Towards Holistic Continuous
Software Performance Assessment

Vincenzo Ferme, Cesare Pautasso
Faculty of Informatics, USI Lugano, Switzerland
firsthname.lastname@usi.ch

ABSTRACT

In agile, fast and continuous development lifecycles, software
performance analysis is fundamental to confidently release
continuously improved software versions. Researchers and
industry practitioners have identified the importance of inte-
grating performance testing in agile development processes
in a timely and efficient way. However, existing techniques
are fragmented and not integrated taking into account the
heterogeneous skills of the users developing polyglot dis-
tributed software, and their need to automate performance
practices as they are integrated in the whole lifecycle with-
out breaking its intrinsic velocity. In this paper we present
our vision for holistic continuous software performance as-
sessment, which is being implemented in the BenchFlow tool.
BenchFlow enables performance testing and analysis prac-
tices to be pervasively integrated in continuous development
lifecycle activities. Users can specify performance activities
(e.g., standard performance tests) by relying on an expres-
sive Domain Specific Language for objective-driven perfor-
mance analysis. Collected performance knowledge can be
thus reused to speed up performance activities throughout
the entire process.

1. INTRODUCTION

We live in the “Continuous” era of software [15]. Com-
panies are adopting DevOps [24], and more recently also
NoOps [19], in their software development processes, as they
introduce more and more automation and velocity in their
software development and release lifecycles characterised by
continuous improvement based on feedback [23, 29]. Contin-
uous improvement is defined as “the ongoing improvement
of products, services or processes through incremental and
breakthrough improvements” [3]. When this applies to soft-
ware, continuous software improvement (CSI) relates to the
iteration over the activities of continuous integration (CI),
testing, delivery, deployment (CD), use, and run-time mon-
itoring applied towards releasing software of increasingly
good quality, complying with the velocity requirements of
agile software development [8, 15].

Although the opportunity to provide more computational
resources to cope with developers’ non optimised code is a

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ICPE ’17 Companion, April 22-26, 2017, L’Aquila, Italy.
© 2017 ACM. ISBN 978-1-4503-4404-3/17/04..$15.00
DOI: http://dx.doi.org/10.1145/3053600.3053636

159

solution that initially may work, it is likely not to be sustain-
able over time, when the capacity to process an increasingly
large transaction volume is demanded. Performance analy-
sis and assessment has always been fundamental for software
systems’ success [32, 8], and nowadays, with development
practices striving to achieve multiple releases to production
up to every hour, day, week, month or financial quarter [29,
15] (depending on the context and the company), perfor-
mance assessment, to complement the testing of functional
requirements, is mandatory to guarantee an efficiently func-
tioning deployed software [29, 8]. Industry and academia
identified the relevance of integrating performance analysis
in agile software development lifecycles [9, 47], and analysed
and begun to tackle some of the challenges.

The main challenges [9] in achieving a successful integra-
tion, are due to the characteristics of the context, e.g., time-
liness to reach the deployment of a new incremental release
and the need for heavy automation to achieve it. Other
challenges are due to the professional figures that are in-
volved, e.g., the need to simplify the way developers can
obtain performance insights [47]. Any performance testing
practice introduced in this context should enable and as-
sist the different figures taking part in continuous improve-
ment [15] to implement performance-related activities inde-
pendently from their performance expertise. In this paper
we focus on the research challenges which mostly occur in
the intersection between the needs of agile software develop-
ment practices, the contexts in which they are applied, the
types of developed software, and the characteristics of the
professional figures working on those software. These con-
cern the integration of performance engineering activities
within the full CSI lifecycle, how to describe the correspond-
ing objective-driven performance testing activities and how
to execute them under the constraint of providing useful
feedback without breaking the velocity of the CSI lifecycle.

1.1 Motivation and Vision

Our goal is to enable developers, quality assurance en-
gineers and operations engineers, with different levels of
performance expertise and different objectives, to fully in-
tegrate performance practices in the CSI lifecycle. The aim
is to empower the targeted users to gain actionable perfor-
mance knowledge about the developed software complying
with the velocity requirements of CI. They can then use the
gained knowledge to drive the decisions about improvements
leading to better software quality. Given the diversity in the
roles of the targeted users, our solution acknowledges the im-
portance of considering the different points of view on the
software performance they might have (e.g., a developer is
interested in a single service’s performance, while an opera-
tions engineer is interested on the end-to-end performance
of a multi-services application).



