
Maturity Model for Liquid Web Architectures

Andrea Gallidabino and Cesare Pautasso

Software Institute, Faculty of Informatics, USI Lugano, Switzerland
{name.surname}@usi.ch

Abstract. Liquid Web applications adapt to the set of connected de-
vices and flow seamlessly between them following the user attention. As
opposed to traditional centralised architectures, in which data and logic
of the application resides entirely on a Web server, Liquid software needs
decentralised or distributed architectures in order to achieve seamless
application mobility between clients. By decomposing Web application
architectures into layers, following the Model View Controller design
pattern, we define a maturity model for Web application architectures
evolving from classical solid applications deployed on single devices, to
fully liquid applications deployed across multiple Web-enabled devices.
The maturity model defines different levels based on where the appli-
cation layers are deployed and how they migrate or synchronize their
state across multiple devices. The goal of the maturity model described
in this paper is to understand, control and describe how Web applica-
tions following the liquid user experience paradigm are designed and also
provide Web developers with a gradual adoption path to evolve existing
Web applications.

Keywords: Maturity Model, Liquid Web Architecture, Decentralised Web, Liq-
uid Software

1 Introduction

The metaphor of liquid software [17,34] illustrates the user experience when
interacting with software deployed across multiple devices. Liquid software can
1) adapt the user interface to the set of devices being concurrently used to
run the application; 2) seamlessly migrate a running application across devices
and 3) synchronize the state of the application distributed across two or more
devices, effectively breaking down the continuity boundaries that exist between
devices in proximity both in physical space as well as in cyberspace.

Web applications were traditionally developed following a thin client architec-
ture whereby most of the logic and the entire persistent state of the application
would be executed and stored on a central Web server. They would offer only
partial support for the liquid user experience in terms of the ability of migrating
the application by simply sharing the URL pointing to the current state of the
application and adapting the user interface by employing responsive Web design
techniques [24].



As the Web technology platform has evolved with enhanced support for rich
and thick client architectures and for protocols beyond HTTP to enable real-
time push notifications and peer to peer (browser to browser) connections, it is
time to revisit the architectural design space of contemporary Web applications
to systematically study new deployment configurations and how these impact
the liquid user experience.

In this paper we present a maturity model for liquid Web applications [25],
based on multiple facets that determine the degree of liquidity of a Web appli-
cation both in terms of which liquid user experience primitives are enabled as
well as how these can be implemented with different performance and privacy
guarantees. Each architectural configuration presents unique challenges and op-
portunities to deliver a liquid behavior under different constraints. For example,
while it is relatively easy to synchronize the state of the application relying on
a highly available, centralised master copy deployed in the Cloud, some privacy
and latency issues may warrant considering more decentralised or distributed
approaches to data management.

The maturity model is based on three orthogonal facets, each having three
levels: a) logic deployment (ultra-thin, thin, thick); b) state storage (centralised,
decentralised and distributed); c) communication channel (HTTP, WebSockets
and WebRTC). This paper provides a systematic discussion on the implications
of the most significant architectural configurations on whether and how liquid
Web applications can be built under the corresponding architectural constraints.
Additionally, for each level, we survey existing Web development frameworks
within the corresponding Web application architectures. As we are going to
show, migration of Web applications can be achieved with all configurations,
while cloning requires support for real-time synchronization that is only present
in higher maturity levels.

2 Motivation

The relationship between users and their computing devices has evolved from
multiple users sharing one expensive and large computer to the opposite, where
multiple, cheap, mobile and Web-connected devices are owned by a single user.
Web browsers are nowadays ubiquitous as they run on desktop computers, lap-
tops, tablets, smart phones, digital cameras, smart televisions, cars, and – with
some limitations – even kitchen refrigerators, watches and glasses. While re-
sponsive Web applications are designed to adapt to the different screen sizes
and input/output capabilities of different devices, it is still challenging to de-
velop rich Web applications which can seamlessly migrate across different user
devices. For example, planning a trip on a large display and following the direc-
tions for the trip guided by the phone GPS; typing a short email by tapping on
the phone screen but then as the email text grows longer deciding to continue
the work on a computer with a real keyboard.

As users begin to use multiple devices concurrently – for example: to watch
television while looking up information on their tablet, to play games across

2



multiple telephones, to share pictures taken with personal devices and view them
on a public display, to remotely control presentation slides from a watch, or
to confirm a credit card transaction entered on a desktop computer using the
fingerprint reader of the phone – only few Web applications fully take advantage
of all available devices and distribute their user interface accordingly or allow
users to re-arrange different user interface components at will.

Web developers and designers have successfully addressed the scalability chal-
lenge to serve Web applications to millions of users [1] and to personalize such
applications to each user profile [6] (e.g., language, age, geographical location,
regulatory constraints, etc.) and adapt it to the capabilities of their Web brows-
ing device [24]. However, this has been under the assumption that users connect
to use the Web application using one device at a time. Stateful Web applications
which use cookies to establish a session with a particular Web browser make it
difficult for users to switch devices in the middle of a browsing session [15]. Addi-
tionally, they may break when opening multiple tabs to run them and sometime
assume that users logging in from different devices at the same time may indicate
a security issue.

In this paper we provide a maturity model to assess how different Web appli-
cation architectures can provide support for the liquid user experience for both
sequential and parallel screening scenarios: – Sequential screening: users own
more than one device, at any time they may decide to continue their work using
another device. The application and the associated state seamlessly flow from
one device to another; – Parallel screening: users own multiple devices and
deploy the software on all of them. Users may decide to change the number
of devices running the liquid application as well as to move components of the
application from one device to another while keeping the state up to date.

