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Abstract

This dissertation brings together ideas of different research areas. First of all, we
propose the application of visual languages to service composition. In order to con-
nect basic services of various kinds into a larger system, their interactions along
the time dimension are defined with the JOpera Visual Composition Language. As
opposed to the textual or XML-based syntax of existing approaches, our language
features a very simple graphical notation. This visual syntax is used to specify
the data flow and control flow graphs linking the various service invocations. This
way, it becomes possible to rapidly build distributed applications out of a set of
reusable services by literally drawing the interactions between them. To achieve
this, we present how usability features such as automatic, incremental graph layout
and visual scalability features such as multiple views have been driving the design
of JOpera’s visual service composition environment. To provide support for realistic
application scenarios, we have also included recursion, iteration and reflection con-
structs with minimal changes to the syntax of the visual language. Supported by
the JOpera system, our visual language for service composition has been applied to
many scenarios, as documented by the examples shown throughout the dissertation.

Underneath the visual syntax, our approach to modeling service composition
is based on the concept of process. In this dissertation we borrow the notion of
business process so that it can be extended to model service oriented architectures.
Thus, the structure of a process defines the partial order of invocation of its services,
the data exchanges between them and the necessary failure handling behavior. In
this context, an important contribution of this dissertation is the idea that a com-
position language should be orthogonal with respect to the types of components
that are employed. More precisely, in our approach, composition is defined at the
level of service interfaces. Therefore, a process is completely independent from the
mechanisms and protocols used to access the implementation of its services. In other
words, we introduce a composition language which is not limited to describing how
components of a specific type (e.g., Web services) should be composed. Instead, in
our open component meta-model, we generalize the notion of service by abstracting
common features among a large set of different component types. This abstraction
has several important implications. By supporting a large and open set of types
of services, the composition language is simplified because many constructs (e.g.,
modeling synchronous or asynchronous service invocation) can be shifted from the
composition language to the component meta-model. Also, the service composer is
free to choose the most appropriate mechanism to access the functionality of an ex-
isting service. Thus, the runtime overhead of a service invocation can be minimized
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ABSTRACT

as it becomes possible to choose the most efficient access mechanism.

This optimization regarding the service access mechanism would not make much
of a difference regarding the overall system’s performance if the execution of the
visual language would incur in a high overhead, as typically process-based languages
are executed by an interpreter. On the contrary, in this dissertation we propose
to compile the visual specification of a process into executable code. One of the
challenges of doing so is that the resulting code should still support the concurrent
execution of multiple process instances. The choice of applying compilation to the
execution of processes brings the following benefits. In addition to the potential
for providing better performance through the optimization of the generated code,
compiling processes also helps to simplify the design of the corresponding runtime
system. As opposed to having a full-blown process interpreter, it is enough to design
and build a flexible container of compiled processes.

Following this approach, in the last part of the dissertation we present the design
of a flexible architecture for a process support system. Flexibility is an important
aspect of our design which, according to our experimental results, does not contradict
the goal of building an efficient system. First, flexibility enables JOpera to support
heterogeneous types of services. To do so, plug-ins are used to map the invocation
of a service to the corresponding protocol in the most efficient manner. Second, the
flexible architecture of JOpera’s kernel can be deployed in a variety of configurations.
This way, costly features such as reliable process execution can be added only if they
are truly needed. Likewise, the system shows good scalability when deployed in a
cluster-based configuration, as large workloads are shared among multiple cluster
nodes. Thanks to a wise choice of architectural abstractions, the code generated
by the compiler is kept independent of the actual configuration of the kernel into
which it is loaded. Third, flexibility is also a fundamental property for an autonomic
system, where the optimal configuration is determined automatically at runtime.
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Estratto

Questa dissertazione unisce argomenti di diverse aree di ricerca. Prima di tutto,
proponiamo 'applicazione dei linguaggi visuali alla composizione di servizi. Al fine
di connettere servizi di diversi tipi in un sistema di grandi dimensioni, le interazioni
temporali fra di essi vengono definite con il JOpera Visual Composition Language.
In confronto con la sintassi testuale (o basata su XML) dei sistemi esistenti, il lin-
guaggio proposto usa una sintassi grafica molto semplice. Questo linguaggio viene
usato per specificare il flusso di dati e di controllo che attraversa le varie chiamate
ai servizi. In questo modo, a partire da un insieme di servizi riutilizzabili ¢ possibile
costruire rapidamente applicazioni distribuite attraverso il disegno delle loro inter-
azioni. Per ottenere cio, presentiamo come caratteristiche quali la scalabilita visiva,
il posizionamento automatico degli elementi di un grafo, e multiple viste abbiano
influenzato il progetto dell’ambiente grafico per la composizione di servizi del sis-
tema JOpera. Per poter applicare il sistema a esempi realistici, il linguaggio ¢ stato
completato con lievi modifiche aggiungendo costrutti quali ricorsione, iterazione e
riflessione. Grazie al sistema JOpera, il linguaggio visuale per la composizione di
servizi ¢ stato applicato a molti ambiti, come documentato dagli esempi inclusi nella
dissertazione.

Il nostro metodo visuale per rappresentare la composizione di servizi ¢ basato
sul concetto di processo. In questa dissertazione prendiamo a prestito la nozione
di processo di business per estenderla alla descrizione delle architetture orientate ai
servizi. Di conseguenza, la struttura di un processo definisce 'ordinamento parziale
delle chiamate ai suoi servizi, gli scambi di dati fra di essi e il comportamento
in caso di problemi o condizioni eccezionali. In questo contesto, un contributo
importante della dissertazione consiste nell’idea che un linguaggio di composizione
debba essere ortogonale rispetto ai tipi di componenti usati. Piu precisamente,
nel sistema JOpera la composizione ¢ definita al livello delle interfacce dei servizi.
Quindi un processo € completamente indipendente dai meccanismi e protocolli usati
per accedere all'implementazione dei suoi servizi. In altre parole, il nostro linguaggio
di composizione non e limitato a descrivere come componenti di un tipo particolare
(ad esempio, Web services) debbano essere composti. Invece, abbiamo generalizzato
il concetto di servizio astraendo le caratteristiche comuni a molti tipi diversi di
componenti in un meta-modello aperto. Questa astrazione ha diverse implicazioni
importanti. Con la possibilita di usare un insieme aperto e ampio di tipi diversi
di servizio, il linguaggio di composizione ¢ piu semplice perché molti costrutti (ad
esempio, la rappresentazione di una invocazione sincrona o asincrona) possono venire
spostati dal linguaggio di composizione al meta-modello dei componenti. Inoltre,
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il compositore di servizi e libero di scegliere il meccanismo piu appropriato per
accedere alla funzionalita di un servizio pre-esistente. Quindi, durante I’esecuzione,
il costo di accedere a un servizio puo venire minimizzato, in quanto diventa possibile
scegliere il meccanismo di accesso piu efficiente.

Questa ottimizzazione sul costo di accesso ad un servizio non avrebbe un grosso
impatto sulle prestazioni globali del sistema se ’esecuzione del linguaggio visuale
fosse inefficiente, come accade tipicamente nel caso dell’esecuzione interpretata dei
linguaggi orientati ai processi. Al contrario, in questa dissertazione si propone di
compilare la specifica visuale di un processe in codice eseguibile. Una delle diffi-
colta in questa soluzione consiste nell’ottenere del codice che permetta di gestire
I’esecuzione di piu di una copia di un processo alla volta. Tuttavia, la scelta di ap-
plicare tecniche compilative all’esecuzione dei processi porta i seguenti benefici. In
aggiunta al potenziale di fornire prestazioni migliori attraverso 1'ottimizzazione del
codice generato, la compilazione dei processi facilita la semplificazione della struttura
del sistema di esecuzione corrispondente. Invece di dover costruire un interprete, e
sufficiente preparare un contenitore flessibile di processi compilati.

Seguendo questa soluzione, nell’ultima parte della dissertazione si presenta il
progetto di una architettura flessible per un sistema di supporto ai processi. La
flessibilita € un aspetto importante del nostro sistema che, secondo i risultati sper-
imentali inclusi, non contrasta con l'obiettivo di costruire un sistema efficiente. La
flessibilita infatti permette a JOpera di usare un insieme eterogeneo di tipi di servizi.
Per fare cio, dei plug-ins vengono utilizzati per trasformare nel modo piu efficiente la
chiamata di un servizio nel protocollo corrispondente. Inoltre I'architettura flessibile
del sistema JOpera pud venire adattata a diverse configurazioni. In questo modo,
caratteristiche costose come 1'esecuzione affidabile dei processi possono venire ag-
giunte solo se veramente necessarie. Allo stesso modo, il sistema presenta una
buona scalabilita quando viene distribuito su un cluster di computer, in quanto
grossi carichi di lavoro vengono condivisi dai diversi nodi del cluster. Grazie a una
buona scelta di astrazioni architetturali, il codice generato dal compilatore rimane
indipendente dalla configurazione del sistema in cui viene eseguito. Per finire, la
flessibilita e anche una proprieta fondamentale per un sistema autonomico, dove la
configurazione ottimale ¢ determinata automaticamente e dinamicamente.

Xiv
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1.1. Motivation

Composition is a well established standard engineering practice, whereby develop-
ment proceeds by recursively assembling a set of pieces designed to fit together.

Software systems are also increasingly built in a similar way, or at least they
should according to many sources (e.g., [214]). In fact, since the very early be-
ginnings of the information age, using components to build software systems was
deemed a promising idea, to be quickly followed by a blossoming software component
industry whose reusable pieces of software could seamlessly be integrated together
to build useful applications [154].

Along this direction, in the past forty years, a very large body of research on
software components, components models, component based software engineering
and the like has been produced. In practice, the component based frameworks
that have been developed (such as Delphi [128], COM, CORBA, EJB, and many
others) have also been quite successful as relatively well developed marketplaces
of reusable software components have been established within the boundaries of a
given component model [229].

Given the current level of development, where the Web service paradigm has been
recently introduced to address interoperability issues across heterogeneous compo-
nent models, in our work we have chosen not to describe yet another component
model to avoid that our approach to composition would be limited to that particular
component model.