Current approaches propose solutions that focus on users
with specific performance skills or target systems seen as
white boxes and implemented with specific programming
languages, and are often not supported by tools automating
the entire performance assessment process. More research is
needed to speed up performance testing activities executed
by diversified user profiles so that they can be integrated in
the CSI lifecycle without affecting its velocity.

We approach the challenges of integrating performance en-
gineering practices in the continuous software improvement
process with an holistic approach where the different user
profiles, their heterogeneous performance skills, and the ve-
locity and automation requirements are all key to the success
of the integration. More in detail we propose: 1) to declar-
atively specify performance tests (e.g., a stress test [32])
and objective-driven tests (e.g., capacity planning, per-
formance optimisation) together with the specification of
the configuration and deployment of the system under test
(SUT), and the specification of data collection and analyses
requirements, by relying on a declarative and SUT-aware
Domain Specific Language (DSL) [30]; 2) to enable the
seamless integration of the mentioned performance analy-
sis in the continuous integration, and testing [15] activities
of the CSI lifecycle; 3) to enable fast performance feedback,
mainly by reusing accumulated performance knowl-
edge in all the mentioned activities of the lifecycle to seam-
lessly integrate performance engineering activities
matching the velocity requirements.

1.2 Targeted Software

The types of software systems we consider are: 1) re-
alised by means of one or more interacting services; 2) ex-
posing APIs so that clients can access the system’s function-
ality to be tested; 3) packaged in containers (e.g., Docker);
4) publishing monitoring data, needed to characterise the
system’s performance.

Recent studies about DevOps practices show that tools
are widely used in the process, and developers and software
operations engineers heavily rely on tools automating and
assisting their work [11]. Our holistic approach is also sup-
ported by a tool: BenchFlow [13], providing an end-to-end
framework for black/gray-box performance testing and anal-
ysis. BenchFlow integrates state of the art technologies,
such as Docker, Faban, and Apache Spark, to reliably ex-
ecute performance tests and automatically collect and val-
idate performance data. More in detail, BenchFlow works
well with any Docker packaged software whose deployment
is described using a Docker Compose deployment descrip-
tor, realized by one or more services orchestrated by Docker
Swarm and exposing APIs to other services or clients. Al-
though we decided to rely on Docker technologies for the
implementation of the proposed solutions, those are not de-
pendent of the specific technology. BenchFlow was initially
developed by us for reliable performance benchmarking of
Workflow Management Systems middleware [13], and we
are extending it to support what we propose in this paper.
BenchFlow will provide a DSL for automating the execu-
tion of standard performance tests and objective-driven per-
formance tests, and for collecting performance data. The
BenchFlow tool and the DSL are designed to provide fast
performance feedback by collecting and reusing performance
knowledge about the SUT over the different CSI lifecycle ac-
tivities. The BenchFlow tool will offer complete control over

160

the performance analysis for expert users, while coping with
knowledge gaps of non-expert users.

2. CHALLENGES AND RELATED WORK
2.1 CSI Lifecycle Integration

Define suitable ways to express during which activities of
the Continuous software improvement lifecycle to integrate
which performance tests/queries, limiting the impact on the
“continuity” of the lifecycle.

The integration of performance testing, analysis and engi-
neering activities within the CSI lifecycle is a widely recog-
nized challenge in the literature [9, 47]. CI lifecycle automa-
tion [23] best practices organise tests in workflows, pipelines,
and steps. These can grow to include additional performance-
related activities described using DSLs for performance test-
ing [5, 48, 49, 41], which explicitly support workload def-
inition and testbed configuration. The design of Domain-
Specific Languages is also studied in the literature [16, 44],
with a large number of possible choices for language syn-
tax and semantics. Regarding performance testing related
DSLs, the large number of possible choices led to different
decision made by DSL designer, that designed language us-
ing YAML [6], UML [4], code [48], or custom formalisms
(e.g., in [41]). All the mentioned performance testing fo-
cused DSLs support the definition of Load Functions, Work-
loads, Simulated Users, and Test Data, other DSLs also
support TestBed management, analysis of client-side perfor-
mance data for checking defined conditions, and definition
of configuration tests.