Web developers can follow the maturity model to redesign, refactor and trans-
form their applications to provide enhanced level of support for liquid behavior
defining the following liquid UX primitives: – Forward: the ability of an appli-
cation of redirecting the input/output of one device to another; – Migrate: the
ability of moving a running application to another device; – Fork: the ability of
creating a perfect copy of an existing application on another device. – Clone:
the ability of creating a perfect copy of an existing application on another de-
vice, and keep the state of the original and the copy synchronised thereafter.
Sequential screening can be achieved if an application defines either a migrate
or fork primitive, while parallel screening can be supported either with clone or
forwarding primitives.

3 Web architecture facets

Web applications comply with the client-server architectural style, in which per-
sistent resources or services are provided by one server to multiple clients. With-
out loss of generality, we further describe Web application architectures using
the Model-View-Controller (MVC) pattern, one of the most used design patterns
in Web applications development [20]. In the MVC pattern Web applications are

3



logically decomposed to manage separate concerns: data modeling and persis-
tent storage, data processing and business logic, and data input/output and user
interaction.

– The Model Layer manages the persistent data of an application. The
model of a Web application also includes any of its assets such as Web Pages,
images, and scripts that need to be transferred to the clients. This layer requires
some kind of data storage able to represent, organize and collect information:
• in the server-side of an application it usually takes the form of a database such
as relational databases like Oracle and MySQL, document oriented databases
like MongoDB, or CouchDB, or other schemaless databases like Redis [8]; • in
the client-side usually the file system of the device is used as storage, but due
to the possibility of having clients running on heterogeneous devices and im-
plemented using different programming languages, data storages can highly dif-
fer from client to client even in the same application. WebSQL, IndexedDB,
LocalStorage, and Cookies are standard implementations of data storage APIs
available in HTML5-compliant Web browsers.

– The Controller Layer consists of the logic of an application. The con-
troller layer is a bridge between the model and view layers, it manipulates data
and executes tasks received from either layer and forwards the results to the
appropriate one. Depending on where the controller layer is deployed it can be
implemented using different programming languages. In the server-side PHP,
ASP.NET, and Javascript (using Node.js) are the most used programming lan-
guages, while in the client-side Javascript is the main option.

– The View Layer is the graphical user interface of an application, consist-
ing of the visual representation of the data and information retrieved from the
model layer and rendered into an interactive visualization.

Combining the client/server execution environment and the three MVC lay-
ers, we identify different deployment combinations. While the View Layer is con-
strained to run on the client, both Model and Controller Layer can be deployed
on either side (or partitioned to run on both client and server). Additionally,
we distinguish three alternative communication channels and protocols (HTTP,
WebSockets and WebRTC) used to interconnect the layers of Web applications
running on different devices.

In the following sections we discuss more in detail each facet which will be
combined into the liquid Web application maturity model in Section 4.

3.1 Model Layer deployment

Model layer deployment describes where the persistent state of the Web ap-
plication is stored. We identify three levels based on whether data is logically
centralised on the server or distributed towards the clients (Figure 1):

Level 1 - Centralised - The model is stored using any data management
solution that is solely deployed in the server-side. For scalability and availability
purposes, the actual storage can be implemented using multiple virtual servers
running in a Cloud data center. Conceptually, this is still a centralised solution
as data is never managed by the client. The advantage is that no matter what

4



Level 1
Centralised

Level 2
Decentralised

Level 3
Distributed

Model Layer Deployment

Le
ve

l
Fig. 1: Model layer deployment levels

client device is used to access it, the data will be readily available [32]. Users
thus trade off the convenience of accessing ”their” data anywhere with the loss
of control over the actual location where it is stored and who else can access
it. As clients always need to remotely request data from the server, there are
also latency and availability implications to be considered. When multiple clients
perform transactions to update shared resources, having a single master copy on
the server helps to ensure consistency.
Some real world examples of centralised model layer deployments use databases
created with MySQL, MySQL Cluster, or Cassandra [23].

Level 2 - Decentralised - The model layer is deployed both in the server
and client-side of the Web application. Information stored in the server database
is replicated or cached by the clients. Conversely, users may prefer to save the
primary copy of their data in their own clients and use the server as a secondary
backup.
Cookies are the simplest example of decentralised persistent storage on the Web.
Web application using any technology mentioned in level 1 (e.g. MySQL) in
combination with any HTML5 storage API (e.g. localstorage, WebSQL) falls in
this category. Apache CoudchDB or PouchDB are databases that feature client-
side caching with automatic synchronisation allowing offline availability of the
retrieved data.
Decentralised approaches enhance: • data privacy, even though data must still
be transmitted to the servers if there is not a direct communication channel
between clients; • availability during offline operation, assuming the data has
been prefetched by the client the Web application may still work while being
disconnected from the server; • enhanced perceived performance when hitting
data cached on the client.

Level 3 - Distributed - The model layer is distributed exclusively on the
client-side of the Web application. There is no need to use the server to retrieve
or store data, because clients completely own the state of the Web application.
This positively impacts data privacy because the information of the users always
remains on their devices and is never stored in a Web server outside of their
control (e.g., in the Cloud).
Distributed model layer deployment can be achieved in a modern Web browser
by using any combination of the storage APIs provided by the HTML5 stan-
dard, namely the WebSQL, IndexedDB, and LocalStorage APIs. On top of these
technologies, or even using the File system of the devices running the client
of the Web application it is possible to build distributed model layers able to
automatically synchronise between clients (e.g. [36]).