Instead, we shift the focus from components to services, i.e., “software compo-
nents with no strings attached” [225]. Moreover, in this dissertation we develop a
language and a system for service composition, as we believe that component mod-
eling is only half of the work, and that composition, i.e., defining in an executable
way how services should be composed together, is equally important.

By keeping the definition of a service very general, we are able to propose a visual
composition language that can be applied to model and execute the composition of
many different types of services along the time dimension. To do so, the language is
based on the notion of process, which describes the interaction between service in-
terfaces in terms of data flow and control flow graphs. By relaxing the constraints on
the types of services that can be composed we have kept our composition language
both simple and general, as the complexity of modeling the invocation of hetero-
geneous component types has been pushed from the composition language to our
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flexible component meta-model. One benefit of this approach is that adding sup-
port for additional types of services does not affect the definition of the composition
language.

“A new language is not enough, unless there is also a compiler for it” [255].
Following this guideline, we have designed and built a whole set of tools to support
the execution of processes defined with the JOpera Visual Composition Language.
The JOpera system currently comprises a visual development and monitoring envi-
ronment, a compiler targeting multiple process execution platforms, and a flexible
runtime kernel that can be deployed in a variety of configurations.

Supported by the JOpera system, our language for service composition has been
applied to several different application scenarios, as documented by the examples
shown throughout the dissertation. Finally, we include a set of measurements to
motivate and validate our approach.

1.2. Contributions

This dissertation brings the following contributions to the field of process-based
service composition.

1. A visual language, as opposed to an XML syntax, should be used for program-
ming process-based service composition.

Software composition can be a great application domain of visual languages,
as a two dimensional syntax can represent quite well non linear interactions
between a set of services. In this dissertation we define a new visual lan-
guage, the JOpera Visual Composition Language, with a very simple syntax,
which is however powerful enough to be applied in realistic settings. Its main
innovations are:

e Processes are programmed mainly (but not only) by drawing a data flow
graph linking input and output parameters of service invocations.

e To address visual scalability issues, the control and data flow graphs of a
process are displayed and edited separately. Furthermore, multiple views
over the same data flow graph are supported.

e Service interface adaptations that require XML data manipulations can
be specified visually with the same syntax used to compose the mismatch-
ing services.

e Iteration is supported through list-based split/merge operators, explicit
control flow loops and recursion.

e Reflection, through system parameters and system services, is used to
model the interaction of a process with its environment and provides
support for dynamic adaptation of processes and late binding of service
interfaces to their implementation.
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STRUCTURE

. Composition and Components should be kept orthogonal.

The JOpera Visual Composition Language defines composition at the level of
service interfaces. The actual service invocation mechanism is intentionally
kept transparent, as far as the definition of the processes is concerned. Given
the wide range of existing component models and the corresponding service
invocation mechanisms, limiting composition to a particular type of component
is unnecessary, as the developer cannot choose the most appropriate one in
terms of performance, reliability, security, convenience and ease of use. In
other words, we believe that constraining composition to Web services only is
a big limitation, as there are many existing, alternative, and established types
of service access mechanisms that could be used, depending on the boundary
conditions.

. Processes which define how services are composed should be compiled for ex-

ecution.

In most existing systems, process models are interpreted while they are exe-
cuted. We believe that visual, process based tools will not reach widespread
acceptance if they cannot deliver a level of performance which is compara-
ble to traditional programming languages. In JOpera, by defining a visual
composition language, we believe we offer an interesting alternative, as far as
the usability towards rapid composition is concerned. Furthermore, in order
to achieve efficient execution, the processes are compiled to Java executable
code. This code is dynamically loaded into JOpera’s runtime kernel and is
used to manage the execution of multiple concurrent instances of a process.

. A highly flexible architecture for a process support system.

Flexibility is a key property of JOpera’s architecture both in order to support
the invocation of services of a heterogeneous set of component types and to
enable the deployment of JOpera in a wide variety of configurations. In these
two aspects, flexiblity would seem to reduce the efficiency of the system, one of
the reasons why we choose to compile processes. However, flexibility is useful
to support the choice of the most efficient invocation mechanism for each
component type. Furthermore, it also allows system administrators to create
a configuration of the system with only the necessary features. For example,
thanks to a flexible architecture, the user is empowered to make the most
appropriate trade off between reliability and performance. Likewise, flexibility
is an important characteristic of a dynamically reconfigurable system, where
the optimal configuration is determined autonomously based on the current
workload.

1.3. Structure

This dissertation is organized in two parts. In the first we define the visual language
and the underlying model for service composition; in the second part we present the
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system used to develop, compile and run the composite services.

Chapter 2 presents related work on various research areas (Visual Programming
Languages, Software Composition — including Web Service Composition — Pro-
cess Modeling Languages and Process Management Systems) touched by this
dissertation.

Chapter 3 defines the JOpera Visual Composition Language, a glue language to
draw connections between services and visually specify their interactions along
the time dimension. The language is very general as it makes very little
assumptions about the nature of the services to be composed and provides
a simple, graph-based visual syntax which complements quite well existing
XML-based approaches.

Chapter 4 is about the JOpera Component Meta-Model. After defining how to
model different types of services (e.g., Web services, UNIX applications, Java
classes, and so forth) we give many examples on how to use them as compo-
nents within a process.

Chapter 5 describes the Opera Modeling Language, our contribution related to pro-
cess modeling languages. This language, based on XML, is the internal storage
representation of the processes developed using the visual syntax defined in
Chapter 3.

Chapter 6 discusses how to execute the processes. As opposed to traditional ap-
proaches, where the process models are interpreted by an execution engine, in
JOpera we introduce a compiler which generates executable Java code which
uses the runtime facilities provided by the rest of the JOpera platform.

Chapter 7 presents the design of a radically new architecture for a process support
system. The design of the JOpera process execution kernel attempts to find an
optimal point between flexibility and efficiency as the system can be deployed
in a variety of configurations to fit with the given reliability and scalability
requirements.

Chapter 8 reports some interesting experimental results about the performance of
critical parts of the system.

Chapter 9 summarizes the contributions of the thesis and discusses future research
directions.

Note: in the first two chapters we have interleaved several examples on how to
apply the ideas presented in the surrounding text. Although they can be skimmed on
a first read, we believe that the exercise of creating a new language is not complete
without both showing how to apply it in realistic settings as well as building a set
of tools to support it [255].



2. Related Work

This dissertation brings together ideas of different research areas. Our work is related
to both visual languages and component based software engineering, since we are
interested in visually building applications and systems out of reusable and compos-
able parts [229]. However, instead of focusing on typical composition issues regarding
how the ”spatial” architecture of a software system can be specified in terms of com-
ponents and connectors [2, 156], we have focused the JOpera Visual Composition
Language on describing how services should be composed in ”time” [91].

In this chapter we will attempt to explain our views regarding the difference be-
tween services and traditional components and why when composing services it be-
comes important to model their interaction in the temporal dimension. To do so, in
our approach the notion of service composition is closely related to the one of process,
as it originally appeared in the workflow management community [83]. Very recently,
several business process modeling and enactment tools have evolved into mega-
programming [254] environments based on the service composition paradigm [42].

In this dissertation we have not only designed a visual, process-based, service
composition language, but we have also built a system supporting it, featuring both
a visual development and monitoring environment for rapid service composition as
well as a flexible process runtime execution kernel. In this aspect, our work also
improves the state of the art in process execution engines, as we present a flexible
architecture for a process management system, which can be tailored to different
levels of performance and which uses a compiler — as opposed to an interpreter — as
a mean to achieve efficient execution of the visual language.

2.1. Visual Programming Languages

Starting with the pioneering work of the SKETCHPAD system [223], visual lan-
guages and tools have been used with success for many different purposes (e.g.,
programming [126], user interaction [196] and visualization [231]). Visual languages
attempt to provide an effective, graphical, non-linear representation which has been
applied with success to modeling (e.g., UML [197]), parallel computing [25, 32],
laboratory simulation [242], image processing [226], workflow description [256], hy-
pertext design [45], and even object-oriented programming [53, 114]. It is now widely
recognized that a visual language is not better than a textual representation per-se,
but — as with every kind of tool — a graphical notation may be more (or less) use-
ful depending on the context [191]. Similar to [167], in this dissertation we show
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that also software composition can be a good application domain for a graph-based,
visual notation.

In particular, we reuse the notion of data flow [62], as a representation of the
interactions between service invocations. For it provides a simple and intuitive nota-
tion, the data flow paradigm has been used by many existing visual languages [104].
However, this simple, side-effects free representation requires to be extended with
additional constructs to be applied in practical settings. In the past, there have been
many contributions concerning the problem of extending data flow languages with
iteration constructs. A survey can be found in [166], while an example of iteration
through vector operators and conditional switches is [17]. Similarly, reflection [151]
is an important feature of a composition language. With it, the visual syntax is
extended to model the interaction between a program and its environment (Sec-
tion 3.7). By using terms such as “higher order functions”, similar ideas have been
applied to data flow based visual languages in the past [79].

In addition to describing the data flow structure of the interaction between dif-
ferent services, in the JOpera Visual Composition language we have also included
a separate description of their control flow dependencies [187]. In the past, many
graphical formalism have also been developed in this area. Here we mention some
contributions that have been applied to workflow modeling. Examples include State
Charts [100], used in the the Mentor project [257] to achieve distributed execution
of the various workflow steps, or Petri Nets [190, 234] and variations such as Object
Coordination Nets (OCoN) [256]. These formalisms have a natural visual repre-
sentation, which provides the user with a good overview over the partial order of
invocation of the services.