In our research we build on the already proposed DSLs,
and as we are going to show in Sect. 3.1, we provide a DSL
supporting all the features mentioned above, and also SUT-
awareness, collection and analysis of server side performance
data, integration with CI tools, and last but not least, ad-
vanced performance tests definition required to deal with
Objective-Driven Performance Testing, and for providing
Fast Performance Feedback.

2.2 Objective-Driven Performance Testing

Enable users to declaratively express objective-driven
performance questions [47], and get pre-analysed and in-
terpreted answers.

Westermann et al. [49] present the concept of goal-driven
performance testing, mainly related to exploration of the
performance space for different configuration of software sys-
tems (i.e., the space described by all the possible combina-
tions of the configuration variables). In attacking the com-
plexity of the performance space exploration, they rely on
experiment based modeling techniques (selected by the user)
and propose techniques for efficiently selecting the points
in the space to explore in order to reduce the time needed
for the exploration while matching a user-provided precision
level. They also introduce the possibility for the users to con-
trol the time allocated for the exploration, and specify stop
conditions related to the precision of the built performance
model. The queries the user can specify in the work by
Westermann et al. are limited to configuration exploration.
Other work proposed different exploration techniques to an-
swer different kinds of questions: capacity planning [42], per-
formance optimisation in the presence of constraints [46, 10,
50], white and black box regression detection [25], perfor-
mance bugs identification and prediction [43], and charac-



terise the performance of server infrastructures [20] and of
software components [27]. These techniques rely on differ-
ent strategies for space definition and exploration, mainly
based on search-based software engineering techniques [1],
or machine learning [31] models [50]. It is difficult to pick
the best technique apriori since there is evidence that the
most effective techniques are influenced by different factors,
as for example the input data [17].

In our research we plan to follow hybrid techniques, com-
bining experiment-based and model-based performance engi-
neering approaches, because they build performance models
on which they can base decisions about how to optimise the
performance space exploration [39, 36, 2]. The main rea-
sons are that we propose techniques that work for hetero-
geneous developed software, as discussed in Sect. 1.2, and
our users have an heterogeneous performance expertise, that
might not be suitable to deal with the complexity of pure
performance models based approaches. The main limita-
tions of the state of the art relevant to our proposal are
mainly related to the advanced skills required by the users to
use the proposed techniques and the limited expressiveness
(e.g., [49]), the implementation of a reduced set of statistical
modeling techniques by the different proposed solutions, and
the limited support for automatically analysing the SUT be-
haviour to determine whether this is stable enough to apply
the proposed techniques.

2.3 Fast Performance Feedback

Provide fast performance feedback to the users, so that
they can continuously gain performance knowledge about the
SUT and use this knowledge to improve the same.

This challenge requires automatic codification and collec-
tion of the generated performance knowledge in the CSI life-
cycle, as well as definition of the conditions in which the
collected knowledge can be reused for speeding up the perfor-
mance testing and analyses activities. This also requires de-
termining the conditions for identifying suitable unit, func-
tional, integration, end-to-end, and performance tests for
detecting performance regressions over time as well as for
cross-branch/version performance evaluation [52], or to be
reused to respond to different users’ objectives.

In the software engineering literature, test results reuse
techniques is often applied to functional tests [51]. Func-
tional test results are suitable to be reused because are de-
terministic (if well designed). This helps to reduce number
of executed performance tests across different builds of the
same project [51]. For what concerns reuse of performance
test results, the main limitation is the non deterministic
behaviour of the same, and the fact their results are influ-
enced by the hardware on which they are executed. For
enabling reuse, performance tests results need to be repro-
ducible [38, 18], consistent and validated. These results can
be obtained within dedicated testing environments or using
a shared testbed. The former allows to compare new results
with previously obtained ones. For this purpose, current
best practices rely on clusters of similar machines to paral-
lelise and speed up performance activities [34]. To guaran-
tee performance stability such machines are rarely virtual-
ized. Shared testbeds may introduce noise due to known
possible interferences of co-located workloads on the same
machine [26]. Results are thus more challenging to reuse
but are still valuable as these environments often closely

161

resemble production environments, where virtualization is
commonly employed to increase hardware utilization.

Reuse techniques for performance test results rely on per-
formance models [49] and some of them work also cross-
platform. They are applied in contexts where the developed
software is stable in functionality over time, e.g. in Software
Product Lines [35], or by reusing unit/functional tests re-
sults augmented with performance instrumentation [22] to
speed up the performance testing activities.