5



Level 1
Ultra Thin

Level 2
Thin

Level 3
Thick

Controller Layer Deployment

Le
ve

l
Fig. 2: Controller layer deployment levels

3.2 Controller Layer deployment

The Controller layer deployment determines where the Web application executes
tasks and whether it can offload its workload. We define three levels with respect
to the client thickness: (Figure 2):

Level 1 - Ultra-Thin Client - In this level the controller layer of an ap-
plication is deployed only on the server-side of the application. The only logic
present on the client is the logic needed to retrieve content from the server and
to display views when they are received from the server.

Primitive Web browsers that did not allow running scripts, such as JavaScript or
Java Applets can be seen as Ultra-Thin clients. Ultra thin clients always display
the view layer statically and cannot adapt it to the client’s device. Curling pages
on a Terminal is also an example of Ultra-Thin Client, in which the forwarded
raw data is displayed. Web applications that do not require scripts to run in the
client fall in this category as well.

Level 2 - Thin Client - The logic of an application is deployed on both
server and client-side of the Web application. The server can offload part of
the computations to the connected clients. The most offloaded task in Web
applications is the creation of the views which is entrusted directly to the clients
needing it, however in thin clients any simple task can be offloaded to the clients.

Whenever the client is thin, it is possible to make views responsive to the client’s
device. This allows the same applications to use a different look and feel in devices
with different hardware specifications.

AngularJS, React, or EmberJS are some frameworks for isomorphic Web appli-
cations written in Javascript that require thin clients.

Level 3 - Thick Client - The logic of an application is entirely deployed
on the client-side of the Web application. A big portion of the application com-
putations are offloaded to the clients. As in level 2 clients compute the views they
display. Additionally they execute computationally-heavy application-specific
tasks that were not previously included in thin clients. The HTML5 WebWorker
specification allows Web browser to run scripts in background, making it possible
to develop complex client-side applications [7].

Thick clients can be aware of other connected clients, making it possible to
adapt the view layer of the application on a set of devices instead of making it
responsive to a single one. Complementary adaptive views can also automatically
evolve in real-time if the application is able to propagate to all devices the
knowledge of connections and disconnections of other clients.

6



Level 3
Peer-to-Peer

(WebRTC)

Level 1
Client-Server Pull

(RESTful HTTP)

Level 2
Client-Server Push

(WebSocket)

Fig. 3: Communication channels

Web 2.0 single-page applications generally require thick clients, any client de-
scribed in level 2 can become a thick client if the entire controller logic layer is
deployed in the client-side. Liquid Web applications featuring all the liquid user
experience primitives require clients to be thick.

3.3 Communication channel

The communication channel facet is characterised by the direction of the commu-
nication between the client and the server and whether clients can communicate
directly. The levels shown in Figure 3 are inclusive, whereby a higher level also
includes all the features provided by the lower levels:

Level 1 - Client-Server Pull - Clients are always the origin of all request-
response interactions with the server. Clients request resources addressed by
URIs and the server responds with the corresponding representations if they
exist. On the Web, this kind of communication is implemented with the HTTP
protocol.
Applications relying solely on the HTTP protocol cannot propagate state changes
or events occurring on the server back to the clients in real-time. They can only
simulate a quasi-real-time environment (with continuous polling). While the liq-
uid migrate primitive can be implemented with HTTP only, cloning or forward-
ing cannot be implemented in level 1, because data synchronisation in liquid
applications requires real-time notifications.

Level 2 - Client-Server Push - Similarly to the client-server pull level,
clients are still the origin of the interaction with the server. However in level 2,
clients open a two-way communication channel. In this level the server is allowed
to propagate data and events to the connected clients immediately, meaning
that it is possible to efficiently create real-time Web applications. The stan-
dard Web protocol used for implementing client-server push is WebSocket. With
WebSocket it is possible to implement the liquid clone primitive since data syn-
chronisation can happen in real-time. Liquid Web applications whose goal is to
implement all possible liquid UX primitives need to consider at least a level 2
communication channel in the design of their architectures.

Level 3 - Peer-to-Peer - With the advent of the WebRTC protocol it is
now possible to have peer-to-peer (P2P) communication among Web browsers.
Architectures implementing level 3 communication channels still rely on the
HTTP and WebSocket protocols for peer discovery purposes. Level 3 commu-
nication channels allow to lower the latency between clients, by potentially de-

7



creasing the number of hops in the communication, instead of propagating data
relying on the server (client → server → client), in the best case it is possible to
communicate directly between clients (client → client).

Migrate / Fork

C
lie

nt

Model

Logic

View View

Logic

Model

Logic Logic

View View

Logic

Model

Logic Logic

View View

Logic

Model

Logic Logic

View View

Se
rv

er

Level 1
Web 1.0

Applications

Level 2
Rich Web 

Applications

Level 3
Real time 

Web Applications

Level 4
Hybrid 

Web Applications

Logic

Logic Logic

View View

Model ModelC
lie

nt
Se

rv
er

Logic

Model

Logic Logic

View View

Model Model

Logic

Model

Logic Logic

View View

Model Model

Model

C
en

tr
al

is
ed

 M
od

el
 L

ay
er

D
ec

en
tr

al
is

ed
 

M
od

el
 L

ay
er

Clone / Forward

Liquid U
X

Logic Logic

View View

Discovery

Model Model

Level 5
Peer-to-Peer

Web Applications

C
lie

nt
Se

rv
er

D
is

tr
ib

ut
ed

 M
od

el
 L

ay
er

Fig. 4: Maturity model for Web architectures for centralised, decentralised and
distributed model layer deployments. The controller layer is labeled as Logic.

