performance benchmarking this
pattern ensures that all the possible variants of a construct, common or not, are tested.

Problem
How to include tests to cover all the possible variants in which a construct of a work�ow language can be
used?

Forces
- The main goal is to achieve completeness in the tests for a language construct, BUT without a systematic

approach it is easy to forget language construct variants, although not every variant is used in practical
scenarios. When striving for completeness, the problem of test explosion arises. Hence, the e�ort in regard
to test creation and execution has to be kept under control.

Solution
(1) Identify a construct in the speci�cation of a work�ow language;
(2) Determine all con�guration parameters and their range of values;
(3) Permutate them to get all con�gurations for the construct;
(4) Select the ones out of all con�gurations that are allowed by the language speci�cation.

8An exclusive gateway, or XOR gateway, represents a decision in a work�ow in which exactly one branch has to be taken.

EuroPLoP'17: European Conference on Pattern Languages of Programs, July 12�16, 2017, Irsee, Germany



8 � S. Harrer, J. Lenhard, O. Kopp, V. Ferme, C. Pautasso

Every allowed con�guration of a construct may have multiple variants, such as boundary values or invalid
values, resulting in another round of permutations of (1-4). Each variant is a test.
Example � In BPMN, there is the exclusive gatewayconstruct which can be con�gured in three ways
(the range of values isstandard, default, and mixed): (i) standard with all outgoing sequence �ows having
conditions, (ii) an exclusive gateway with a sequence �ow without a condition and marked asdefault,
and (iii) one as a mixed gateway with both branching and merging capabilities. In this example, all three
con�gurations are allowed in the speci�cation and each con�guration has exactly one variant resulting in
three tests in total for that language construct.

Consequences
Bene�ts � The consequence of using this pattern is a more comprehensive set of tests by deriving tests in a
systematic fashion. With these tests it can be determined which variants of the constructs are supported on
a work�ow engine. This knowledge can drive the creation ofRepresentative Workflows (P1.3) that
can be executed on the majority of today's work�ow engines.
Liabilities � The strive for completeness advocated by this pattern complicates the subsequent execution
of the benchmark, since execution time and resource consumption increases with the number of tests
(i.e., combinatorial explosion). This can be mitigated by reducing the test execution time with Virtual
Machines (P4.1). The more tests that have to be created, the higher is the e�ort required to create correct
tests. This e�ort can be reduced through Stub Extension (P2.1) whereasDry Run Workflows (P2.2)
ensure that the tests are without faults.

Known Uses
(1) From a more general point of view, the principle underlying this pattern is known ascombinatorial

design testing[Cohen et al. 1997].
(2) The pattern has been used for BPEL conformance benchmarking [Harrer et al. 2012].
(3) It has also been used for BPMN conformance benchmarking [Geiger et al. 2015].

EuroPLoP'17: European Conference on Pattern Languages of Programs, July 12�16, 2017, Irsee, Germany



A Pattern Language for Work�ow Engine Conformance and Performance Benchmarking � 9

Relations

Fig. 3: Relations of P1.1 with other Patterns

Shared Challenge� If data on the occurrence frequency of language constructs or a collection of represen-
tative work�ows is available, then Reoccurring Process Fragments (P1.2) and Representative
Workflows (P1.3) are viable alternatives to solve the shared challenge of those three patterns.
Unresolved Forces� Execution time can be kept under control by introducing Virtual Machines (P4.1).
Test creation e�ort can be reduced through Stub Extension (P2.1).
Bene�ts for � Reoccurring Process Fragments (P1.2) and Representative Workflows (P1.3)
bene�t from Configuration Permutation (P1.1).

EuroPLoP'17: European Conference on Pattern Languages of Programs, July 12�16, 2017, Irsee, Germany



10 � S. Harrer, J. Lenhard, O. Kopp, V. Ferme, C. Pautasso

Reoccurring Process Fragments (P1.2)

Summary
Identify the most important or most relevant combinations of work�ow language constructs (i.e., process
fragments) as test cases based on their occurrence in real-world process collections.

Context
Work�ow languages contain many di�erent language constructs. In a work�ow model, con�gurations of
these constructs are combined to implement a desired piece of functionality. All combinations of constructs
that are permitted according to the speci�cation of the language should behave correctly, especially those
that are frequently needed in practice, because we can expect the work�ow engines to execute them often.
This pattern applies to conformance benchmarking, since all combinations of language constructs should
behave correctly, and also to performance benchmarking, since combining language constructs should not
yield unexpected performance pitfalls.

Problem
How to identify common control-�ow structures used within di�erent work�ows as test cases?

Forces
- In work�ow engine benchmarking it is desirable to test all ways in which basic language constructs can be

combined with each other, BUT this potentially leads to a combinatorial explosion of the amount of test
cases.

- More important combinations of language constructs should be prioritized, BUT this requires information
about which constructs or combinations of constructs are used more frequently, because otherwise users
of the benchmark will struggle to see its relevance.

- Focusing on important combinations of language constructs can increase the relevance of a benchmark,
BUT the importance of a construct might depend on an application domain. Therefore, applying this
pattern can turn a benchmark more relevant to one domain, but less relevant to others.

Solution
(1) Gather a large corpus of work�ows;
(2) Identify the the most common fragments in these work�ows by counting their occurrence frequency;
(3) Create tests based on the most important (i.e., reoccurring) fragments.

