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Abstract

In this paper we present BioOpera, an extensible process
support system for cluster-aware computing. It features an
intuitive way to specify computations, as well as improved
support for running them over a cluster, providing monitor-
ing, persistence, fault tolerance and interaction capabilities
without sacrificing efficiency and scalability.

1. Introduction

The increasing pervasiveness of clusters, combined with
the sheer amount of data to be analyzed has made clusters
a key tool in many scientific disciplines. One successful
approach to programming in clusters is to use specialized
problem solving environments. Such environments typi-
cally contain a library of ready-made components that can
be combined, often through a GUI, into complex processes.
These processes are themselves compiled into executable
programs that automatically incorporate all necessary code
for running the process over a cluster. This way, many of
the complex details related to scheduling, resource alloca-
tion, and parallelism are hidden from the user. Although
such platforms are not adequate for all types of cluster pro-
gramming, they are very useful in a wide range of appli-
cations and constitute a much better option than scripting
languages. The advantage of these platforms is that they
provide a high level representation of complex computa-
tions. One that is much easier to understand and, there-
fore, to maintain and evolve than scripting languages. The
basic principle they follow is an old idea: concentrate on
high level composition rather than on low level program-
ming [22]. This is achieved by pre-defining components
that accomplish basic tasks and then providing a develop-
ment environment supporting their composition into more
complex entities. Examples of systems which follow very
closely the idea of composition as the main programming
primitive are TENT [10], Image 2000 [16], DISCWorld [11]
or SECANT Technologies’ Computing Farm Software [12].

In this paper we present the BioOpera system [7]. Bio-
Opera takes the programming principle of composition be-

yond the simple graphical combination of pre-defined li-
brary components. In BioOpera, computations are repre-
sented as processes. A process is executed through an in-
terpreter and its execution is combined with an awareness
model similar to those developed for workflow management
systems [5]. The awareness model centralizes and coordi-
nates many different aspects of the execution, thereby fa-
cilitating the monitoring, interaction, and management of
long-lived, complex computations over clusters.

From the user’s point of view, BioOpera acts as a high-
level development and run-time environment for clusters
and grid computing that provides an intuitive way to: (1)
specify a parallel computation through composition by
defining processes, (2) transparently schedule and coordi-
nate the execution of processes over one or more clusters,
(3) guarantee recoverability of all processes at all times,
even after total failures, (4) provide a comprehensive envi-
ronment for monitoring the execution of the processes and
the state of the cluster(s), and (5) allow users to manage the
computations by providing several interfaces (including a
web based one) for, e.g., stopping, suspending, resuming,
and canceling the execution. BioOpera is being actively
developed at the Information and Communication Systems
Research Group at the Department of Computer Science of
ETH Zdirich, and has already been successfully used to de-
velop and manage long-lived computations on a set of clus-
ters [3].

The rest of this paper is organized as follows. In Section
2 we present the programming model of BioOpera. Section
3 briefly sketches BioOpera’s architecture. Section 4 de-
scribes the runtime services provided by BioOpera, focus-
ing on management-related aspects. In Section 5 we show
some performance measurements. Finally, Section 6 dis-
cusses Related Work and in Section 7 we conclude the pa-
per.

2. BioOpera from the user’s point of view

Before discussing the architecture of the system, we de-
scribe how cluster based computations are developed using
BioOpera. With this, we both motivate the architecture and
introduce the system without getting into low level details.



For the user, a BioOpera computation is a workflow pro-
cess constructed out of three elements: the computational
process itself, clusters, and programs. In what follows, we
describe how to define each one of these elements using
BioOpera.
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Figure 1. Process designer and monitor

2.1. Cluster computations as processes

BioOpera processes are suitable for expressing two ba-
sic types of cluster based computations. First, those con-
structed by combining different, possibly heterogeneous

programs that constitute the successive steps of the com-
putation. Typical examples of such computations are bioin-
formatic computations [9], image processing [16], or earth
science models [4]. Second, those involving few, or even
only one single computational step, but that need to be re-
peated for a range of parameter values. Examples of this
second type of computations are repeated simulation runs,
performed to obtain statistical significance, or exploratory
analyses over wide parameter spaces [1].