4 Maturity Model

Figure 4 shows the maturity model of liquid Web applications determined by
combining the deployment configuration of their MVC layers across the server-
side and client-side with the choice of the communication channels established
between them. We identify five levels: 1. Web 1.0 Applications 2. Rich Web
Applications 3. Real-time Web Applications 4. Hybrid Web Applications 5. Peer-
to-peer Web Applications

The diagram also shows in which level is possible to use the migrate/fork and
clone/forward liquid user experience primitives. Migrate and fork are possible
in all levels, while clone and forward can only be achieved starting from level
three.

8



Table 1: Maturity model: architectural configurations and quality attributes.

Configuration Quality Attributes
Deployment Channel Latency Liquid UX View Privacy

Level Model Logic Hops Migrate
Fork

Clone
Forward

Adaptation Model

1 Centralized Ultra-Thin Pull 2 A 7 Static 7

2c Centralized Thin Pull 2 A 7 Responsive 7

2d Decentralized Thin Pull 2 A 7 Responsive 7

3c Centralized Thin Push 2 A, S 3 Complementary 7

3d Decentralized Thin Push 2 A, S 3 Complementary 7

4c Centralized Thin P2P 1 or 2 A, S 3 Complementary 7

4d Decentralized Thin P2P 1 or 2 A, S 3 Complementary 3*
5 Distributed Thick P2P 1 S 3 Complementary 3

Table 1 summarizes the different configurations per level as a combination of
the facets explained in section 3. The table also describes how the configurations
affect the following quality attributes:

Latency or the proximity between two clients on the network: • 2 hops
means that whenever clients communicate to perform a liquid user experience
primitive, the communication relies on an intermediary Web server (client →
server→ client); • 1 hop means that clients – in the best case – can communicate
directly with each other.

Liquid UX (primitive) Migrate/Fork can occur asynchronously (A) or
synchronously (S ). Asynchronous migration and fork of an application hap-
pens between two clients that cannot directly push the migrated state and logic
to the target client, but they have to be stored in a central storage first; Syn-
chronous migration and fork of an application can be implemented in systems
in which clients can push migrated or forked state and logic to other clients
without the need to store it in a central storage. Clone/Forward indicates in
which configurations the liquid clone and forward operations are possible 3or
not possible 7.

View Adaptation describes which level of the view layer adaptability is
possible to achieve in all configurations: Static means that the view does not
dynamically adapt to the client hardware device capabilities, but it is displayed
exactly as it was determined by the server; Responsive means that the view
locally adapts to the client. Complementary means that it is possible to manually
or automatically adapt the view to set of heterogeneous devices connected to
the Web application.

Privacy describes if the users have control on their data by ensuring that
it is exclusively stored in devices they own or trust: 3 means that users are in
control of their own data, 7 means that the data is stored in untrusted devices,
3* means that the data is stored in trusted devices, but is exchanged with or
relayed across untrusted devices (e.g., a Web server running in the Cloud).

9



4.1 Level 0 - Solid Applications

All layers of a solid (or monolitic) application are deployed on the same machine,
typically a standalone personal computing device, or a server to which multiple
dumb terminal devices are attached. This architecture configuration predates
the Web as intra-layer communication does not go through any Web protocol,
but only happens locally within the same host using, e.g., local procedure calls
or shared memory buffers.

Liquid migration can be achieved by the mean of input/output virtualisation
of the clients, e.g. multiple users can access the operating system installed in the
server by different screens. This architecture allows users to save their data on
the server and access it from any screen. From the user perspective, switching
terminal device amounts to successfully migrating their work from one screen
to another. The virtualised client is therefore ultra-thin, where the view layer
running on the server forwards the user interface input/output events and com-
mands to the terminals connected to it.

The concept of the first Sun Ray [28] designed in 1997 can be considered
as an example level 0, solid application architecture. The concept is designed to
take advantage of stateless network computers whereby users authenticating with
smart cards were instantaneously taken to their virtual desktops and could access
their applications and data centrally managed on the server from anywhere.

4.2 Level 1 - Web 1.0 Applications

Level 1 Applications can be seen as the first generation of Web applications [4]
built using the HTTP protocol. The logic and model layer are deployed on the
server-side, while the view layers run client-side on Web browsers. In this level
the content provided by the Web servers is static and cannot be changed by
the clients. Web browsers retrieve content (e.g. Web pages written in HTML)
by sending HTTP requests to Web servers addressed by URIs. Browsers display
resources as they were sent from the server. The view layer is completely static,
since there is no definition of a technology able to adapt the retrieved resources
to different client rendering capabilities. At that time CSS media queries did not
yet exist while the Extensible Stylesheet Language (XSL) did not provide any
markup to adapt the content of a Web page to the device displaying it.

Level 1 supports asynchronous liquid migration by uploading resources to
the server and then using their Uniform Resource Locator (URL) to retrieve the
resource from another device. In this level cloning a liquid Web application is
challenging to achieve, because data synchronisation does not happen in real-
time, as clients can only resort to continuous HTTP polling. Likewise, migration
in level 1 does not happen in real-time and requires the exchange or agreement
on the URL addressing any resource that needs to be migrated between clients,
which do not need to be available and connected at the same time.