3. HOLISTIC CONTINUOUS SOFTWARE
PERFORMANCE ASSESSMENT

In this section we present our vision of an holistic ap-
proach for continuous software performance assessment. Fig. 1
provides an overview on the different solutions we propose
in this section and how they integrate with the activities of
the CSI lifecycle relevant for the discussed solutions.

Triggers
"Slow" Performance Test Stages |—>

e.g., nightly
build

' Commits | Functional >Fast Performance
. l Test Stages Test Stages >

Targeted Users

Continuous Test

N / (BenchFlow DSL)
Continuous Tests

Contir\ugys/ |

/K | BenchFlow Tests |
Performance | PeK':;wl'::ge One-shot

Fee‘“’”k\]l BenchFlow Fast BenchFlow Tests [ s

Performance
| Feedback

Objective-driven ~
Performance Tests [ Qpe-shot Test
| (BenchFlow DSL)

BenchFlow- - — — — — — — — — — — 1

F——————
|
|

Figure 1: Holistic Continuous Software Performance Assess-
ment with BenchFlow

3.1 A DSL for Declarative Continuous Perfor-
mance Assessment

BenchFlow provides a declarative DSL to define perfor-
mance tests and performance analyses activities, and inte-
grate them in the CSI lifecycle, mainly in the continuous
integration and continuous testing activities of the same.
The BenchFlow DSL adopts the YAML syntax because it
provides a concise notation, intended to be readable both
by humans and by machines. BenchFlow DSL shares many
concepts with the performance testing related DSLs, as dis-
cussed in Sect. 2.

Additionally, BenchFlow DSL allows users to declaratively
express objective-driven performance tests. Users define
objective-driven performance tests by relying on tem-
plates provided by BenchFlow for expressing tests’ require-
ments such as the test objectives and test types, metrics
of interest, stop conditions (e.g., maximum test execution
time) and which parameters to vary during the execution
of the test. Listing 1 shows an example on how the Bench-
Flow DSL enables the definition of a particular kind of ob-
jective, related to the exploration of the performance of the
SUT when varying different parameters (i.e., Configuration
testing [32]). The example shows how a user can define a
configuration test simulating from 100 to 1000 interacting
users with increasing steps of 100 simulated users during
the exploration, varying the number of CPUs from 1 to 4,



the SIZE_OF THRFEADPOOL SUT configuration vari-
able from 5 to 100 with steps of 5, and with a fixed amount
of 56GB of RAM. After defining the parameters, the user
can indicate which parameters he/she wants to explore and
optionally on which services realizing the SUT, as well as
defining the stop conditions.

[...] - users
- cpus on
objective: someService
type: exploration - SIZE_OF_THREADPOOL
on
parameters: someOtherService
- users:
range: -
100...1000
step: +100 stop:
- memory: 5GB - max_exec_time = 1h
- cpus: s
range: 1...4

- SIZE_OF_THREADPOOL [...1

;:gg?:g' 100 Listl:ng 1: Corllﬁguration

e testing with the
BenchFlow DSL!

explore:

BenchFlow integration with Docker for managing the SUT
configuration and lifecycle makes the DSL SUT-aware, which
further simplifies the way users can specify performance
tests. This feature is exposed to the users by relying on the
Docker Compose standard, by which users can define the
deployment descriptor of the SUT, and extended by Bench-
Flow to improve reusability of the deployment descriptors,
and simplify the configuration management and SUT de-
ployment (e.g., by providing the possibility to specify depen-
dencies together with the deployment configuration declara-
tively for different test executions).

Templates written in the BenchFlow DSL provide reusable
artifacts for defining performance tests for specific types of
software. For example, when testing W{fMSs middleware,
different steps are required for deploying the necessary ar-
tifacts (e.g., workflow models [21]) before being able to de-
ploy performance tests [14]. Also, specific performance data
is collected by querying a database after the workload has
been applied. The BenchFlow DSL can be used to describe
how to automate the entire process, from the automated
deployment of workflow models to the specification of per-
formance data to collect and analyse.