Such computations are described in BioOpera as pro-
cesses. A process consists of a set of tasks plus control and
data flow dependencies among those tasks. Tasks can either
be activities, involving the execution of an external program
on one of the cluster nodes, or sub-processes, which are
calls to other processes. Sub-processes are used to support
modularity and code encapsulation. Both activities and sub-
processes can be pre-defined and be made part of a library.
BioOpera supports the definition of multiple such libraries
that may be used by selecting a task within the library and
dragging it into the process design tool.

A process’ data flow needs to be explicitly specified by
the developer. Control flow dependencies can be implicit or
explicit. Explicit are again those defined by the developer.
Implicit are those derived from the data flow: a task con-
suming data can only be started after all tasks producing the
required data have successfully completed their execution.

When executing a process, BioOpera automatically ana-
lyzes the control flow dependencies and concurrently sched-
ules all tasks that are found to be independent. If enough
computing resources are available, these tasks will be exe-
cuted in parallel. The developer has several possibilities for
specifying parallel tasks. First, through control flow depen-
dencies that evaluate to true at the same time (e.g., start all
these tasks when task i finishes). Second, through special-
ized data flow connectors that dynamically unfold the tasks
into multiple concurrent tasks as specified by the input pa-
rameters (equivalent to saying: execute this task n times
over this set of n parameter values).

2.2. Configuring the cluster

Each node in the cluster must be registered with Bio-
Opera before it can be used in a computation. Registra-
tion simply requires entering the corresponding host name
or IP address. BioOpera automatically identifies the hard-
ware and software settings of the node (number of CPUs,
available memory and swap space, operating system). For
large clusters, and to avoid having to register nodes one by
one, entire ranges of IP addresses can be registered in a
single operation. BioOpera also supports the definition of
sub-clusters and arbitrary groups of nodes, including nested
and overlapping ones. They are used for scheduling, access
control, resource distribution (e.g., user A runs on one sub-
cluster, user B on a different sub-cluster) and for describing
the machines suitable for running a given activity.

The cluster configuration may be changed dynamically.
Nodes may be added or removed at any time and BioOpera
will adapt the running computations accordingly.



2.3. Activities and applications

Each activity in a process corresponds to an external ap-
plication (a program or a system) that needs to be invoked.
Before an activity can be mapped to an application, the ap-
plication must be registered with BioOpera. Scientists can
take already registered programs and use them as building
blocks for processes, as well as register new software com-
ponents with the BioOpera program library. This operation
involves specifying the interface (input and output parame-
ters) of the program, how to run it, and the range of nodes
where it can be invoked. This information is also stored in
a database and can be dynamically changed. BioOpera uses
dynamic binding between activities and applications. Thus,
it is possible to change, e.g., where an application must run
while the process is executing (as long as the application
has not been invoked already). Dynamic binding has sig-
nificant advantages in terms of fault tolerance and software
maintenance.

Conceptually, BioOpera is not tied to a specific type
of program. Currently it can run applications running on
Linux, Solaris, Windows or MacOS, call middleware ob-
jects through RPC or CORBA protocols, as well as perform
SOAP Web Services invocations [20]. The system supports
extending these basic application types with new ones.

Upon starting an application, BioOpera may send data to
it. When the program completes, BioOpera may retrieve its
results. For instance, to pass data to a UNIX application,
BioOpera uses the application’s command line arguments
and may also write data directly to the standard input of the
application. To retrieve any output that might be produced,
BioOpera collects the data written to the application’s stan-
dard output and standard error.