This is the most basic architecture for implementing liquid applications that
only need the liquid migration primitive, it does not provide any kind of view
adaptation and cannot ensure data privacy (unless the Web server is owned and

10



operated by the same organization owning the client devices). Synchronization
between multiple clients can be achieved only by manually refreshing the Web
page after sharing URLs via out-of-band channels, which does not fit with the
real-time expectations of the liquid user experience.

4.3 Level 2 - Rich Web Applications

In Level 2 we consider rich Web applications [7] in which the controller layer is
deployed both in the server and client-side. Level 2 architectures are the first
ones able to have responsive views because the portion of the controller on
the client-side can compute different views and do so based on the underlying
hardware capabilities. Liquid migration is possible, but, like in level 1, shared
URLs are needed to address and retrieve the resources representing the state
to be shared among clients, since there is not a direct communication channel
between clients. More in detail, after discovering the identifier of the resource
being migrated, the Web application on the browser is manually refreshed to
ensure the consistency of the displayed information with the model of the Web
application. Again, cloning is hindered by the lack of real-time communication
between clients attempting to immediately synchronize. The distance between
two clients is always equal to two hops.

Depending on how the model layer is deployed on the clients we distinguish
two different level 2 configurations: Level 2c - centralised - the model is de-
ployed only in the server-side; Level 2d - decentralised - part of the model
is stored in the client-side, in traditional Web applications it takes the form of
Cookies or cached data, in modern rich Web application it takes various forms
(e.g., local storage, service workers, WebSQL databases) as described in sec-
tion 3. Users of a liquid rich Web application can store their confidential data
in their devices, nevertheless during a migration of the liquid Web application
its state has to be transferred via the server, which may not be always owned or
trusted by the user of the Web application.

The liquid user experience in this level is similar to the one in level 1, with
the addition of support for a responsive view and the option of storing parts of
the model locally on the client.

Example Level 2 Frameworks CrowdAdapt [26] is a centralised level 2 frame-
work for creating responsive Web pages. Web pages created with CrowdAdapt
allow users to change the layout of the Web page as they desire and thereafter
migrate their creations on other devices. In CrowdAdapt the controller layer
provides the editing functionality and the automatic detection of the hardware
specification of the device running the client. The users are able to choose be-
tween the layouts created by all the users of the Web application that better fit
their needs.

PageTailor [5] is a decentralised level 2 framework with concepts similar to
CrowdAdapt. Users can change the layout of Web pages using PageTailor and
then reuse these layouts on subsequent visits. In this case layouts are not shared
between multiple users as in CrowdAdapt.

11



4.4 Level 3 - Real-time Web Applications

The deployment of the view and controller layers are the same as in level 2,
however level 3 applications have access to client-server push communication
channels. This make it possible for Web applications to synchronise data among
clients and notify connections of new clients and detect disconnections of old de-
vices. The liquid clone operation is implementable in level 3 because data can be
synchronised in real-time between simultaneously connected devices. The aware-
ness of the connected clients to the Web application allows to distribute the view
layer among them. The complementary view implementable in level 3 Web ap-
plications increases the quality of the liquid user experience. Liquid migration,
liquid cloning and complementary view control can happen at different granular-
ity levels: application level - the Web application is monolithic and all devices
receive all the assets and model of the whole application. Upon migration or
cloning the new clients have a perfect copy of the whole application whose state
is kept synchronised between them. Complementary view adaptation in this case
can be implemented through Web clipping by concealing part of a view on all but
one device. component level - in component-based Web applications clients
receive only portions of the whole application. Liquid migration and cloning can
be done at component level, thus moving and keeping synchronized only part
of the application. In this granularity level complementary view development
does not need clipping, because clients move or receive only the portions of the
application they need and do not have to locally hide the components displayed
on other devices.

The decentralised configuration of level 3 allows partial privacy on the data
created by the users, as it can be stored only on trusted devices. During liquid
migration or cloning on simultaneously connected devices there is no need to
store any information on the server. However data sent between clients is still
relayed through the WebSocket channels on the server, meaning that such data
must be encrypted in order to ensure privacy. In the case of liquid migration
on devices which are not simultaneously connected to the Web application, the
entire model has to pass through the Web server regardless.

Example Level 3 Frameworks Smart Composition [22] is a centralised level
3 framework that allow the creation of component-based (called widgets) multi-
screen Web applications. By using a central cross-device communication service
the infrastructure created by SmartComposition is able to compose distributed
view layers among devices and keep the various components building the appli-
cation synchronised.

Panelrama [38] is a centralised level 3 framework used to create distributed
user interfaces using the concept of panels, Javascript objects defining pieces of
user interface and logic. Panelrama provides an API to migrate and clone panels
between devices and automatically create the complementary distribution of the
view layer among the connected devices.

DireWolf [21] is a decentralised level 3 framework used to create multi-device
mashups Web applications. Clients are aware of the connected devices in the

12



application and can migrate widget-like components to any target device. Dire-
Wolf offers the possibility to manage the device ownership, device information
and specification, the widget state, and the application state of the whole appli-
cation through its clients.

Liquid.js for DOM [35] is a decentralised level 3 framework based on Re-
act.js for component-based Web applications. By synchronising virtual DOMs
between devices it is able to migrate and clone logic and model layers among
the connected clients. It does not offer automatic cross-device complementary
views. There also exists a level 4 Hybrid version of Liquid.js for DOM offering
peer-to-peer data synchronisation between clients.

Bellucci et al. [3], Frosini et al. [11], and Raposo et al. [29] propose similar
frameworks in which is possible to distribute and synchronise the view layer of
the application on all connected devices.