To drive the integration of performance practices in the
CSI lifecycle, the DSL natively supports the concepts of
pipelines and automation steps. The BenchFlow DSL works
together with existing CI/CD tools for generating the corre-
sponding automated performance engineering activities that
can be easily embedded within existing build pipelines.

3.2 Objective-Driven Hybrid Performance
Testing

Users dealing with system performance investigation, have
different objectives [33] that are influenced, e.g., by their role
in the CSI lifecycle, and the type of the SUT. Objective-
driven performance testing allows the users to express the
objective of their performance investigations, and rely on
BenchFlow for obtaining an actionable answer.

!The listing only report the section of the DSL definition re-
lated to the objective, omitting other configurations related
for example to the load function.

162

Objectives’ Taxonomy and Characteristics - We de-
fined a taxonomy to categorise different kinds of objectives,
based on three different levels of abstractions: base objec-
tives, objectives and meta objectives. Base objectives corre-
spond to well known performance tests [32], e.g., stress test
or configuration test. Objectives refer to specific types of
performance engineering activities, e.g., capacity planning
and performance optimisations. These are different from
the base objectives, because they require a more in depth
performance analysis to be carried out in the presence of
constraints. Objectives are based on base objectives, e.g.,
to investigate performance optimisation when specific loads
(defined by base objectives) are applied to the system. Meta
objectives instead rely on performance knowledge collected
through objectives and base objectives, and enable the users
to express more open-ended questions to BenchFlow, as for
example comparing the performance of different systems us-
ing a benchmark.

Objective-driven performance queries can be executed once
or continuously evaluated. One-shot objectives are executed
following explicit user requests, while continuous objectives
are tightly integrated with the automated CSI lifecycle. An
example of one-shot objective is configuration testing, where
a user requests to explore different configuration options to
determine the most suitable one related to the given perfor-
mance objectives. This is an activity usually done once in
pre-release. Regression detection is an example of continu-
ous objective, because it is an objective tightly integrated
with the evolution of the SUT and should be automatically
performed at every change.

Answering Objective-driven performance testing queries
requires an expert system implementing the strategies to
answer to them based on one or more performance models
used to explore the space described by the objective settings
provided by the user. To ensure the validity of the obtained
empirical results, BenchFlow evaluates if the system com-
plies with the assumptions implied by the corresponding ob-
jective. For example, stability: requests are accepted and
no errors are produced, and the system can reach the steady
state [7]. We plan to implement different exploration strate-
gies in BenchFlow, and study how to select the most suit-
able given the objective and the SUT characteristics. While
BenchFlow attempts to automatically select the most suit-
able strategy, expert users, who need complete control on
the objective-driven performance test, may override or con-
strain the strategy selection.

Different performance engineering activities might have
different velocity requirements. Performance tests applied
at every build of the SUT, that usually happens after every
code related commit, need to provide feedback to the users
about the performance of the system, that is useful to de-
fine the next steps and committed code. Other performance
tests, e.g., executed on nightly builds, usually can last an
entire night, because the feedback they provide is not used
in the immediate next coding steps by the developers, but
further on for analysing the performance of the SUT. The
selection of strategies must be driven by those velocity re-
quirements. For example some exploration strategies might
work better/faster with a small number of services compos-
ing the software [37], or depending on the combination of
parameters to monitor, some solutions are more efficient/-
faster than the others [45].



3.3 Model-based Performance Knowledge
Reuse and Prediction

To ensure that the proposed techniques add value without
slowing down the lifecycle’s velocity too much, we propose
to accumulate and reuse knowledge across the entire CSI
lifecycle. This way, empirical evidence obtained in previous
iterations can possibly save time in future iterations as it
may enable BenchFlow to avoid repeating experiments with
already known results.

Agile practices propose to develop projects relying on one
or more project repositories, and different branches to par-
allelize the work of different teams of developers, that is
then integrated before the release [52]. In this context there
are many possibilities for accumulating and reusing perfor-
mance knowledge, for speeding up the execution of the single
performance test, but also for deciding to skip some more
sophisticated (and long) performance tests, if simple ones
fail, e.g., because they do not reach predefined criteria [40].
To do so, it is important to evaluate and select the testbed
resources where to execute the various performance tests to
ensure the reliability and repeatability of accumulated re-
sults.