2.4. Development interface

Defining these three elements, processes, cluster config-
uration, and external applications, is done through the de-
velopment interface of BioOpera (Figure 1.a). Processes
are specified using a graphical tool that incorporates visual
programming constructs. To implement a new process, the
developer needs to define its input and output interface, as
well as its content: the tasks and their dependencies. To
insert a task into the process, the developer may select a
program (or process) from the library, and drag it to the
new process, thus inserting a new activity (or sub-process).
A box for this new task is added in the control flow graph
and boxes for the task and its input and output parameters
are created in the data flow graph. The developer can then
link the new task to other tasks in the process by drawing
connections between them (control flow) or their parame-
ters (data flow). The programming environment performs
integrity checks to ensure the consistency of the control and
data flow graphs drawn by the developer.

As soon as all the tasks and all the connections between
them have been programmed, the process can immediately
be executed, and interactively tested and debugged. Once
completed and stable, it can be made available to be used as
sub-process or to be invoked from the web interface.
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Figure 2. Architecture of BioOpera

3. System architecture

The BioOpera system is designed as an open multi-tier
system. The kernel is extensible and provides basic per-
sistent process enactment services. Care has been taken to
ensure the flexibility of the architecture in order to support
many different types of user interfaces, multiple program
execution mechanisms and various database management
systems.

3.1. System components

Functionally, BioOpera is divided into two layers: the
User Interface Front-end and the Back-end (Figure 2.a).
However each of those layers can be distributed in many
different ways.

The Front-end is devoted to interacting with the user and
contains the following tools: a web based process monitor,
a visual process development and monitoring environment,
and a system administration console. Additionally, a low-
level command line tool is provided for building ad hoc ex-
tensions and integrating BioOpera with other software.

The Back-end includes: the Runtime Kernel, the
Database, the Program Execution Client and the Informa-
tion and Event Service. The Runtime Kernel has been de-
signed as an generic and extensible kernel (Figure 2.b). Itis
in charge of process execution (scheduling and dispatching)
and resource management. It is built on top of a database,
used for making the process execution persistent and for
storing resource and configuration information. Various ex-
ecution subsystems can be plugged in, in order to support



execution of different application types, e.g., UNIX or Win-
dows applications, RPC calls or CORBA object method in-
vocations and SOAP Web services. The database layer is
divided into four dataspaces: template, instance, program,
and resources, each of them dedicated to a different type
of system data. Templates contain the structure of the pro-
cesses. For each running instance of a process, the instance
space contains a copy of the corresponding template and is
used to persistently track the execution of a process. The
program and resource dataspaces contain the information
about applications and the cluster configuration. Each one
of this dataspaces can be distributed across different nodes
for performance purposes. The Program Execution Client
(PEC) acts as a daemon in each node of the cluster. A copy
of the PEC must be running on a node in order to allow Bio-
Opera to schedule and execute jobs on that node. The PEC
periodically reports the load and other state information of
the node back to the resource manager. Finally, the Informa-
tion and Event service bridges the user interface front-end
with the rest of the system using an open SOAP-like API
protocol.

3.2. Deployment scenarios

Each one of the components mentioned can be dis-
tributed to a different node. In addition, the database and
the kernel can be replicated across several nodes for both
fault-tolerance and performance purposes. A typical con-
figuration involves one Program Execution Client running
on each node of the cluster, one Runtime Kernel and In-
formation Service running on the same or a different node,
and a database server residing in yet another node. Multiple
users may log on to the system through a web server or us-
ing the visual development environment as a remote client
of the Information and Event Service. It is also possible to
perform process invocations from one BioOpera kernel to
another. This allows building complex hierarchical struc-
tures and grids consisting of different clusters. Interaction
between the different BioOpera kernels can be either peer-
to-peer (any server can invoke processes or sub-processes
in another server) or master-slave (a master server controls
the computation and uses the other servers to execute sub-
processes as needed).