Nevertheless, when applied to service composition, one of the limitations of a
visual language based only on control flow concerns the lack of a visual notation
for specifying adaptations between mismatching service interfaces [15]. To this end,
many different domain-specific visual tools and languages have been proposed. Map-
force [11] is a commercial data mapping tool for visual data integration between
heterogeneous XML and database sources, which can also generate Java, C#, C++
executable code and XSL transformations [243]. In [192], the Visual XML Trans-
former (VXT) language has been introduced, advocating the suitability of visual
programming techniques to simplify the specification of XML data transformations.
In it, a set of Visual Pattern-Matching Expressions are used to generate the cor-
responding XSL transformation. Likewise, in [268], a visual formalism has been
applied to the definition of the structure of an XML document and, augmented
with a graph rewriting mechanism, used to specify document transformations. An-
other form of data transformation is provided by visual query languages [43], which
have also been applied to XML documents (e.g., Xing [71], XML-GL [44]). Unlike
in JOpera, where the same visual language is used both for modeling the composi-
tion of services as well as for specifying the necessary adaptations, these languages
and tools are focused only on describing XML data transformations. Mismatching
service interfaces were already a problem in the pre-Web services era. In the context
of Electronic Data Interchange (EDI) systems, a visual language and environment
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for EDI message translation has been presented in [94]. Similar to JOpera, the
mappings, which are compiled to a different representation for execution, can still
be interactively debugged using the same visual notation.

2.2. Software Composition

The idea of developing large scale applications by composing coarse grained, reusable
software component modules has been pioneered by [154]. In [254] the term megapro-
gramming has been proposed to describe the construction of large scale software
systems by composition of — so called — megamodules [188]. It has also been widely
recognized that composability is a valuable property of a software system [158]. As
opposed to closed solutions, open, composable systems can foster network effects
thanks to their potential for reusability [48].

In the past, the idea of component based software engineering [101] has surfaced
many times as the next silver bullet [31], which would be expected to revolutionize
the software industry [52]. On the one hand, the full potential of component based
software engineering has not yet been reached. For example, concerning the quality,
or the lack thereof, of current software components, the notion of trusted components
has been recently brought forward [160]. On the other hand, several different com-
plementary (and competing) component-based frameworks have appeared targeting
specific programming languages, platforms and application domains [69] (such as
Delphi [128], CORBA [177], J2EE [56], COM [28] and many others [54, 180, 232]).

As listed in [224], in the literature there have been many definitions of the term
“software component”, each with its own architectural assumptions and the cor-
responding reusability constraints. In general, [16, 199] characterize and classify
software composition systems by their component model, composition technique
and composition language.

1. The component model defines how to describe components, and includes rules
for exchanging equivalent ones. Abstraction, modularity and information hid-
ing are all important features of a component model [184]. Furthermore,
standardization at the level of the component interfaces should enhance their
reusability and substitutability, while lowering the learning curve [149, 159].

2. The composition technique describes the mechanisms used for composing the
components, with the ability of defining parameter types and specific data
exchange protocols. Furthermore, to increase reuse, these techniques should
provide support for adaptation (to fit a component to a given interface) and
gluing (to mediate between different components) [195].

3. The Composition language influences the way composite systems are specified.
It defines how to describe the architecture of a system built out of components,
e.g., in terms of different styles [211]. In [82], it has been proposed that
composition (or “glue”) languages, should be separated from programming
languages, which are instead more useful for implementing the functionality of
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the individual components [203]. A framework to classify and compare many
existing architecture description languages has been developed in [156]. These
languages with the appropriate supporting tools for active specification should
be the basis for a composition-based software construction process. Since
software systems tend to evolve and grow over time, the languages used to
describe them should support the corresponding evolution of their architecture.
Finally, a composition language should also lend itself to composition, i.e. by
providing modularity constructs.

In this context, [225] gives a modern perspective on the relationship between
component based software engineering and service oriented architectures. A service
can be seen as a kind of component, as individual services can and should be com-
posed into larger systems [183]. As opposed to traditional software components, the
reusability of services is greatly enhanced, because

a service is an instantiated configured system that is run by a providing
organization. That is, a service is fully grounded. Ultimately, it includes
the power supply to the server machines as well as the organization that
somehow manages to pay the power bill [225].

Therefore, when composing systems out of reusable services, the static, “spatial”
relationships between the component services become less important, due to the fact
that all of the dependencies of a service — by definition — have been taken care of by
the providing organization. Moreover, the interoperability between the services is
guaranteed by the standardization of the mechanisms and protocols used to interact
with them [5]. Instead, it is more useful to define composition in terms of the
dynamic interaction of services along the “time” dimension [91].

Following these ideas, with the abstraction of service, i.e., an interface linked to
a set of access mechanisms, in Chapter 4 we generalize the notion of component to
enable composition across heterogeneous component models, i.e., not limited to a
specific access mechanism, such as Web services [245, 246]. Likewise, composition
across heterogeneous component models has also been advocated in [174], where the
feasibility of integrating EJB with COM components has been demonstrated in the
Vienna component framework [175].

2.2.1. Web service composition

Although they may not solve all component integration problems [236], emerg-
ing Web service technologies show great promise in reducing the complexity of
interconnecting heterogeneous software components distributed across the Inter-
net [61, 73]. They provide standard protocols for invoking (SOAP [245]), describing
(WSDL [246]), and discovering (UDDI [173]) services in a platform and vendor in-
dependent manner [89]. Web services collaboration has been named the “Next Big
Thing” [269] because Web services can realize their full potential only through the
ability to compose complex services out of agglomerations of basic ones [42].
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More precisely, once it is possible to interact with individual services, the ability
to reuse, compose and describe relationships between basic services becomes impor-
tant [5]. Furthermore, a stateful Web service may export multiple operations, which
may need to be invoked following a certain interaction pattern. Another innovative
aspect of Web services consists in the flexible and dynamic means of assembling
different services. To do so, services advertise their capabilities so that they can be
automatically discovered by the clients composing them [65]. Considering that it is
not realistic to expect clients to be able to interact with arbitrary services, current
efforts focus on enabling alternative implementations of previously known services
to be located and invoked [110].

To denote these ideas various terms have been proposed: choreography [248], or-
chestration [112], automation [227], coordination [113], collaboration [66], and con-
versation [249]. In our case we prefer the term composition, since we are interested
in developing applications by composing existing and reusable building blocks [263].

Web service composition is a very active area, where many different projects
and many systems (e.g., [5, 34, 42, 47, 143, 165, 183]) are currently under develop-
ment spanning from the extension of traditional programming or scripting languages
(e.g., [12, 107, 121, 161, 221]) to new, ad-hoc languages (e.g., XL [74, 75]), including
XML-based process modeling languages [29, 66, 112] as well as visual programming
languages [167] and data-driven modeling languages [45].

Concerning the limitations of traditional programming languages when applied
to coarse-grained composition, already in [82] the case for a separate “glue” lan-
guage to coordinate the individual components was presented. Furthermore, re-
ferring to the old impedance mismatch problem between programming languages
and databases [51], it has been argued that a similar problem exists with Web
services [74]. Although more and more tools (e.g., [12, 107, 161, 221]) are being de-
veloped to address some of these issues, interacting with such coarse grained units
of compositions by exchanging complex XML documents is still cumbersome to do
with ordinary programming languages.

Our alternative approach towards a language for composition at a higher level of
abstraction originates from the workflow area [83], where process modeling languages
and related tools have been evolving to support the composition of Web services [141,
269]. In fact, both the emerging Business Process Execution Language for Web
Services (BPELAWS [112]) and the competing Business Process Modeling Language
(BPML [29]) specifications use an XML-based syntax to represent how the Web
services are composed into executable processes.

It should be noted that some efforts are currently concentrated in automat-
ing some of the tasks involved in composing services residing at different location
and platforms by leveraging semantic annotations in their interface descriptions
(e.g., [155]). Hence, an XML syntax appears to be well suited for supporting auto-
matic service composition. Nevertheless, we would like to emphasize that no matter
whether a Web service composition has been manually constructed by a human pro-
grammer, or matching services have been connected automatically using additional
semantics, a visual surface language (such as the JOpera Visual Composition Lan-
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guage), which can be used to give a complementary, visual representation of the
result, is of fundamental importance to enable its understanding.

2.3. Process Modeling Languages

As previously mentioned, our approach to modeling service composition is based
on the notion of process, which is related to the term workflow. The Workflow
Management Coalition (WfMC) originally defined workflow as

the automation of a business process, in whole or part, during which doc-
uments, information or tasks are passed from one participant to another
for action, according to a set of procedural rules [135].

Apparently, this definition restricts the scope of applicability of processes to
business automation scenarios. This assumption can be considered as a result of
the evolution of workflows from the groundbreaking work on office information sys-
tems [67, 270] and related studies on organizations [172]. Nowadays, Business Pro-
cess Management Systems (BPMS) are defined as

a generic software system that is driven by explicit process designs to
enact and manage operational business processes [239).

Still, we could remove the word “business” to have a more general definition
with a wider range of applications. In any case, such definition implies that a mod-
eling language is required to specify the processes to be enacted by the underlying
“process-aware” system. As opposed to hard-coding assumptions about a business
process into the architecture of a corporate information system, having an explicit
description of a process has several advantages:

1. Explicit workflow models enable actors to track the progress of active pro-
cesses and perform off-line analysis of the executions which can provide useful
feedback for improving the performance of the processes and contribute to
the efficiency of an organization. Thus, in addition to task coordination is-
sues, process models typically include a specification of non-functional aspects,
such as deadlines, priorities, as well as resource constraints.

2. A workflow model represents the high-level procedural aspect of a business
process. It can be used as documentation for business analysts and internal
auditors, but — as opposed to other modeling notations (e.g., UML [63, 256])
— still retains formal, executable semantics that can be automatically enforced
by a workflow engine.

3. Likewise, if the process of modeling is essential in creating shared understand-
ing in an organization, the modeling technique employed is meant to keep
discussions on the right track, and should be chosen accordingly [123].

10
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4. In addition to information and data, also business processes, i.e., the connec-
tion of tasks in a value chain, are valuable assets of an organization [209].
Thus, similar to database management systems, which are normally used for
the safekeeping and management of an organization’s data, also process man-
agement tools should be used to model, analyze, and execute its business
processes [215].