It is imperative that the proposed techniques add value to
the users without significantly slowing down the lifecycle’s
speed. Thus, we propose different ways to enable fast per-
formance feedback to the users. BenchFlow automatically
detects whether or not the SUT is ready to be subjected
to performance testing, given the objective specified by the
user (e.g., because of its instability in reaching the steady
state). Thus time is not invested in producing invalid perfor-
mance results. Additionally, BenchFlow can determine that
certain data it collects and metrics computations it performs
are not needed by the stated objectives and can be avoided.

For what concerns the reuse of performance knowledge
when integrated in the CSI lifecycle, we enable the possi-
bility to reuse unit/functional/integration tests, usually ex-
ecuted on every commit with code changes, to provide an
initial characterisation of the SUT performance behaviour,
that might be sufficient to determine the system it is not in
a state for which it makes sense to proceed to more advanced
performance tests. We rely on techniques introduced in the
literature to enable the possibility to use these tests to char-
acterise the performance behaviour, in particular for deter-
mining the set of suitable tests to be used, for guaranteeing
the reliability of collected knowledge [22], and for computing
platform independent metrics (e.g., number of calls from a
service to another one, number of database calls, number of
exception, static source code metrics, resource utilization ef-
ficiency, absolute RAM usage). We further propose to allow
users to state whether a change in performance is expected.

Objective-driven testing enables us to understand the test
requirements, and to determine the suitability of reusing col-
lected performance knowledge across consecutive executions
of the same tests, across executions of different tests, and
tests executed in different moments in the lifecycle. More-
over the reuse can happen when the tests are executed on the
same code repository branches, or across different branches,
and if the system is composed of many in-house developed
or third-party services that are deployed as part of the SUT,
the collected knowledge can also be reused for determining
the performance of the overall software by relying on the per-
formance knowledge of the single services [28, 12]. When ex-
ecuting the same test multiple times, we can verify whether

163

performance behaviour has changed by updating the perfor-
mance model corresponding to the test. In doing so, we
plan to optimise the way we select experiments to reduce
the time needed to detect if the performance behaviour has
changed, and a complete test is required, or we can reuse
accumulated knowledge. Performance models are also used
to determine the reuse possibility across different tests, be-
longing to different objectives. As an example, if we explore
the performance of a SUT in specific conditions (e.g., a given
configuration), we can reuse the results in other tests explor-
ing again the same conditions.

The main techniques we plan to use are experiment based
statistical modeling and prediction techniques (e.g., Kriging,
MARS [45]). Due to the velocity constraint for applying
performance practices in the context, we plan to evaluate
and rely on techniques that enable us to obtain stable and
reproducible results [38, 18], in limited amount of time, se-
lected according to the test objective. We combine and apply
these techniques before the execution of a test (to determine
whether the test should indeed be performed), during its ex-
ecution (to monitor the SUT behavior and possibly abort
the test), and after the execution (to validate the results
and determine whether it is possible to reuse the accumu-
lated knowledge).

4. CONCLUSION AND FUTURE WORK

In this position paper we propose an holistic approach to
the integration of performance engineering practices in con-
tinuous software improvement lifecycles. The approach is
holistic because it embraces the different needs, viewpoints
and skills of users participating in the lifecycle, proposing a
tool-enabled and automated solution where the users can
specify performance tests relying on a declarative, SUT-
aware DSL.

BenchFlow’s DSL allows the definition of standard perfor-
mance tests, as well as objective-driven performance tests,
so that the users can express their performance knowledge
objectives relying on templates and automatically obtain an-
swers to those objectives. The integration of BenchFlow in
the CSI lifecycle helps to collect performance knowledge on
the SUT in different activities of the same. For example,
experiments can be performed during continuous integra-
tion, nightly builds or continuous deployment. We propose
to reuse the collected knowledge to speed up performance
testing activities of future iterations of the lifecycle. To
save time, BenchFlow can warn the users about the SUT
not being ready for particular performance tests, or obtain
answers to performance queries without re-executing time-
consuming tests.

In the near future we plan to release the support for base
objectives definition and automation in the BenchFlow tool.
We then plan to start experimenting and evaluating tech-
niques for fast performance feedback, while enabling more
and more objectives and meta objectives over time. We also
plan to experiment with the integration of BenchFlow with
Travis, a widely used CI tool.

5. ACKNOWLEDGEMENTS

This work is funded by the “BenchFlow” project (DACH
Grant Nr. 200021E-145062/1) project.