3.3. Executing a process

When starting a process, BioOpera creates a process in-
stance which encapsulates all the information associated
with the specific run. The instance is created from the cor-
responding template. Templates are created when a devel-
oper checks-in a finished process. Upon instance creation,
BioOpera prompts the user for the values of the input pa-
rameters. At this time it is also possible to restrict the set
of nodes used for execution (by default, BioOpera uses all
eligible nodes).

To determine the set of tasks to execute, the BioOpera
runtime engine analyzes the process control flow. This pro-
cedure is called navigation. BioOpera uses a main mem-
ory representation of the instance to perform navigation.

This main memory representation is synchronized with a
database representation used to record the state informa-
tion associated to the instance. Multiple threads running in
parallel perform navigation for different process instances.
During navigation, the runtime engine accumulates infor-
mation that needs to be made persistent. At the end of each
navigation step, this information is stored into the database.
This mode of operation minimizes the duration of individ-
ual transactions, thus avoiding unnecessary contention at
the database level. Transactions are used to keep the infor-
mation concerning process instances in a consistent state.

3.4. Awareness model

The awareness model incorporates runtime information
and meta-data related to the processes as well as data per-
taining to the environment of the cluster in which the com-
putation takes place. This information includes the states
of tasks and processes, profiling measurements, and execu-
tion logs, as well as the load and availability of each node.
All together, this allows BioOpera to dynamically react to
changes in the computing environment and provide the user
with a very complete view of the computation.

The awareness model is implemented using a relational
database management system. We have a fully functional
PostgreSQL [15], as well as a partial ORACLE [17] im-
plementation. Using a database management system has
the advantage that information can be well organized and
atomically updated, which proves very helpful in keeping
the different views on awareness data consistent.

3.5. State of the computation

During execution, BioOpera keeps track of the current
state of the computation in order to both transparently re-
cover the processes from system failures as well as to react
to various events that may occur during the execution.

While executing a process, BioOpera automatically pro-
files its execution, gathering performance measurements for
all tasks, such as the CPU time (amount of processor work),
the REAL time (accumulated execution time of all tasks)
and the WALL time (duration of the computation). Part of
this information is collected on the cluster nodes, and part
of it is generated by timestamping state transitions of each
task. This information may be used to identify bottlenecks
in the structure of the process.

Another component of the awareness model is the data
generated throughout the computation. This is used by Bio-
Opera to trace the origin of results by mapping the data pro-
duced by the individual tasks to the data flow of a process.

3.6. State of the cluster

Finally, BioOpera gathers information regarding the
CPU load in each cluster node, node availability, node fail-
ure, node capacity, the number of jobs being concurrently
processed and other relevant information related to the state
of the computing environment. This information is then
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Figure 3. Cluster monitoring tool

used to balance the load between the different nodes, to
schedule the computation according to machine usage and
availability, and to resume the execution of the computation
smoothly when failures occur.

4. BioOpera runtime services

In BioOpera, the management of the cluster and the com-
putations running on the cluster is based on the awareness
model described above. In order to cope with the different
aspects of cluster management, BioOpera provides a set of
runtime services that allows it to deal with each of these
aspects individually. A first and well-known concern is fail-
ure masking: low-level failures, for instance failing nodes,
need to be hidden from the user, in this case by reschedul-
ing the jobs that were lost. A second issue is the monitoring
of a computation: especially when running complex, long-
lived computations, users will want to be informed about
the progress of a computation, or about failures that cannot
be handled automatically by the system. Third, they will
want to be able to intervene in the computation as they see
fit, e.g., by aborting and restarting parts of it. As fourth
concern, system administrators need to be able to assess the
utilization of the cluster or the effect of node outages on ac-
tive computations. Last, data resulting from a computation
needs to be analyzed and interpreted, which may involve
looking at how the data was produced throughout the com-
putation. Each of the following sections is dedicated to one
of these five concerns. Further runtime services can easily
be implemented since all the necessary information is avail-
able on the system’s database. In most cases, this involves
only defining new queries over the accumulated data and
developing the corresponding interface.