EuroPLoP'17: European Conference on Pattern Languages of Programs, July 12�16, 2017, Irsee, Germany



A Pattern Language for Work�ow Engine Conformance and Performance Benchmarking � 11

Example � Well-known reoccurring process fragments in the area of work�ows are the so-called work�ow
patterns [van der Aalst et al. 2003; Wohed et al. 2006]. These patterns capture control-�ow structures that
the authors of the above mentioned studies have found to be common in work�ow models by analyzing the
capabilities of a wide range of engines. A concrete example is the splitting of the control-�ow into separate
branches, where on execution one of the branches is chosen exclusively based on a condition (called exclusive
choice pattern). Listing 1 outlines the code of the test case for this pattern for benchmarking BPEL engines
with Betsy.

Listing 1: Code outline of the Betsy test for the exclusive choice work�ow pattern in BPEL

<process>
<partnerLinks />
<var iables />
<sequence>

<! �� Consumes t e s t i npu t parameters �� >
<receive />
<! �� Takes a l t e r n a t i v e con t ro l � f l ow paths based on inpu t parameters �� >
<if>

<assign />
</i f>
<else>

<assign />
</else>
<! �� Returns a d i f f e r e n t va lue depending on the path taken t h a t i s used f o r

check ing t e s t success�� >
<reply />

</sequence>
</process>

Consequences
Bene�ts � The pattern intends to increase the meaningfulness of a benchmark by focusing on the most
frequently used aspects of a work�ow language. This focus helps to avoid a combinatorial explosion of
the amount of test cases that would occur when trying to cover all combinations of constructs. Since
occurrence frequencies of language constructs can be sensitive to the considered process collection, the
outcome of applying this pattern is also highly domain-dependent. A strong tie to a certain domain can be
both, a bene�t or a liability, for a benchmark. This depends on whether the benchmark is intended as a
general-purpose or a domain speci�c evaluation.
Liabilities � The application of the pattern does not guarantee complete coverage with regards to a process
modeling language speci�cation. If this is a desired property for the benchmark, thenConfiguration
Permutation (P1.1) should be applied as well. The e�ort of creating test cases based on reoccurring
process fragments can be mitigated by applyingStub Extension (P2.1). Furthermore, Dry Run Work-
flows (P2.2) can be applied to validate the correctness of created test cases. Moreover, the pattern is
meant to test the work�ow engine in handling frequent structures, but does not necessarily cover business
critical processes, that might contain di�erent constructs and structures. For covering the last situation,
Representative Workflows (P1.3) can be used to select representative work�ow with di�erent structural
characteristics, even if they are not so frequent.

Known Uses
(1) In the performance testing literature, the principle underlying this pattern is used for obtaining a kernel

workload [Dujmovi¢ 2010].

EuroPLoP'17: European Conference on Pattern Languages of Programs, July 12�16, 2017, Irsee, Germany



12 � S. Harrer, J. Lenhard, O. Kopp, V. Ferme, C. Pautasso

(2) This pattern has been used by Bianculli et al. in SOABench [Bianculli et al. 2010a] to de�ne performance
tests for BPEL engines.

(3) It has been used for BPEL conformance benchmarking with Betsy on the basis of work�ow patterns [Har-
rer et al. 2013].

(4) The pattern has also been applied for BPMN conformance benchmarking with Betsy using work�ow
patterns [Geiger et al. 2015].

(5) Finally, micro-benchmarks for performance with BenchFlow were implemented using work�ow pat-
terns [Skouradaki et al. 2016].

Relations

Fig. 4: Relations of P1.2 with other Patterns

Shared Challenge� The pattern shares the challenge it addresses, namely how to identify the test cases for
the benchmark, with the patterns Representative Workflows (P1.3) and Configuration Permuta-
tion (P1.1).
Facilitated by � The creation of test cases using this pattern can be supported by applyingStub Exten-
sion (P2.1). Configuration Permutation (P1.1) helps to see if certain con�gurations of constructs are

EuroPLoP'17: European Conference on Pattern Languages of Programs, July 12�16, 2017, Irsee, Germany




	Introduction
	Challenges in Workflow Engine Benchmarking
	Big Picture of Workflow Engine Benchmarking
	Challenges
	Workflow Engine Benchmarking with BenchFlow and Betsy

	Workflow Engine Benchmarking Pattern Language
	Workflow Engine Conformance and Performance Benchmarking Patterns
	Tests Identification (C1) Patterns
	Configuration Permutation (P1.1)
	Reoccurring Process Fragments (P1.2)
	Representative Workflows (P1.3)

	Correct Test Creation (C2) Patterns
	Stub Extension (P2.1)
	Dry Run Workflows (P2.2)

	Benchmarking Procedure Validation (C3) Patterns
	Aptitude Test (P3.1)
	Comparable Configuration (P3.2)

	Guaranteed Test Isolation and Reproducibility (C4) Patterns
	Virtual Machines (P4.1)

	Workflow Execution Observation (C5) Patterns
	Message-based Evaluation (P5.1)
	Execution Trace Evaluation (P5.2)
	Engine API-based Evaluation (P5.3)

	Automatic Engine Interaction (C6) Patterns
	Engine Layer Abstraction (P6.1)
	Failable Timed Action (P6.2)
	Timeout Calibration (P6.3)
	Detailed Logs (P6.4)


	Relations Among Patterns
	Related Work
	Conclusion and Future Work