6.
[1]

2]

(3]

(4]

[5]

[6]

[7]

=3

(10]

[11]
(12]

(13]

14]

(15]

[16]
(17]

(18]
(19]

20]

(21]

[22]

23]

[24]

(25]

[26]

REFERENCES

W. Afzal, R. Torkar, and R. Feldt. A systematic review of
search-based testing for non-functional system properties.
IST, 51(6):957-976, 2009.

T. Ahmad and D. Truscan. Automatic performance space
exploration of web applications using genetic algorithms. In
SAC ’16, pages 795-800. ACM, 2016.

ASQ. Continuous Improvement. http://asq.org/learn-about-
quality /continuous-improvement /overview/overview.html.
M. Bernardino, E. M. Rodrigues, and A. F. Zorzo.
Performance testing modeling. In SAC ’16, pages
1660-1665. ACM Press, 2016.

M. Bernardino, A. F. Zorzo, and E. M. Rodrigues.
Canopus: A Domain-Specific Language for Modeling
Performance Testing. In ICSEA, pages 157-167, 2014.
Blazemeter. Taurus: Automation-friendly framework for
Continuous Testing. http://gettaurus.org.

A. B. Bondi. Foundations of Software and System
Performance Engineering. Process, Performance Modeling,
Requirements, Testing, Scalability, and Practice.
Addison-Wesley Professional, 2014.

J. Bosch. Continuous Software Engineering. Springer, 2014.
A. Brunnert, A. van Hoorn, F. Willnecker, et al.
Performance-oriented DevOps: A Research Agenda. 2015.
S. Di Alesio, S. Nejati, L. C. Briand, et al. Stress testing of
task deadlines - A constraint programming approach.
ISSRE, 2013.

DZONE. State of DevOps Report. Technical report, 2016.
A. Faisal, D. Petriu, and M. Woodside. A Systematic
Approach for Composing General Middleware Completions
to Performance Models. In Fundamental Approaches to
Software Engineering, pages 30—44. Springer, 2014.

V. Ferme, A. Ivanchikj, and C. Pautasso. A Framework for
Benchmarking BPMN 2.0 Workflow Management Systems.
BPM, 9253(Chapter 18):251-259, 2015.

V. Ferme, A. Ivanchikj, C. Pautasso, et al. A
Container-centric Methodology for Benchmarking Workflow
Management Systems. CLOSER, 2:74-84, 2016.

B. Fitzgerald and K.-J. Stol. Continuous software
engineering: A roadmap and agenda. Journal of Systems
and Software, 123:176-189, 2017.

M. Fowler. Domain-Specific Languages. Pearson, 2010.

R. Gao, Z. M. Jiang, C. Barna, et al. A Framework to
Evaluate the Effectiveness of Different Load Testing
Analysis Techniques. In ICST, pages 22-32. IEEE, 2016.

I. P. Gent. The Recomputation Manifesto. 2013.

M. Gualtieri and G. ODonnell. Augment DevOps With
NoOps, 2016.

M. Hauck, M. Kuperberg, N. Huber, et al. Deriving
performance-relevant infrastructure properties through
model-based experiments with Ginpex. Softw Syst Model,
13(4):1345-1365, 2013.

D. Hollingsworth. The Workflow Reference Model.
Technical report, 1995.

V. Horky, F. Haas, J. Kotr¢, et al. Performance Regression
Unit Testing: A Case Study. In Relationship of DevOps to
Agile, Lean and Continuous Deployment, pages 149-163.
Springer, 2013.

J. Humble and D. Farley. Continuous Delivery. Reliable
Software Releases through Build, Test, and Deployment
Automation. Pearson, 2010.

R. Jabbari, N. bin Ali, K. Petersen, et al. What is
DevOps?: A Systematic Mapping Study on Definitions and
Practices. In XP ’16 Workshops, pages 12-21. ACM, 2016.
T. Kalibera and P. Tima. Precise Regression Benchmarking
with Random Effects: Improving Mono Benchmark Results.
In Formal Methods and Stochastic Models for Performance
FEvaluation, pages 63—77. Springer, 2006.

Y. Koh, R. Knauerhase, P. Brett, et al. An Analysis of
Performance Interference Effects in Virtual Environments.
In ISPASS, pages 200-209. IEEE, 2007.