In the past ten years, a very large number of process modeling languages have
been proposed both from the industry and academia. (e.g., [26, 64, 83, 164, 233,
239]). Process modeling languages have been applied to several domains, includ-
ing business process modeling [146, 200], e-commerce [6, 202, 235], virtual labo-
ratories [4], DNA sequencing [157], scientific computing [153, 252], grid comput-
ing [22, 39], and software development [78, 181]. More recently, the notion of process-
based service composition has appeared [42, 147]. To address some of the require-
ments of these areas, it was suggested to extend such languages with features such as
flexibility [237], event-based interaction [41], and transactional properties [148, 206].

One of the contributions of [98] was the abstraction from the variety of existing
languages of a set of common constructs and features into a canonical representation
for processes. By defining mappings from different, domain-specific representations,
the same, generic process model can be used to execute processes belonging to
different application domains. In this dissertation we build on this idea, as we
have structured our process modeling language across different levels and defined
mappings across each of them. As shown in Figure 2.1, each level corresponds to a
particular function that determines the characteristics of the language.

e At the user-oriented level, processes are displayed using a visual notation
(Chapter 3). The same notation is used both at development and at de-
bugging, monitoring time.

e However, a tool-oriented XML-syntax is used for the internal storage of the
processes (Chapter 5). This facilitates the development of an open process
development toolchain, where a set of editors, model checkers, compilers share
a common representation optimized for efficient automatic processing.

Function Syntax Language

Display Visual JVCL (Chapter 3)

Storage XML OML (Chapter 5)

Execution | Platform-dependent | Java, BPEL, OCR (Chapter 6)

Figure 2.1.: Summary of the process modeling languages presented in this disser-
tation

11
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Workflow pattern OML BPEL [258]
1 Sequence + +
2 Parallel split + +
3 Synchronization + +
4 Exclusive choice + +
5 Simple merge + +
6 Multichoice + +
7 Synchronizing merge + +
8 Multimerge - -
9 Discriminator + -
10 Arbitrary cycles + -
11 Implicit termination + +
12 Multiple instances (without synchronization) + +
13  Multiple instances (with a priori design + +
knowledge)
14 Multiple instances (with a priori runtime + -
knowledge)
15 Multiple instances (without a priori runtime - -
knowledge)
16 Deferred choice +/- +
17 Interleaved parallel routing +/- +/-
18 Milestone + -
19  Cancel activity + +
20 Cancel case + +

Table 2.1.: Workflow patterns supported by the Opera process Modeling Language

e Before they can be executed, processes are compiled to other representations
such as OCR [98, 21], BPEL [112], and Java (Chapter 6). This approach is
very similar to emerging Model Driven Architecture (MDA [127]) techniques,
as a refined, executable representation of a process is generated automatically
from its higher-level design.

Incidentally, a similar approach is currently followed by most modeling tools,
where the visual UML representation is internally stored (and exchanged) using the
XML-based XMI language. This way, different UML editing tools not only share the
same visual language, but also achieve interoperability, as the diagrams produced
with one tools can be read by another one.

Alas, this level of interoperability has not yet been achieved by current pro-
cess modeling tools. In practice, given the number of process modeling languages
and tools on the market, issues such as runtime interoperability and portability of
process definitions become very important [60]. To address this technology lock-
in problem [158], several major players are currently proposing process modeling

12
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standards. Although the current leader is represented by the BPELAWS specifica-
tion, which we briefly present in the following section, a consensus has not yet been
reached on a common process modeling language.

Different process modeling languages can be also compared in terms of their
expressive power. More precisely, an evaluation based on so-called workflow patterns
can be carried out [233]. To give an idea on how the Opera process Modeling
Language (Chapter 5) fares in this regard, in Table 2.1 we have listed what are the
control flow patterns that can be naturally expressed.

2.3.1. Business Process Modeling and Execution Language for
Web Services

The Business Process Execution Language for Web Services (BPEL4AWS, or
BPEL [112]) is a process modeling language for Web service composition. It con-
tains abstract and executable processes. Abstract processes are used for describing
business protocols, while executable processes may be used to implement composite
services. Based on an XML-syntax, BPEL supports a fixed set of basic activities
(e.g., invoke, send, receive, assign) to represent the synchronous or asynchronous
invocation of services or data transfers between the global variables of a process.
Furthermore, it also includes complex activities (e.g., sequence, flow, while, pick)
which are used to define the structure of the process in terms of its control flow.

Although this specification represents the current state of the art in process-
based Web service composition, its standardization process has not yet completed
and further additions and modifications are being discussed at the time of writing.
Figure 2.2 attempts to put the evolution of this language into context. BPEL
originated from the fusion of two existing (and quite different) languages. Its graph-
based constructs (such as flow) have been inherited from the IBM’s Web Services
Flow Language [142]. The block-based constructs such as while or sequence come
from Microsoft’s XLANG [227].

The presence of alternative, overlapping and inconsistent constructs has made it
a challenge to add features such as exception handling [58]. Furthermore, although
the language originates from the fusion of two different ones, it provides limited
support for a large set of established workflow patterns [258] (Table 2.1). In practice,
the language makes it particularly difficult to compose services with mismatching
interfaces, as one of its underlying assumptions is that the services to be composed
have perfectly matching interfaces [116]. Lately, as some more limitations have
become apparent!, the proposal of extending the language with support for including
Java snippets was brought forward by IBM and BEA Systems [111]. Although the
need for such an extension is clear, one may argue that, as opposed to Java, a
.NET compliant language should be chosen instead. Thus, a technology which was
originally tied to platform neutral Web services, becomes once again tangled into
portability issues [216]. BPEL has also been criticized for lacking a clear formal
underpinning.

1See Section 4.1 for a discussion on the limitations of restricting composition to Web services.
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Figure 2.2.: Fvolution of the BPELJWS specification

Although there are well-established process-modeling techniques com-
bining expressiveness, simplicity, and formal semantics (such as Petri
nets [190] and process algebras [162]), the software industry has chosen
to ignore these techniques. So, the world is confronted with too many
standards, mainly driven by concrete products or commercial interests.
The only way to stop this is to ignore standardization proposals that are
not using well established process-modeling techniques. This will force
vendors to address the real problems rather than create new ones [236].

As we will show in the first part of the dissertation, the languages we developed
share with BPEL the notion of process-based composition. However, there are many
important differences that should be pointed out. First of all, simplicity was one
of the goals in defining JOpera’s process based language. Therefore, as opposed
to creating a language by accumulation of features from existing ones, we purpose-
fully kept the number of redundant (and arbitrary) constructs to a minimum. This
approach helped both to lower the language’s learning curve and to simplify the
design and significantly reduce the development effort of the supporting tools. Fur-
thermore, the JOpera Visual Composition Language does not use an XML-based
syntax (Chapter 3). As we will show in Example 4.3, in addition to service compo-
sition, the same visual syntax can be also applied to specify interface adaptations.
Furthermore, the process-based service composition language we have developed is
not tied to a particular service access technology. In other words, Web services are
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only one of the various types of components that can be composed into a JOpera
process (Chapter 4).

To the best of our knowledge, the BPEL4AWS [112] specification is currently sup-
ported by three implementations. In all cases the execution engines are meant to
be deployed inside an application server. The Collaxa BPEL Server [49] is the most
advanced as it comes with a graphical process designer and debugger. The visual no-
tation employed has a very close mapping to the underlying BPEL document. This
has the advantage that a BPEL document doesn’t need to be edited at the XML
level. On the other hand, unlike the JVCL language, the notation is not abstract
enough to be applied to other process modeling paradigms. The second implemen-
tation is the Business Process Execution Language for Web Services Java Run Time
(BPWS4J [106]) from IBM, which also includes an editor with minimal visual sup-
port. The third system supporting the BPEL specification is OpenStorm’s Service
Orchestrator [179]. In addition to a two-way graphical/ XML editor, it features a
runtime environment which can be deployed in both Java and .NET application
servers.

2.4. Process Management Systems

Although the exercise of defining a new process modeling language is not too dif-
ficult, more work is required to actually build a system for the execution of such
language. Thus, relatively less work can be found about distributed architectures
for scalable process execution [92]. More specifically, scalability has been a com-
mon goal to be achieved through different means: replication at the database layer,
distribution in the process execution engine and decoupled communication through
events notification. Only rarely all of these approaches have been followed within
the same system.

The idea of building a distributed workflow enactment system based on event
communication and event-condition-action rules has been also proposed, e.g., in
the EVE project [85] and the ORCHESTRA process support system [57]. The
exchange of event notifications plays an important role in our approach. However,
in our experience, ECA rules are only a useful intermediate representation to bridge
the gap between graph based models, which can be more readily understood by the
user designing the process, and the corresponding executable code (Chapter 6).

The theme of enhancing the system’s fault tolerance and scalability through
replication at the database layer has been pioneered by [124]. Also in the MOBILE
project [102], in order to replicate the process execution layer, a scalable strategy
for distributing the process data among separate databases has been proposed [208].
Although we compare the performance of a centralized, persistent repository with
a distributed, volatile implementation, in Chapter 7 we do not pursue replicated
storage any further.

Decentralization has been pursued by the MENTOR project [257], where process
definitions are analyzed and automatically partitioned among distributed execution
sites in order to avoid the bottleneck of a centralized engine [168]. This approach
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Research Group.

fits well with the requirements of workflows spanning across multiple organizations.
However, it is possible for one execution site to become a hot spot, when it is in-
volved in the execution of a large number of processes. To deal with this problem,
techniques such as meta-data replication based on publish/subscribe and the abil-
ity to partition process navigation among alternative service providers have been
employed by the OSIRIS project [207, 251].

Once a distributed process architecture has been designed, load balancing,
network congestion and quality of service guarantees become interesting options.
In [122] a cluster-based workflow management system has been presented focusing
on a quantitative comparison of two different load balancing strategies. In [20] sim-
ulations are used to study how different workloads influence the load of the network
and thus, the scalability of the workflow engines in the context of several distributed
architectures. In [95] extensive simulations are used to validate a composition model
with quality of service guarantees based on service overlay networks.

2.4.1. About the JOpera project

JOpera is the visual, process-based service composition system of the Information
and Communications Systems Research group at ETH Zurich [185] and corresponds
to the latest development step of a series of process support systems which were
prototyped in the past decade. To put this dissertation into a historical perspective,
in this section we briefly present the foundation on which we have built upon.