4.1. Automatic failure handling

BioOpera is designed to provide a dependable cluster
computing environment on top of an unreliable, error-prone
hardware/software infrastructure. To this end, several types

of failures are transparently handled: cluster node hardware
failures, internal system failures, and program failures.

In the first case, BioOpera periodically polls each node in
the cluster querying it for the status of its running jobs. Both
if a node doesn’t respond after a certain user defined time,
and if the node replies that the requested jobs are unknown,
BioOpera assumes the node has failed (in the second case, it
has probably already been rebooted) and will transparently
reschedule the lost jobs on a different node of the cluster.

Internal system failures encompass all situations that
eventually require restarting a BioOpera system component.
BioOpera has been designed such as to offer persistent pro-
cess execution, in the sense that running process instances
will not be affected by failures in the BioOpera system
components. Information relevant for recovery is updated
throughout the execution of a process instance and is used
to recover its state after restart. Relevant information for
each task includes its state and the address of the cluster
node it is running on. To increase the level of reliability,
the underlying database can be replicated or a hot-standby
configuration used.

Concerning program failures, BioOpera detects whether
a program has successfully been executed based on its exit
code. If a program returns a zero exit code, BioOpera sets
the corresponding task to finished, in all other cases the task
will fail. The developer may specify additional behavior,
such as automatically restarting a task up to a certain num-
ber of times before setting it to failed, or executing some
other tasks responsible for handling the exception.

In any case, when a task fails, the user may manually
restart it, possibly after fixing the problems with the appli-
cation that caused the failure.

4.2. Process monitoring

Once a process instance has been started, the user may
follow its progress and check intermediate results as Bio-
Opera schedules and executes the various tasks on the clus-
ter. At all times, BioOpera presents the user with a clear,
high-level view over the state of the computation running
on the cluster (Figure 1.b).

As the computation progresses, the user may watch the
various tasks changing color and, for instance, easily dif-
ferentiate failures (e.g. colored in red) from successful pro-
gram executions (e.g. colored in blue). This simple but in-
tuitive approach is very helpful when monitoring hundreds
of concurrent processes. BioOpera also keeps track of the
data that is produced by the tasks. This way, the user may
read the value of the data flow parameters and, in the case of
UNIX applications, the content of the standard output and
standard error produced by a program after and even dur-
ing its execution. While checking the state of a task helps
to detect software failures, analyzing its output ultimately
helps to understand and fix the error that caused them. Be-
ing able to do this from a centralized point is a significant
advantage when the computation is complex and distributed
over many nodes.

Furthermore, together with the state information, Bio-
Opera records the host’s name a task is running on. This en-



ables BioOpera to periodically check whether running jobs
are still healthy. Additionally, it allows the user to easily
switch between a process and a cluster centered monitor-
ing view (Figures 1.b and 3), going back and forth between
watching the progress of a process and overseeing the state
of the entire cluster over which the process runs. The user
may query a node for performance related information, such
as processor load, free memory and swap space, as well as
ask for the list of tasks running on it.

4.3. Interacting with a process

The fact that BioOpera keeps track of all dynamic state
information associated with a running computation opens
up new possibilities to interact with it. BioOpera provides
a set of predefined signals that can be sent either to individ-
ual tasks or to the process as a whole. Currently supported
signals are kill, suspend, resume and restart.

4.4, System administration

Given the functionality described above, it is possible to
plan ahead concerning the operation of the cluster. This is
a key feature when running processes that may last months
and, therefore, are likely to encounter many different sit-
uations (in addition to failures): the need to upgrade soft-
ware and hardware, the replacement of nodes in the cluster,
changes in storage devices, and so forth.

In this regard, BioOpera has several advantages. Since
the computation is outlined in the process, it is possible
to determine which process instances would be affected
when a given node is taken off-line. This gives system ad-
ministrators a very powerful tool to perform upgrades and
changes to the system as the computation proceeds while
minimizing the impact of the outages. Thanks to the dy-
namic scheduling and load balancing mechanisms, as well
as to the ability to group cluster nodes in named units, Bio-
Opera is capable of working with a cluster that shrinks or
grows in size dynamically. It is even possible to replace
tasks initially intended to run in a given node with alterna-
tive tasks running on a different node (even on a different
0S).