164

27]

(28]

29]

(30]

(31]
32]
(33]
(34]

(35]

(36]

(37)

(38]

(39]

[40]

[41]

42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

[50]

(51]

[52]

R. Kolb, D. Ganesan, D. Muthig, et al. Goal-Oriented
Performance Analysis of Reusable Software Components.
ICSR, 4039(27):368-381, 2006.

H. Koziolek. Performance evaluation of component-based
software systems: A survey. Performance Evaluation,
67(8):634-658, 2010.

E. I. Laukkanen, J. Itkonen, and C. Lassenius. Problems,
causes and solutions when adopting continuous delivery - A
systematic literature review. IST, 82:55-79, 2017.

M. Mernik, J. Heering, and A. M. Sloane. When and how
to develop domain-specific languages. ACM Computing
Surveys, 37(4):316-344, 2005.

T. M. Mitchell. Machine learning. McGraw Hill series in
computer science, 1997.

I. Molyneaux. The Art of Application Performance Testing.
From Strategy to Tools. O’Reilly Media, Inc., 2014.
PractiTest. State of Testing Report. Technical report, 2016.
K.-T. Rehmann, C. Seo, D. Hwang, et al. Performance
Monitoring in SAP HANA’s Continuous Integration
Process. SIGMETRICS Perf. Eval. Rev., 43(4):43-52, 2016.
S. Reis, A. Metzger, and K. Pohl. A reuse technique for
performance testing of software product lines. 2006.

D. Rudolph and G. Stitt. An interpolation-based approach
to multi-parameter performance modeling for heterogeneous
systems. ASAP, 2015-September:174—-180, 2015.

B. M. Rutherford and L. P. Swiler. Response Surface
(Meta-model) Methods and Applications. In ICPE’13, 2006.
G. K. Sandve, A. Nekrutenko, J. Taylor, et al. Ten Simple
Rules for Reproducible Computational Research. PLOS
Computational Biology, 9(10):¢1003285, 2013.

A. Sarkar, J. Guo, N. Siegmund, et al. Cost-Efficient
Sampling for Performance Prediction of Configurable
Systems (T). In ASE, pages 342-352. IEEE, 2015.

G. Schermann, J. Cito, P. Leitner, et al. Towards quality
gates in continuous delivery and deployment. In ICPC,
pages 1-4. IEEE, 2016.

K. Spafford and J. S. Vetter. Aspen - a domain specific
language for performance modeling. SC, page 84, 2012.

S. Spinner, G. Casale, F. Brosig, et al. Evaluating
approaches to resource demand estimation. Perf. Eval.,
92:51-71, 2015.

S. Tsakiltsidis, A. Miranskyy, and E. Mazzawi. On
Automatic Detection of Performance Bugs. In ISSREW,
pages 132-139. IEEE, 2016.

A. van Deursen, P. Klint, and J. Visser. Domain-specific
languages. SIGPLAN Not., 35(6):26-36, 2000.

L. Van Gelder, P. Das, H. Janssen, and S. Roels.
Comparative study of metamodelling techniques in building
energy simulation: Guidelines for practitioners. Simulation
Modelling Practice and Theory, 49:245-257, 2014.

R. Vuduc, J. W. Demmel, and J. A. Bilmes. Statistical
Models for Empirical Search-Based Performance Tuning.
IJHPCA, 18(1):65-94, 2004.

J. Walter, A. van Hoorn, H. Koziolek, et al. Asking
“What”?, Automating the “How”? - The Vision of
Declarative Performance Engineering. ICPE, pages 91-94,
2016.

Y. Wang. Automating experimentation with distributed
systems using generative techniques. PhD thesis, University
of Colorado, 2006.

D. Westermann. Deriving Goal-oriented Performance
Models by Systematic Experimentation. PhD thesis, KIT
Scientific Publishing, 2014.

F. Wu, W. Weimer, M. Harman, et al. Deep Parameter
Optimisation. In GECCO, pages 1375-1382. ACM, 2015.

S. Yoo and M. Harman. Regression testing minimization,
selection and prioritization: a survey. Softw. Test. Verif.
Reliab., 22(2):67-120, 2012.

L. Zhu, L. Bass, and G. Champlin-Scharff. DevOps and Its
Practices. IEEE Softw., 33(3):32-34, 2016.