The original OPERA system developed as part of [98] has since undergone several
generations and evolutionary branches, some of which are shown in Figure 2.3. In [9],
the idea of applying workflow management systems to an area wider than business
process modeling and enactment was first explored by arguing that such systems
could provide a platform for distributed processing over stand-alone systems and
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applications. Based on this approach, an example application scenario related to
geographical information systems was presented in [7]. Following these ideas, in
order to show the benefit of making workflow modeling languages more and more
similar to traditional programming languages, the introduction of features such as
exception handling [97] and inter-process communication [8] was proposed. As we
will present in Section 3.4.3, exception handling is also supported by the JOpera
system in a similar fashion. However, in Section 4.10 we will show a simpler solution
to model the asynchronous interactions of different process instances. Instead of
extending the process model with additional constructs, we included basic send and
recetve primitives in JOpera’s component library.

Later on, the kernel of the OPERA system was extended with transactional ca-
pabilities [206]. The result was the WISE system, a platform for creating virtual
enterprises, tailored to the business to business electronic-commerce area [6]. In this
project, a first visual representation of OPERA’s textual process modeling language
was introduced by integrating a graphical modeling tool called IvyFrame [115]. Com-
pared to the JOpera Visual Composition Language, the visual notation of WISE —
used to represent only the control flow dependencies between the tasks of a process
— was based on Petri nets. As part of the project, the Ivyframe tool was extended
to support the whole lifecycle of a process with development, simulation and mon-
itoring features. The WISE system was applied with success within the maritime
industry [136].

Quite different from electronic commerce and virtual enterprises, bioinformatics
and virtual laboratories were the original application area of the BioOpera sys-
tem [4]. In it, a heavily refactored version of the original OPERA kernel was aug-
mented with resource management and scheduling capabilities [186]. This allowed
us to show the feasibility of applying a process support system to cluster [23] and
grid [22] computing scenarios. More precisely, in BioOpera the notion of process
was applied to model complex distributed computations to be enacted over one or
more unreliable clusters of computers. Reliability was achieved through a persistent
implementation of the process execution kernel and through the ability of auto-
matically rescheduling failed task invocations. Given the complexity of managing
long-lived computations in such distributed environments, [21] showed the feasibility
of an approach based on autonomic computing principles [109].
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3. JOpera Visual Composition
Language

This chapter introduces the syntax of the JOpera Visual Composition Language
(JVCL), describing the visual representation of processes and their data flow (Sec-
tion 3.3) and control flow (Section 3.4) structure as well as more advanced constructs
such as iteration (Section 3.5), visual comments (Section 3.6), and reflection (Sec-
tion 3.7).

3.1. Motivation

Why a new visual process modeling language? As we have seen in the previous
chapter, there have been already many contributions, both in the areas of visual
programming languages and visual process modeling.

Visual programming languages, however, have been mostly oriented towards pro-
gramming in the small, positioning themselves on a level of abstraction comparable
with traditional programming languages, such as C or Java [104]. In this domain,
it has become clear that two (or three) dimensional approaches suffer from visual
scalability problems [35], where the usability of such tools and languages decreases
as the size of the diagrams increases [191]. Only recently there have been some
attempts to shift the focus to programming in the large, where the composition of
coarse grained software components (or services) plays a more important role [167].

In this dissertation, we have designed a visual composition language, whose main
application domain lies in describing of how services are composed together [187].
We believe this is a more viable application area for a visual language, where a
non-linear, two dimensional syntax can be most appropriate. Furthermore, with our
language and tools we have also made an attempt to address the visual scalability
problem?.

Visual process modeling languages have been mostly based on adaptations and
variations of existing graphical notations and formalisms (e.g., Petri-Nets [190, 234]
or State Charts [100, 257]). Also within the UML community, business processes
have been usually modeled using Activity diagrams [256], for which the underlying
semantics has been upgraded to Petri Nets in the current UML 2.0 proposals [116].
The strong point of all of these approaches lies in the accurate description of the

'See Section 7.2.2 on page 150 for more information on the usability features of JOpera’s visual
development environment.
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control flow of a process, where a large number of constructs is devoted to describing
the partial order of invocation of the services composing the process, in order to
support various branching and synchronization patterns [233]. However, as these
notations are applied to service composition, some limitations become apparent:

e In order to provide an executable description of a process built out of in-
terconnected components, it is not enough to model its control flow, as the
components typically exchange some kind of information between their invo-
cations.

e Most existing visual process modeling languages do not use a visual syntax to
program the data flow, which describes how data is transferred across com-
ponent boundaries. As an example, in the syntax of the UML 2.0 activity
diagrams profile for Web service composition, the data flow transfers between
the activities representing service invocations are programmed with a textual
syntax inside comments associated to control flow edges [116].

e Very little can be done with a pure control flow approach, as far as the visual
modeling of the necessary adapters between mismatching service interfaces is
concerned.

e The control flow and, when supported, data flow aspects of a process model are
usually overlayed in a single diagram [63]. This approach leads to unnecessary
clutter and, given the complexity of real business processes [36], may hinder
the usability and the success of such visual languages and tools.

In the language we describe in this chapter, we attempt to address such lim-
itations by modeling processes primarily by their data flow structure. This way,
developers can define the composition of services by drawing connections between
their interfaces and, in realistic settings, also visually specify the required adapters?.
Nevertheless, the control flow structure of a process is still accessible, as it provides
a useful overview over the content of a process and the order of invocation of its
components, but it is not the primary (and only) feature of the language, as such
information can be partly derived automatically from the data flow graph.

Finally, one of the goals that influenced the design of the JOpera Visual Compo-
sition Language was to provide a simple, intuitive — and executable — visual notation
to support the rapid, user-friendly development of processes composed of reusable
services. To avoid misinterpretation problems [96] we reduced the number of ad hoc
constructs and extensions to a minimum, keeping the balance between the need for
expressive features and the constraints imposed on the underlying JOpera runtime
platform.

2See Example 4.3 on page 69 for an example on how to visually adapt mismatching service
interfaces
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3.2. Processes and Tasks

A process is composed of tasks, which can be either activities (simple tasks) or
subprocesses (complex tasks). Activities represent the invocation of a service, while
SubProcesses represent the invocation of another process. As shown in Figure 3.1,
in the JVCL language a task is drawn as a box with its name inside. An activity
box has a single border; boxes for subprocesses have a double border to indicate
nesting. Furthermore, the name of the service to be invoked or the process to be
called can also be displayed in the task box. If necessary, e.g., to reduce clutter, the
user can decide to hide this additional information. Given the abstract nature of
most services and to keep the notation as simple as possible, we have chosen not to
use icons in addition to names to illustrate the tasks’ operations [196].

The tasks of a process are linked by data flow (Figure 3.2) and control flow
(Figure 3.3) dependencies, therefore the structure of a process can be programmed
by drawing two directed graphs. The nodes of these graphs represent the tasks and
their data parameters. The edges represent control flow or data flow dependencies.

3.3. Data Flow

The data flow graph defines how the data is exchanged between the parameters of
the various tasks of the process. The nodes of the graph represent the process, its
tasks and their parameters. The edges represent data flow transfers.

More specifically, tasks are associated with a set of input and output data pa-
rameters. Input parameters are used to pass data to a task about to be started.
Output parameters contain the results returned from the task once its execution
has finished. This property is visually represented in the data flow graph syntax, as
the tasks are connected with incoming edges to their input parameters. Conversely,
outgoing edges connect tasks to their output parameters. It should be noted that
these edges are not removable, since there cannot exist a parameter box disconnected
from its task. To complement the parameter’s name, it is possible to show its type
inside the same box. The user may choose to display this additional information,
e.g., to resolve type mismatches.

Similar to tasks, also processes have input and output parameters. However, to
improve readability by giving a higher degree of freedom for the graph layout, the
parameters of a process are linked to two separate shapes representing the input
and output interface of the process.

Process
Process

SubProcess Activity

” SubProcess ” | Activity |

Process Service

Figure 3.1.: Syntaz definition for the Activity and the SubProcess
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Figure 3.2.: Data flow graph syntax

3.3.1. Bindings

Data flow connections between parameters define how their content is transferred
between them: a data flow binding is represented as an edge going from an output
parameter box of a task to an input parameter box of another task. Furthermore,
as shown in Figure 3.2, also constant values can be connected to input parameters
of tasks.

The same parameter can be connected by multiple data bindings. For example,
to copy data produced by one task to multiple ones, one output parameter box can be
linked to multiple input boxes. Multiple incoming bindings are also allowed by using
a last writer wins semantic: the value of the input parameter will be overwritten
each time a task finishes and, at the end of the process, its value will be a copy of
the output parameter attached to the task finishing last. This rule has been chosen
considering that multiple incoming bindings are mostly used in loops or when the
control flow merges from two or more alternative execution paths.

The same rule is also applied to the output parameters of processes. More specif-
ically, if such a parameter is bound to a constant value or directly to a process input
parameter, this binding is evaluated first, as the process is started. The remain-
ing bindings are evaluated after their corresponding tasks have finished. Thus, the
value of the process output parameter will be overwritten only if these tasks will
have finished their execution, as specified by the conditions in the control flow graph.
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Figure 3.3.: Control flow graph syntax
Task boxes contain the name of the task and the name of the program (or process)
to be invoked. Activity2 and Activity3 are marked with the condition icon.

3.4. Control Flow

The partial order of execution of the tasks inside a process is defined by its control
flow graph, with tasks as nodes and control flow dependencies as directed edges.
(Figure 3.3)

By definition, a data flow binding between two tasks implies a control flow de-
pendency. This is because it is not possible to transfer data from task A to task B
unless task A has successfully finished execution and B has not yet been started.
It follows that a subset of control flow dependencies can be automatically derived
from the data flow specification. Furthermore, extra control flow dependencies can
be directly added to the control flow graph to model constraints in the order of
execution of tasks that are not explicit in the data flow.