4.5 Level 4 - Hybrid Web Application

Level 4 augments level 3 with the ability for clients to communicate directly with
each other through P2P channels. The logic layer deployed in the client-side can
send messages to other clients either directly with a single hop or through the
server with two hops. Connected clients can send any kind of data between each
other, including the entire assets of the application. Similarly to level 3, it is possi-
ble to have both asynchronous and synchronous migration and cloning operations
among connected clients. Through the peer-to-peer channels decentralised hy-
brid Web applications can send confidential data directly among trusted clients
without relaying any message through the server, ensuring privacy if confidential
data does not need to be stored on the server.

Example Level 4 Frameworks XD-MVC [19] is a decentralised level 4 frame-
work for creating cross-device interfaces and automatic complementary adapta-
tion views applications. XD-MVC implements migration at the application level
and takes advantage of clipping off parts of the view layer in order to simulate
migration between devices. Views can be annotated with rules about how they
are expected to adapt to the set of connected devices. Given these rules the view
is able to dynamically and automatically adapt to set of heterogeneous devices
when a new client connects or disconnects.

PolyChrome [2] is a centralised level 4 framework for creating co-browsing
applications with collaborative views spanning on multiple screens deployed on
multiple devices. PolyChrome complementary view adaptation supports stitch-
ing, replication, nesting, and overloading layouts. Data synchronisation happens
both through peer-to-peer and WebSocket channels. The framework creates com-
ponents out of a legacy applications in order to be able to make a view span on
multiple devices.

4.6 Level 5 - Peer-to-peer Web Applications

Peer-to-peer [31] Web architectures are at the highest level of the maturity
model, the only one providing all quality attributes expected from liquid Web

13



applications. Peer-to-peer Web applications allows connected clients to commu-
nicate with each other directly. When peers are linked with a fully-connected
mesh, this amounts to the best case scenario with a latency of 1 hop. Indeed
other topologies are possible, like rings, in which N connected clients are up
to N/2 hops away, or stars, in which the hops number vary between 1 and 2,
depending on which peers are communicating.

Level 5 applications allow synchronous migration, since connected clients can
push the model and logic through the full-duplex peer-to-peer channel created
with WebRTC at any time. Since there is no longer a central server available
at all times asynchronous migration is not possible. Instead clients need to be
online simultaneously in order to proceed with the migration. Since clients sense
and propagate their availability across the peer to peer network, it is possible to
have complementary view adaptation.

Data privacy is ensured in peer-to-peer Web applications because users are in
full control of all devices storing and processing their data. Data is never stored
in any server or Cloud storage platform. Also, data migrated or synchronised
with another device is never sent through a Web server.

Level 5 Web applications allow strong mobility with direct model and logic
transfer and synchronisation between peers, however this requires to a suitable
discovery method. WebRTC, for example, uses a signaling server to initiate and
establish the connection between clients. Clients first connect to the signaling
server and then receive information on how they can join the rest of the peers.
Once the topology is created and peers are connected, they are free to commu-
nicate among themselves and the signaling server is no longer involved.

Example Level 5 Frameworks Liquid.js for Polymer [12] is a level 5 peer-
to-peer framework which allows the creation of distributed component-based
Web application built on top of the Polymer framework. Users instantiate any
component provided by the Web application on their devices and share them
directly with other users. If a peer does not own the assets of the component
being sent to it, the peer will also receive the model of the component that is
going to be migrated. Liquid.js allows to define strategies for creating different
peer topologies. Currently Liquid.js for Polymer does not support automatic
complementary view adaptation. However developers can build their own layout
adaptations by using the API provided by the framework.

5 Related Work

Liquid software is named after a metaphor: as liquids adapt to the shape of their
containers, Liquid software seamlessly adapts to the set of devices it is allowed
to run on. In the Liquid Software Manifesto [34] Taivalsaari et al. make the case
for liquid software, envisioning that the Web (thanks to its ubiquitous support)
provides the most suitable platform for ensuring liquid applications can flow
across heterogeneous devices.

14



The design space for liquid software is analysed in [13,14] where we defined
twelve dimensions for designing liquid software and position existing technolo-
gies developed within the last two decades within the design space. In this paper
we focus on the deployment configuration of Web applications designed accord-
ing to the Model-View-Controller pattern and discuss more in detail how the
configuration impacts the liquid Web application quality attributes.

Other fields close to liquid software concept are also working towards the
definition and evaluation of technologies and architectures of frameworks which
could be used to create applications able to seamlessly flow between multiple
devices. Esenther [10] builds in 2002 a framework for real-time collaborative co-
browser applications. Opera Unite (now discontinued) [27] was a Web browser
extension allowing users to host social Web applications (e.g., photo sharing,
social wall) on their Web browser. The goal of these efforts was to enable safe
social networking whereby personal data would be exchanged directly between
trusted devices.

Cross-device interfaces [18] study how to design collaborative environments
spanning across multiple Web-connected devices. In the distributed user inter-
faces field, Santosa et al. [30] make a field study on the impact in the real world
of the use of technologies enabling cross-device interactions. Given the responses
of experts in the field, they collect and compare nine existing cloud-based data
management software enabling cross-device collaboration between users.

The survey proposed by Elmqvist [9] discusses the state of the art of dis-
tributed user interfaces in the human computer interaction research area. Elmqvist
summarizes how to achieve migration of the user interface and redirection of I/O
of a device. The concept of forwarding used in this paper is similar to the concept
of redirection used in the survey.