4.5. Data analysis

BioOpera keeps information about processes that are
currently running on the cluster, but also about processes
that have completed their execution, either successfully or
with failure. The user may search this information to find
out more about the history of a particular run, for instance
to debug software failures, to determine how certain results
have been produced, to compute the resource utilization of
the cluster over a certain time period and for a certain set
of processes, or to list all hardware failures in the cluster.
Additionally, old processes may be restarted using the same
input parameters, or the user may repeat some runs chang-
ing the values of some input parameters.

The fact that all the necessary information is well orga-
nized and stored in a relational database opens up the oppor-
tunity to create very sophisticated automatic tools for sys-
tem administration, on-line computation analysis and opti-
mization that go well beyond anything available today. Any
search that can be expressed with an SQL statement is sup-
ported. For instance, it is possible to query the database
for a list of all failures on a specific cluster which occurred
within a certain time interval, concerning the processes run
by a particular user.

5. BioOperain practice

To demonstrate how BioOpera makes managing a com-
putation over a cluster easy without sacrificing performance
we discuss several complex computations performed under
BioOpera.

First of all we present an experiment which involved run-
ning computations lasting for over a month. This shows
how the system reliably sustained the computation and
transparently dealt with various failures in the cluster as
well as with changes in its configuration. Second, we show
a scalability experiment, in which BioOpera runs the same
process over an increasing number of cluster nodes (from 1
to 60). Third, we add a throughput experiment to measure
the average process startup time and the size of the work-
load, measured in running activities per unit of time, the
current BioOpera prototype can handle.

5.1. Experimental setup

The experiments have been performed using different
cluster of PCs and UNIX workstations linked by an ordi-
nary Ethernet 100Mbit network. The following table sum-
marizes their main hardware and software characteristics.

Nodes CPU (Mhz) RAM (MB) OS
L. 16 P-III (500) 512 LINuxVv2.2.12
K. 5 UltraSPARC (269) 192 SuNOSV5.6
I 8 P-Il1 (600) 512 LiNuxVv2.2.14
X. 60 P-IlI (1000) 1024  LiNux v2.4.17

All the nodes in the Linux clusters have 2 CPUs. During
the first experiment the cluster was shared with other users,
while in the others the cluster was managed exclusively by
BioOpera.

5.2. Stability and reliability

The first experiments involved a process computing the
self comparison (or All vs. All) of the protein sequence
database SwissProt version 38 [8] (see [3] for details).
Before switching to BioOpera, this process took several
months to compute, mainly due to the overhead of man-
ually managing the computation. For earlier versions of
SwissProt (with less data) the computation required about
400 days of CPU time and lasted two to three months in
real time.



To use BioOpera, a process describing the computation
was built and then executed using clusters I, K, L. As pre-
sented in [3], BioOpera made it easier to deal with changing
conditions in the cluster, ranging from user-driven interrup-
tions (e.g. other users requesting exclusive access to the
cluster) to hardware problems (e.g. disk space shortage).

5.3. Scalability

To test the scalability of processes run under BioOpera,
we have been using a process analyzing data from a gene ex-
pression profiling experiment based on cDNA microarrays.
The underlying algorithms, as well as the overall procedure
are described in [14]. The data used for the test run was
downloaded from the Stanford Microarray Database [18]
and has already been analyzed as part of [2]. The most
time consuming step in the analysis (~96% of the overall
CPU time) is the computation of the likelihood that a spe-
cific gene is differentially-expressed [13]. This likelihood
needs to be calculated for each experimental condition, each
of which may be analyzed independently of the other. Our
data set consisted of 66 different conditions. The degree of
parallelism between tasks is left to BioOpera to decide.