A control flow edge from node A to node B is used to show that task B cannot
start until task A has reached a certain execution state associated with the edge.
Examples of such states are: finished (by default), failed (when an error during the
execution of the task is detected), aborted (after an user has killed the task), or not
reachable (when the task has been skipped). The state is visually represented by
the color of the dot positioned at the tail of the control flow edge. This makes it
easy to follow, at runtime, whether a control flow dependency has been activated,
as this only happens if the color of the task box, representing its state, matches the
color on the edge.

3.4.1. Conditions

Start conditions, boolean expressions referencing parameter values, are associated to
each task and can be used to model alternative execution paths. A task can only be
started when all of its control flow dependencies are activated and its start condition
is satisfied. Otherwise, if the condition evaluates to false, the task is skipped. In this
case, to record this decision the state of the task is set to not reachable. Currently,
start conditions are specified only in textual form as one of the task properties.
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However, boxes of tasks with non-trivial conditions (e.g., TRUE) are marked with a
small question-mark icon.

3.4.2. Synchronization

If there is more than one incoming control flow edge to a node C it must be de-
fined how the various dependencies are combined, as task C' represents a potential
synchronization point in the process where multiple execution paths merge.

By default, the semantic is to and all dependencies. For example, if there is a
dependency coming from service A and another from B, task C' cannot be started
until both tasks A and B have finished. One exception to this rule is when there
is a merge of alternative execution paths, in that case the semantic is to zor the
connections. Similarly, for incoming connectors part of a loop in the graph, the
semantic is to or the loop dependency with the others.

To provide a general way of modeling arbitrary synchronizations in the control
flow, in addition to a condition, a task is associated with an activator, a boolean
expression defining how to synchronize multiple incoming control flow edges. Such
expression, normally generated from the control flow graph, can be also edited in
textual form. In this case, the JOpera Visual Development Environment ensures
that the graph topology and the activator remain consistent.

3.4.3. Exception Handling

Modeling failure handling behavior is an important requirement for a composition
language, as exceptions are the rule when running processes in a distributed envi-
ronment. As opposed to introducing an ad-hoc language construct, e.g., block-based
exception handling, we extend the existing control flow graph construct as follows?.

As shown in Figure 3.4, failure handling behavior is specified in the control flow
graph by using connectors which fire on failure of a task. An exception handling
task may be added to a process by drawing such connections from one or more tasks
to it. Similarly, a compensation handler is added by connecting it to the task which
may require compensation with a control flow connector which fires after the task
is aborted. With start conditions applied to the output parameters of the failed
task, it is possible to discriminate between different types of failures and activate
the appropriate exception handler. By drawing an edge from the exception handler
back to the failed task it is possible to retry its execution after the exception handler
has finished. As an alternative, it is possible to resume the execution of the process
along an alternative execution path, triggered by the failure.

With the previously described solutions, it is possible to handle the failure of
individual tasks. Furthermore, in order to handle the failures of any tasks belonging
to a certain part of a process, the same exception handler should be triggered by
the failure of at least one task belonging to a certain set of tasks. To model this,

3Tt is possible to map a block surrounding a set of tasks to edges linking the tasks to the exception
handler corresponding to the block [58].
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Figure 3.4.: Control flow with exception handler

it is possible to connect the various tasks to the same exception handler with the
appropriate failed dependency and to select an or synchronization type between all
of the dependencies. This way, the exception handler will be triggered by the failure
of at least one of the tasks.

Another possibility, similar to block-based exception handling, is to attach an
exception handler to a subprocess, so that it will be triggered by any failure occurring
inside the called process. This is particularly useful when the exception handler
cannot be added directly within the same process which contains the tasks that
may fail.

Example 3.1: Book Prices

As a first example, we show how to use the basic features of the JVCL language
in a Web service composition scenario where a process is used to compare the
prices of books sold at various Internet stores. This process receives as input
an [ISBN number and returns as output an URL for a report containing the
price comparison for the book. Since stores at different countries return prices
in their own currency, the user may supply the currency to be used in the
report as optional input parameter. The process contains the necessary steps
to perform the currency conversion. The report also contains the book’s author
and title, retrieved from a library database, and a listing of the top 5 results
returned by a web search engine looking for the author and the title of the

book.
Process BookPrices

Figure 3.5 shows the control flow graph for the price comparison process. The
process is composed of three activities (Library, GoogleSearch, MergeReport)
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and one subprocess (QueryBookPrice). As its name suggests, QueryBookPrice
involves contacting a book store to inquire about the price of a certain book
identified by its ISBN. While this happens, the Library activity retrieves the
author and title of the book. When the library query finishes, the web search is
started and when all of the previous tasks are finished the report is generated.

BookPrices - ControlFlow

Library f--------- !

v v
GoogleSearch -= MergeReport

A\

I

I

| QueryBookPrice | --------

Figure 3.5.: Control flow graph of the BookPrices process

The data flow graph of this Process has been partitioned into two differ-
ent views to enhance its readability. Figure 3.6 shows one view with data
parameters and bindings of the Library, GoogleSearch, and MergeReport ac-
tivities. While the second view in Figure 3.7 shows the data flowing through
the QueryBookPrice subprocess.

The first view (Figure 3.6) shows one of the input parameters of the pro-
cess (isbn) passed both to the Library and MergeReport activities. Given
the isbn as input parameter, the Library activity returns the corresponding
author and title. These two parameters are passed on to the GoogleSearch
activity, which will run a web search using them as keywords and return the
top b results. The MergeReport activity receives the title, the web search
results, the author and isbn of the book, it uses it to generate a report and
returns a url where it can be found. When the process is finished this value is
returned as the reporturl output parameter of the process.

The rest of the data flow is shown in the view of Figure 3.7, which shows
an example of the parallel split and merge iteration constructs presented in the
following Section 3.5. In the example, they are used to simplify the process,
because it can call in parallel four different services having the same inter-
face with only one subprocess. Both isbn and destination currency process
input parameters are passed to the processQuery subprocess, which also re-
ceives the identifier of the bookshop service to be called and the source
currency of the price returned by the service. At runtime, a parallel copy
of the processQuery subprocess will be executed for each element found in
these two input parameters. In the example, the service and source param-
eter are bound to constants with a list of four strings, which contain service
identifiers (BooksCH, AmazonCOM, AmazonDE, BNCOM) and the corresponding
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currency identifiers (CHF, USD, EUR, USD). The prices returned by the par-
allel instances of the processQuery subprocess are merged into the prices
input parameter of the MergeReport activity. Both views show the same data
flow connection binding the output of the last activity with the output of the
process.

BookPrices - DataFlow/Search

> BookPrices Input <

(results J (author)

< BookPrices Output >

Figure 3.6.: First data flow view of the BookPrices process

Process QueryBookPrice

The QueryBookPrice process is called from within the BookPrices process.
It contacts two Web services in order to inquire for the book’s price and to
convert it to the desired currency. Figure 3.8 shows its data flow graph. This
process contains two activities: QueryBookPrice, CurrencyConvert. The in-
put and output parameters of the process match the ones of the processQuery
subprocess. The isbn of the book is passed to the QueryBookPrice activity.
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BookPrices - DataFlow/Query
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Figure 3.7.: Second data flow view of the BookPrices process

QueryBookPrice - DataFlow

> QueryBookPrice Input<

N
(sonice)

(SOUI’CS J

amount

< QueryBookPrice Output >

Figure 3.8.: Main data flow view of the QueryBookPrice process

In order to choose the services to call, the actual service name is assigned
to one of the activity’s system input parameters called SYS.prog, resulting in
the invocation of the corresponding service. After the query has completed, the
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resulting price and the source and destination currencies are passed to the
CurrencyConvert service, which will return the corresponding amount. When
the process finishes, the converted price is returned to the caller. It should
be noted that the CurrencyConvert service is not invoked when the currencies
are the same, in this case the price is returned directly from the result of the

query.

3.5. lteration

Supporting iteration in a language based on the data flow paradigm requires to
introduce some auxiliary construct [166]. In the JVCL we rely on three constructs
with a different degree of generality. First, we introduce two special data flow
connectors used to repeat the same operation on every element of a list. Second,
we have been experimenting with arbitrary loops in the control flow graph. Third,
recursive subprocess calls are also supported.

3.5.1. List-based Loops

List-based loops can be used to repeat the same operation on a given set of values.
When no data dependencies hold between the values, the operation can be performed
in parallel. Otherwise, the task must be applied sequentially on each value. To
achieve this, we introduce a pair of special data flow connectors, called split and
merge. As in other graph rewriting schemes [25], the overall effect of these operators
at runtime is to replicate a task node for each value of the input parameter list. This
construct has also been classified as a multi-instance based workflow pattern, where
the number of multiple instances of tasks is known in advance, before the first one
is started [233].

This pair of operators has been originally introduced to support the modeling of
data parallel computations, where a potentially very large workload can be subdi-
vided in a number of small, independent partitions to be executed in a distributed

Process - DataFlow

/ Al

> Process Input < Task —D[result result list

</
Q

value value

< Process Output >

Figure 3.9.: Data flow syntax of the list-based loops
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environment, such as a cluster of computers [4]. Especially if the amount of work
is known in advance, the list-based loops offer a straightforward way of connecting
the three steps of such computation: 1) the partitioning of the input data; 2) the
parallel processing of the pieces; 3) the aggregation of the results, once all pieces
have been completed.

Figure 3.9 shows how these operators are visually represented. In it, a Task is
invoked for each element of a 1ist producing the corresponding result. Such split
operation is represented by the gray triangle on the data flow binding linking the
list to the element parameter. Although each task receives a different element of
the 1ist, all tasks are invoked with the same value, as this parameter is connected
with a plain data flow binding. Upon completion of all invocations, the merge
connector is used to concatenate all results into the result 1list parameter.

By setting properties associated with the operators (Figure 3.16), the user can
control whether the invocation of the tasks happens sequentially or in parallel and
how the elements are extracted from the list. For example, JOpera can interpret a
string with multiple words separated by blanks as a list of words. Similarly, JOpera
can also split and merge arrays encoded in the SOAP protocol using XML tags as
element separators.