6 Conclusions

In this paper we described the maturity model of liquid Web architectures and
provide examples of emerging frameworks and technologies across all five levels.
Since the term liquid software was introduced 21 years ago [17], we recognise
that there has been an evolution in how software architectures are designed to
bring seamless application mobility across multiple devices.

In the context of Web applications, the maturity model presented in this
paper includes: 1. Web 1.0 applications; 2. Rich Web applications; 3. Real-time
Web applications; 4. Hybrid Web applications; 5. Peer-to-peer Web applica-
tions. Each level’s architectural configuration impacts the possible liquid user
experience primitives. Most of the existing liquid Web application development
frameworks [2,3,5,11,12,19,21,22,26,28,29,35,38] we surveyed are categorised by
a level 3 (real-time) architecture, however we emphasize that higher level ar-
chitectures are possible and they should be considered to deliver all the quality
attributes that one would expect from a liquid Web application, in particular
data privacy (with decentralized configurations) and a reduced latency between
devices that do not need to communicate with or through a remote Web server

15



all the time. We acknowledge that real-world liquid applications with multiple
client implementations may span multiple levels in the maturity model. For the
sake of simplicity and clarity we described the main five levels in the maturity
model instead of all possible combinations thereof.

The choice of level and configuration should be implemented or which frame-
work to use are important architectural decisions. Upgrading an architecture
from a lower level to a higher one, or downgrading to lower levels fundamen-
tally impact the design of the Web application and are are likely to result in
significant development costs. Still, over the history of the Web, application ar-
chitectures have been gradually and steadily shifting towards the higher levels
of the maturity model presented in this paper.

7 Future work

As the number of devices connected to the Web and the average number of
devices owned by one user increases [16], more frameworks will appear positioned
across all levels of the maturity model targeting the creation of liquid Web
application. An evaluation of the presented and future frameworks in terms of
performance, scalability, and usability would allow developers to assess which
framework is more suitable for executing liquid primitives in the sequential and
parallel scenarios.

HTML5 standards are quickly evolving every year and new specification
drafts are already defining new technologies that may be used to further ex-
tend and improve the liquid user experience provided by liquid applications.
While we described five levels in our maturity model, we do not exclude that
in the future higher levels will appear. For example, emerging technologies like
Web Bluetooth (currently not yet a W3C standard) [37] aims to bring Bluetooth
support in Web browsers which may be used to define a new maturity level in
which there is no longer a need for a central server in order to perform client
discovery and device pairing.

We based our description on the MVC design pattern adopted by traditional
Web applications, however in the future it may become necessary to revisit the
fundamental architectural abstraction and design principles of Web applications
and study their interplay with a programmable world [33] of billions of hetero-
geneous interconnected devices.

Acknowledgements This work is partially supported by the SNF with the
”Fundamentals of Parallel Programming for PaaS Clouds” project (Nr. 153560).

References

1. Abbott, M.L., Fisher, M.T.: The art of scalability: Scalable web architecture, pro-
cesses, and organizations for the modern enterprise. Pearson Education (2009)

16



2. Badam, S.K., Elmqvist, N.: Polychrome: A cross-device framework for collabora-
tive web visualization. In: Proc. of the Ninth ACM International Conference on
Interactive Tabletops and Surfaces. pp. 109–118. ACM (2014)

3. Bellucci, F., Ghiani, G., Paternò, F., Santoro, C.: Engineering Javascript state
persistence of web applications migrating across multiple devices. In: Proc. of the
3rd ACM SIGCHI symposium on Engineering interactive computing systems. pp.
105–110. ACM (2011)

4. Berners-Lee, T., Fischetti, M., Foreword By-Dertouzos, M.L.: Weaving the Web:
The original design and ultimate destiny of the World Wide Web by its inventor.
HarperInformation (2000)

5. Bila, N., Ronda, T., Mohomed, I., Truong, K.N., de Lara, E.: Pagetailor: reusable
end-user customization for the mobile web. In: Proc. of the 5th international con-
ference on Mobile systems, applications and services. pp. 16–29. ACM (2007)

6. Brusilovsky, P., Maybury, M.T.: From adaptive hypermedia to the adaptive web.
Communications of the ACM 45(5), 30–35 (2002)

7. Casteleyn, S., Garrig’os, I., Maz’on, J.N.: Ten years of rich internet applications: A
systematic mapping study, and beyond. ACM Transactions on the Web (TWEB)
8(3), 18 (2014)

8. DB-Engines: DB-Engines ranking. http://db-engines.com/en/ranking (2017)

9. Elmqvist, N.: Distributed user interfaces: State of the art. In: Distributed User
Interfaces, pp. 1–12. Springer (2011)

10. Esenther, A.W.: Instant co-browsing: Lightweight real-time collaborative web
browsing. In: Proc. of WWW (2002)

11. Frosini, L., Manca, M., Paternò, F.: A framework for the development of dis-
tributed interactive applications. In: Proc. of the 5th ACM SIGCHI symposium
on Engineering interactive computing systems. pp. 249–254. ACM (2013)

12. Gallidabino, A., Pautasso, C.: Deploying stateful web components on multiple
devices with liquid.js for Polymer. In: Proc. of CBSE. pp. 85–90. IEEE (2016)

13. Gallidabino, A., Pautasso, C., Ilvonen, V., Mikkonen, T., Systä, K., Voutilainen,
J.P., Taivalsaari, A.: On the architecture of liquid software: technology alternatives
and design space. In: Proc. of WICSA. pp. 122–127. IEEE (2016)