Figure 4 shows the results of the test run. During the run,
cluster X was exclusively used by BioOpera. The left verti-
cal axis shows the WALL time (time from beginning to end
of the computation), the right vertical axis the CPU time
(time spent computing) and REAL time (time spent in each
node including computing and 1/0O waits). The horizontal
axis indicates the number of nodes, each of them with 2
CPUs. The results prove that the process scales well up to
35 available nodes. Beyond 35 nodes, however, there is no
improvement to be observed. This is due to the fact that
BioOpera always schedules two concurrent tasks on a sin-
gle cluster node so that, for this process, beyond 35 nodes
there is no more parallelism to be exploited. Overall, the
experiment demonstrates that BioOpera can be used to par-
allelize computations and obtain performance gains without
having to become familiar with sophisticated programming
techniques.

5.4. Throughput

To illustrate the throughput (activities per unit of time)
that can be achieved using BioOpera and the implications of
persistence, we have been using a synthetic process involv-
ing two independent control flow threads, each thread con-
sisting of 150 sequentially ordered activities. Each activity
computes between 15 and 30 seconds. We have been run-
ning 200 concurrent instances of this process on 30 nodes
of the X cluster. To be able to test the raw throughput of the
system, BioOpera’s scheduler has been configured to ignore
the node’s workload in placement decisions. All instances
were run using the same priority.

Figure 5 shows the results of this test run. The horizontal
axis represents time, the vertical axis counts the number of
activities. The overall wall time of the run was 1 hour, 9
minutes and 10 seconds. For time ¢, the graph displays the
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number of activities that have been submitted to the sched-
uler to be run (fat line), and number of activities that have
actually been scheduled and are running in the cluster (thin
line).

The only noticeable problem when dealing with such a
high load is that the time it takes to start all 200 instances
is quite long (about 11.5 minutes). Per instance, however,
this only amounts to 3.45 seconds of instantiation overhead.
The overhead arises from the need to create an image of the
process in main memory and in the database. This proce-
dure, however, can and will be optimized in future versions
of the system. Keeping that in mind, and in view of the re-
sults of the test, we are confident that BioOpera will intro-
duce only a minimal overhead when dealing with concur-
rent processes. Note that, the instantiation problem aside,
BioOpera had no difficulties in using all available resources
to schedule tasks as they became ready for execution.

6. Related work

Conventional workflow management systems (WFMS)
are generally inadequate for modeling and running cluster
computations [21]. However, many ideas borrowed from



WEFMSs have been used to great advantage in cluster com-
puting. TENT [10] uses the same programming model as
workflow systems for parallelizing numerical simulations.
It lacks, however, persistence and a sophisticated awareness
model for cluster management. Image2000 [16] also uses
a workflow approach for describing image processing but
no attempt is made at exploiting parallelization. Its main
application area is in astronomy although it can be tailored
to other domains involving image processing. BioNaviga-
tor [9] uses the process concept to provide biologists with
a web based research platform to perform in silico exper-
iments. Research done as part of the TAMBIS [6] project
also advocates a workflow-like notation to describe bioin-
formatic tasks [19].

All these tools focus on the idea of process as program-
ming model, some exploit the process structure, e.g., to be
able to provide the user with a detailed view of the data in-
volved in a computation but none of them do it to the extent
we propose in this paper.

7. Conclusion

BioOpera provides a powerful software infrastructure for
rapidly building distributed applications and efficiently run
them over a cluster of computers. BioOpera uses a simple
but powerful visual language to facilitate composition based
programming. BioOpera supports user monitoring and in-
teraction with running processes, transparent failure han-
dling (through rescheduling and restarting), automatic gath-
ering of performance measurements and browsing through
the history of past executions. Experiments have shown that
our system achieves low overhead, good performance and
scalability over a cluster of workstations. We are currently
testing and tuning the system, and using it to develop sev-
eral bioinformatic applications.
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