In case of the parallel invocation of the multiple task instances, it is possible
to control both how the failures that may occur during the processing of some
of the elements are aggregated and how the parallel tasks are synchronized. In
some scenarios, it may be useful to ignore some of the failures, as long as some
of the elements can be successfully processed. Similarly, only if the results of all
tasks need to be merged, it is necessary to wait for all parallel tasks to complete.
Finally, in the case of a sequential split connector, the appropriate control flow
dependencies between each task of the sequence are automatically inserted when
the loop is unrolled.

3.5.2. Control Flow Loops

Arbitrary cycles in the control flow graph are used to describe the repeated execution
of parts of a process. Each individual task found within the loop is automatically
restarted when its direct predecessors have finished, even if the task has already
completed its execution more than once. To avoid endless repetition, the user should
attach the appropriate conditions to enter and exit the loop. In order to begin
executing a loop, the appropriate control flow synchronization must be selected, i.e.,
the dependencies leading into it should be or’ed with the loop dependencies.

In case of loops spanning through all tasks of a process, the user should indicate
which of the tasks in the loop is started first. If only one of the tasks receives data
directly from the process input parameter, this task is chosen as the first task of
the loop. However, in the general case, the user may have to include an additional
task, external to the loop, with no incoming control flow dependencies. This task
is executed once at the beginning of the process and it is linked to the first task in
the loop with a control flow dependency.

32



3.6. COMMENTS
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Figure 3.10.: Data flow view of a process to compute the factorial of an integer
value

3.5.3. Recursion

Another possible way of modeling repeated behavior is through recursion. In the
simplest case, this can be achieved with a subprocess referring to its container pro-
cess. This way, the tasks composing the process will be repeated as long as the
condition associated to the subprocess making the recursive call holds true.

As an example, Figure 3.10 shows the data flow graph of a recursive process,
which computes the factorial of a number. In the example, two tasks computing
Java expressions to decrement one number and multiply two numbers are linked with
a subprocess which recursively calls its container process. The condition associated
with the subprocess stops the recursion and forces the process to return the constant
value of one.

3.6. Comments

In most programming languages, comments are very important to enter humanly
readable descriptions of parts of the code. Also with the JOpera Visual Compo-
sition Language the user may attach a description to each process, as well as to
each component service. This description complements an object’s name by further
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specifying what the process or the component is intended to do. As with most visual
editors, further user comments can also be visually inserted into any of the data or
control flow graphs by means of text boxes (rendered with a typical yellow post-it
note flavour).

Another typical usage of comments in ordinary programming languages, is the
temporary removal of program code, which is “commented out” so that it will be
ignored by the compiler, while it still remains visible to the user. Given the practical
importance of such way of using comments, also in the JOpera Visual Composition
Language we support this approach. By visually stretching a comment box so that
it overlaps with existing parts of a diagram, the user may temporarily disable the
compilation of such diagram elements so that they will be ignored by the compiler
and will not be part of the execution.

3.7. Reflection

In this section we present the reflection features of the JOpera Visual Composition
Language. Reflection is the ability of a computational system to represent and
modify information about itself [151]. In the JOpera Visual Composition Language,
reflection is used to access metadata both about the static structure of the process
and about its state of execution, as well as about its runtime environment.

Reflection is very important in a language intended for service composition, as
it uses a well defined syntax to expose and give controlled access to the system pa-
rameters of the specific type of services that are composed. Furthermore, through
the invocation of system services, it is possible to model within a process the inter-
action of a process with its environment. This can be used, for example, to access
JOpera’s directory services, in order to discover what are the available providers for
a given service interface and, as we will show in Example 3.2 on page 36, to model
the late binding of a service implementation to its interface. The combination of
reflection with the list-based loops is an useful technique to enhance the reliability
and decrease the response time of a service invocation, as we will discuss in Example
3.4 on page 39.

SYS.soapin
V

V
V V

[ SYS.soapout ] [ SYS.retvaIJ [ SYS.stdout J [ SYS.stderrJ ( SYS.realtime ]
(a) (b) ()

Figure 3.11.: Example of system parameters and properties
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3.7.1. System Parameters

In addition to the data flow parameters defined by the user, each task is associated
with a set of system parameters and properties which can be used for a variety of
purposes. In general, they contain metadata about the execution of the process and
their values are updated automatically by the runtime environment. System input
parameters can be used to control the behavior of a task, e.g., setting its scheduling
priority, and can be connected with incoming data flow bindings like any other user
input parameter. System output parameters are used to read metadata about tasks,
e.g., their running time, and are connected with outgoing data flow bindings to
other system or user parameters. Similarly to user output parameters their value
is — by definition — available only after a task has completed its execution. One
exception to this rule are system properties which are also used to read metadata,
but their value can be read at any time, i.e., both before and after a task is executed.
Therefore, a data flow binding involving a system property does not imply a control
flow dependency.

The same visual syntax applies to both system and user data flow parameters,
with the only difference that the former are colored in gray and their name always
begins with the SYS prefix. System properties are linked to their task with an undi-
rected edge, symbolizing that their value can be read also before the corresponding
task has been executed.

The set of available system parameters depends on the type of component associ-
ated with the task, and changes for processes, subprocesses or activities*. Figure 3.11
shows the visual syntax of system parameters and properties with some examples.
In the case of activities representing Web service calls, the two system parameters
called soapin and soapout give direct access to the XML content of the SOAP
request and response messages (3.11.a). Similarly, for activities executing UNIX
programs, the stdin, stdout and stderr standard data streams are provided to-
gether with the retval parameter, which contains the exit code of the program as
it is returned by the operating system (3.11.b).

Each task is associated with a system property called ID, which can be used
to uniquely identify the task among all other tasks of the process and among all
instances of the task that have been executed by JOpera (Figure 3.11.c). This
property is typically used to generate unique filenames for storing the results of the
task, as it guarantees that they will not be overwritten by other instances of the
same task that are running concurrently.

For execution profiling purposes, JOpera measures the execution time of each
task of a process. This information is displayed to the user in JOpera’s process
monitoring environment. In addition, the same information can be accessed from
within a process, in the form of system parameters (cputime, realtime, walltime)
associated with each task (Figure 3.11.c).

4See Chapter 4 for more information on the relationship between system parameters and compo-
nent types.

35



3. JOPERA VISUAL COMPOSITION LANGUAGE

3.7.2. System Services

System services expose information about JOpera’s runtime environment and let a
process interact with it. They currently include: the program library API, the pro-
cess control API and the resource management and scheduling API. As opposed to
the system parameters, tasks invoking system services are not represented differently
from tasks calling other types of components.

The system services of the process control API are mainly used for controlling
the execution of a process from within the process itself. This enables, for example,
to cancel the execution of a process upon detection of a certain condition. Similarly,
it is possible to automatically suspend a running process upon reaching a certain
stage of the execution and have a user manually resume it when appropriate.

Examples on using the resource reservation service and the program library sys-
tem services for dynamic late binding are presented in the rest of the section. In
particular, we will show how to combine late binding and reflection with the list-
based loop operators to enhance the reliability of a service invocation, if multiple,
alternative service providers are available.

Example 3.2: Late Binding

Reflection can be applied to a Web service composition scenario, where typically
the services published on the Web have a variable degree of availability and
tend to evolve quickly, especially after the processes composing them have been
defined. Through late binding and the ability to gather information about the
available services, a process can be made more resilient to these changes as it
is dynamically adapted to the environment where it is running.

The example of Figure 3.12 illustrates how to use system parameters to
support late binding of tasks to services. The choice of which service (or process)
to invoke when executing a certain activity (or subprocess) is done dynamically
based on the value of the prog (or proc) system parameter. This value is
normally set at compile-time, but can also be changed at run-time, both by the
user and from within a process.

More in detail, the example data flow graph shows how to use the prog
system parameter to set the service that will be invoked by the CallService
activity. The name of the actual service is retrieved using the LookupService
system service, which attempts to locate a fitting service implementation given
the interface of the activity (identified by its ID system property) and the
additional constraint on the service’s name provided by the service process
input parameter.
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Figure 3.12.: Data flow view of the late binding example

Example 3.3: Cluster Resource Reservation

In a cluster computing environment, it is useful to program computations in
a parametric way with respect to the available computing resources. These
computations are normally developed in a small testbed, while in production
settings they should scale to use a larger amount of computing power. To enable
process portability, it is important to keep the process model independent of the
characteristics of the environment in which should run and let the system to the
necessary adaptations at runtime. To do so, the ability to inquire at runtime
about the number of nodes that can be reserved to perform a parallel task can
be very important, e.g., to dynamically determine the optimal partitioning of
the data [4].

The example in Figure 3.13 shows how to use the ReserveResource system
service. Behind it, there could lie the API of a complex resource management
and scheduling system, which has been greatly simplified for the purposes of
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this example. This system service receives one parameter called size, which
contains the number of desired nodes and returns the identifier of the group of
nodes that has been reserved as well as its size, indicating how many nodes
could be reserved. The former is passed to the resources system parameter
of the Compute subprocess. This parameter has the effect of constraining the
execution of the content of the subprocess to the given group of resources. The
size output parameter is then passed to the DataPartition task which uses

it to prepare the 1ist of work items to be computed.

Process - DataFlow
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parameter

ReserveResources

V

(parameter ] ( SYS.resources J
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result ; results

V
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Figure 3.13.: Data flow view of the cluster resource reservation example
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Example 3.4: Reliable Service Invocation

Building applications out of composite Web services can lead to disastrous
results as soon as one of the services becomes unavailable at run-time. However,
the reliability of the composite service defined with JVCL can be increased
through redundancy. Assuming that a set of equivalent, alternative service
providers are available, with JOpera it is possible to use reflection together
with various exception handling and synchronization techniques to model the
invocation of a service chosen from alternative providers and control precisely
what happens in case of failures.

A Web service can become unavailable for many different reasons. The
connection across the Internet to the Web service provider can fail during a
SOAP message round. The Web service may have been taken offline temporar-
ily for maintenance. The Web service might have been renamed or moved to
a different server and, as a consequence, the binding information in its WSDL
description may be out-of-date.