14. Gallidabino, A., Pautasso, C., Ilvonen, V., Mikkonen, T., Systä, K., Voutilainen,
J.P., Taivalsaari, A.: Architecting liquid software. Journal of Web Engineering
(2017)

15. Ghiani, G., Paternò, F., Santoro, C.: On-demand cross-device interface components
migration. In: Proc. of the 12th international conference on Human computer in-
teraction with mobile devices and services. pp. 299–308. ACM (2010)

16. Google: The connected consumer. http://www.google.com.sg/publicdata/

explore?ds=dg8d1eetcqsb1_ (2015)

17. Hartman, J., Manber, U., Peterson, L., Proebsting, T.: Liquid software: A new
paradigm for networked systems. Tech. Rep. 96-11, University of Arizona (1996)

18. Husmann, M., Marcacci Rossi, N., Norrie, M.C.: Usage analysis of cross-device
web applications. In: Proc. 5th ACM Intl. Symposium on Pervasive Displays. pp.
212–219. ACM (2016)

19. Husmann, M., Norrie, M.C.: XD-MVC: Support for cross-device development. In:
1st Intl. Workshop on Interacting with Multi-Device Ecologies in the Wild (Cross-
Surface 2015). ETH Zürich, Switzerland, Zürich (2015)

20. Jazayeri, M.: Some trends in web application development. In: Future of Software
Engineering, 2007. FOSE’07. pp. 199–213. IEEE (2007)

17

http://db-engines.com/en/ranking
http://www.google.com.sg/publicdata/explore?ds=dg8d1eetcqsb1_
http://www.google.com.sg/publicdata/explore?ds=dg8d1eetcqsb1_


21. Kovachev, D., Renzel, D., Nicolaescu, P., Klamma, R.: Direwolf - distributing and
migrating user interfaces for widget-based web applications. In: International Con-
ference on Web Engineering. pp. 99–113. Springer (2013)

22. Krug, M., Wiedemann, F., Gaedke, M.: Smartcomposition: a component-based
approach for creating multi-screen mashups. In: International Conference on Web
Engineering. pp. 236–253. Springer (2014)

23. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review 44(2), 35–40 (2010)

24. Marcotte, E.: Responsive Web Design. Editions Eyrolles (2011)
25. Mikkonen, T., Systä, K., Pautasso, C.: Towards liquid web applications. In: Proc.

of ICWE, pp. 134–143. Springer (2015)
26. Nebeling, M., Speicher, M., Norrie, M.C.: CrowdAdapt: enabling crowdsourced web

page adaptation for individual viewing conditions and preferences. In: Proc. of the
5th ACM SIGCHI symposium on Engineering interactive computing systems. pp.
23–32. ACM (2013)

27. Opera: Opera Unite reinvents the Web (2009), http://www.operasoftware.com/
press/releases/general/opera-unite-reinvents-the-web

28. Oracle: Sun Ray products (2016), http://www.oracle.com/technetwork/

server-storage/sunrayproducts/overview/index.html

29. Raposo, M., Delgado, J.: Empowering the web user with a browserver. In: Proc.
of the International Conference on ENTERprise Information Systems. pp. 71–80.
Springer (2010)

30. Santosa, S., Wigdor, D.: A field study of multi-device workflows in distributed
workspaces. In: Proc. of the 2013 ACM international joint conference on Pervasive
and ubiquitous computing. pp. 63–72. ACM (2013)

31. Schollmeier, R.: A definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications. In: Proc. of the First International
Conference on Peer-to-Peer Computing. pp. 101–102 (2001)

32. Sivasubramanian, S., Pierre, G., Van Steen, M., Alonso, G.: Analysis of caching
and replication strategies for web applications. IEEE Internet Computing 11(1),
60–66 (2007)

33. Taivalsaari, A., Mikkonen, T.: A roadmap to the programmable world: Software
challenges in the IoT era. IEEE Software 34(1), 72–80 (Jan/Feb 2017)

34. Taivalsaari, A., Mikkonen, T., Systa, K.: Liquid software manifesto: The era of mul-
tiple device ownership and its implications for software architecture. In: Computer
Software and Applications Conference (COMPSAC), 2014 IEEE 38th Annual. pp.
338–343. IEEE (2014)

35. Voutilainen, J.P., Mikkonen, T., Systä, K.: Synchronizing application state using
virtual DOM trees. In: Proc. of the 1st International Workshop on Liquid Software
(2016)

36. Wallis, M., Henskens, F., Hannaford, M.: A distributed content storage model
for web applications. In: Proc. of Evolving Internet (INTERNET), 2010 Second
International Conference on. pp. 98–106. IEEE (2010)

37. Web Bluetooth Community Group: Web bluetooth. https://webbluetoothcg.

github.io/web-bluetooth/ (2017)
38. Yang, J., Wigdor, D.: Panelrama: enabling easy specification of cross-device web

applications. In: Proc. of the 32nd annual ACM conference on Human factors in
computing systems. pp. 2783–2792. ACM (2014)

18

http://www.operasoftware.com/press/releases/general/opera-unite-reinvents-the-web
http://www.operasoftware.com/press/releases/general/opera-unite-reinvents-the-web
http://www.oracle.com/technetwork/server-storage/sunrayproducts/overview/index.html
http://www.oracle.com/technetwork/server-storage/sunrayproducts/overview/index.html
https://webbluetoothcg.github.io/web-bluetooth/
https://webbluetoothcg.github.io/web-bluetooth/

	Maturity Model for Liquid Web Architectures