Whatever the reason, from the point of view of the composite application, a
failure to contact a Web service can be very similar to dereferencing an invalid
pointer in traditional applications. If no corrective action is taken, it may lead
to the failure of the whole business process. To ensure a successful invocation,
failure handling actions can be taken at different levels in the communication
stack as well as at the process level itself.

Dealing with communication failures

To deal with problems at the communication layer, the SOAP message can be
transferred with an asynchronous messaging or queuing system, instead of using
a synchronous HTTP connection [267]. Although its latency may increase, the
communication becomes resilient to temporary communication problems, as
the messaging system can store and forward the message when an appropriate
path to the service provider can be found. A similar approach can also help
with temporary outages of the server itself.

If the location of a WSDL interface description is not changed, and the
interface of the service is not modified, changes to the binding (for example,
the server’s location has been moved to a different host), should remain trans-
parent to the process because the latest version of the WSDL can be fetched
before reattempting the call. If a WSDL contains multiple bindings, the SOAP
communication library may attempt to contact all of them before reporting a
failure of the invocation back to the application [110].
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Handling failures at the process level

All of the previous steps are usually taken inside a SOAP communication li-
brary and can be controlled by specifying the appropriate bindings in the WSDL
description of the Web service. Although these mechanisms can improve re-
liability in case of short, temporary outages, the service invocation will still
fail if the service cannot be contacted after a certain time. Therefore it is also
important to deal with such failures at the application level, assuming that
a suitable equivalent service implementation can be invoked at many alterna-
tive service providers. In JVCL there are a set of language constructs to deal
appropriately with irrecoverable failures of a certain service invocation. This
means that, when everything else fails, it is still possible to model explicitly, at
a high level, what to do, using both a form of retry on exception and, with some
restrictions, an advanced synchronization technique applied to a multi-instance
pattern [233], both of which we will illustrate in the rest of this section.

RobustServiceCall - ControlFlow
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ServiceCall_Alternate
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failed  ~ .
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ServiceCall_Backup2

Figure 3.14.: Sequential invocation of alternative services
This chain of four Service invocations is traversed as each call fails. JOpera
attempts to contact the four alternative, equivalent services in the order
specified by the control flow graph drawn by the developer.

Exception Handling The first approach is based on the basic exception han-
dling construct of JOpera. As shown in Figure 3.14, two service invocations
can be connected by a failed control flow dependency, which will be triggered
only if the first invocation fails, so that the second one can be tried in its place.
The example shows this pattern applied to four services, which are connected
in a failure-triggered chain. They are to be invoked sequentially, but only if the
previous service in the sequence fails.

This approach has the advantage that it is rather easy to program: in
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JOpera all that is required is to make a duplicate of a service invocation (includ-
ing existing data flow connections), substitute the target service to be invoked
with an equivalent one and connect the two invocations with the exception
handling control flow dependency. However, in our experience, this is an inflex-
ible solution, because both the set of services to be tried and the order of the
attempts is fixed and cannot be changed once the process is deployed. These
limitations are overcome by the next construct, which allows the usage of a
dynamic set of alternative services and does not constrain the order in which
they are contacted.

ServiceCall*

ServiceCall,ServiceCall_Alternate,ServiceCall_Backup,ServiceCall_Backup2

matchName

getServicelList

serviceNames

SYS.prog

\"i
| Service |<D—(SYS.progJ
v

Figure 3.15.: Parallel invocation of alternative services
This data flow graph represents the parallel invocation of the same four
services of Figure 3.14. In the static implementation (left) the list of services
is hard-coded, while in the dynamic implementation (right) the list of services
is retrieved at runtime. The split operator can be configured so that the
invocation will complete as soon as one of the services will respond
successfully (Figure 3.16).

Parallel Invocation Not only the availability of the various services may
change at runtime, but also their response time may depend on the current
load at the different service providers and on the network congestion. The pre-
vious model captures the cascading retries that are performed if a service in
the sequence of alternative invocations doesn’t respond or fails. Now, although
the services are alternative and equivalent, their order in the sequence is fixed
at design-time and it is always the same for all executions of the process. In
some cases, it may be useful to use a different pattern. Instead of modeling
this behavior as a sequence of invocations, we use a set of invocations which
are all started at the same time. The result of the first one which successfully
completes is taken and all others (even if they don’t fail) are simply ignored (or
aborted). This way, the process is again resilient to failures of all but one of
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the Web service involved. Additionally, its performance is potentially better,
as the call completes as soon as one Web service responds. In case of failures,
the execution is not delayed by the calls that cannot be completed.

We can model this behavior in JOpera by using the parallel split operator
applied to a list of service names (Figure 3.15). This way, the invocation of
each alternative service in the list will be initiated in parallel. The synchro-
nization condition associated with the split operator can be set to make the
parallel invocation terminate as soon as one service returns without a failure
(Figure 3.16). With the appropriate settings, we can achieve both optimal re-
sponse time (as the result from the most responsive service is taken, while all
others are ignored) and we can choose to ignore the service invocations that
failed.

In Figure 3.15 (left) the list of services is still hardcoded in the process,
therefore the example does not yet solve the problem of modeling a dynamic
environment, where the set of Web services which can be used changes after
the process which composes them has been written. To support this scenario
we use another one of JOpera’s reflection features, which models the runtime
discovery of the available services matching a certain criteria (for example, the
name or the required input/output interface). As shown in Figure 3.15 (right)
the list of services to be invoked in parallel doesn’t need to be hardcoded, but
can be parametrized based on the results of a query to the system registry
service.

& split /Merge Dptions -0l x|
—Type of Patitions:
= Parallel {independent Partitions) {~ Sequential
—Synchronization: Dependency:
 YWait for all to complete = Finished
{* Finish as soon as one finishes " Failed

—Failure handling:

™ Fail a5 soon as one fails
% Fail only if all partitions fail

X Cancel |
= lgnore up ta IED i’ % failures

[~ Randomize partition order

Figure 3.16.: Split/Merge Options
A screenshot of JOpera showing the options which control the behavior of the
Split/Merge operators. With them the developer can finely control if
alternative services should be invoked in parallel, or sequentially, and, in the
first case, if failures in invoking some of the services should be ignored.
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Sequential Invocation This solution, based on the parallel invocation of al-
ternative services, is only applicable to stateless services we can afford to invoke
in such manner. In some cases, for example when ordering a book, it may be
necessary to try the various providers one at a time. To do so, we can select the
sequential split operator (Figure 3.16) and still keep the previously described
list-based patterns. The only difference being that the split operator is config-
ured to invoke each service sequentially, and only if the previous one in the list
fails.

Finally, by activating the Randomize partition order option, it is pos-
sible to conveniently shuffle the services in the list so that the sequence of
invocation is not fixed to any particular order and the load at the various al-
ternative providers is kept more balanced, as each execution of the process will
attempt to invoke the service providers in a different order. This feature has
been added for convenience only, as it is was already possible to explicitly add
to the data flow a task which randomly reorders the list of services used to
drive the parallel (or sequential) invocation.

3.8. Discussion

In this chapter we have presented the JOpera Visual Composition Language. This
language is intended to be used as a generic glue language [82] for coordinating
collections of software components, where the order of execution of services, the
data exchanges between them and the necessary failure handling behavior can all
be specified with a simple visual syntax. As we have shown with several examples,
the language is expressive enough to be applied to realistic settings.

In particular, we found it useful to include in the JVCL the visual representation
of both the data flow and the control flow graphs of a process. As we have discussed
in Section 3.4, it is possible to automatically derive the control flow graph from
the data flow. Like in data-driven data flow languages a task cannot be started
until all of its data dependencies are satisfied [104]. Unlike in traditional data flow
approaches we include an explicit description of the control flow of a process in
order to provide an overview of the order of execution of the tasks. Furthermore,
developers may use it to specify additional control dependencies that cannot be
derived from the data flow. It should be noted that the syntax used to specify the
control flow of the process has been intentionally left quite underdeveloped, as a
directed graph layed out in two dimensions is already a good visual representation
of the partial order of the execution of the tasks. With it, non-linear dependencies
modeling parallel execution, branches and synchronization points in the control flow
can be visualized in an intuitive way. Furthermore, the nodes of the graph can be
annotated with conditions to model alternative paths in the order of the invocation
of the services.

Nevertheless, the simple graph-based syntax of the control flow could be ex-
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tended in different directions. One possibility would be to add syntactical “sugar”
to model branches and synchronization points explicitly as nodes in the control flow
graph. In a similar way, the conditions associated to each task could be specified
visually. However, it remains open to discussion whether this would be a significant
improvement with respect to the current textual approach, where a condition is
entered as a boolean expression.

Another idea consists of improving the support for the visual specification of
properties shared among a set of tasks. For example, swimlanes 30, 99] could be used
to partition the diagram space in order to specify scheduling constraints associated
with a group of tasks. To do so, tasks are visually assigned to the resource (or the
actor, role, owner) responsible for executing them by positioning the tasks within
the corresponding region of the diagram. Currently, such properties can be specified
by using reflection with the assignment of the owner of a task to the appropriate
system parameter.

Similarly, a transactional view over the control flow graph could be added to
model ACID properties associated to subsets of tasks that should be executed atom-
ically or in isolation from other concurrent instances [206].

Given the large amount of existing contributions in these areas (formal mod-
els [162, 190, 234, 256], transactional properties [10, 148, 206], exception handling
and recovery [97], advanced control flow patterns [233]), we have chosen to use a
simple control flow syntax while focusing on an explicit and richer visual represen-
tation of the structure of the service composition in terms of its data flow [62, 104],
an aspect that has been overlooked by most process modeling efforts.

As a final remark, in our design of the visual language we made very few as-
sumptions about the actual type of services to be composed, attempting to keep the
visual composition language as general as possible while clearly separating composi-
tional aspects from the model of the individual component services [82]. In a JVCL
process, composition is defined at the level of service interfaces, mainly in terms
of the data flow bindings between their input and output parameters. As we will
present in the next chapter, this parameter based model of service interfaces can
be mapped to many different types of service invocation mechanism ranging from
coarse-grained Web service invocations to fine-grained scripts written in Java.
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In this chapter we describe JOpera’s open component meta-model. As JOpera is a
system for service composition, here we give some insight about what are the shared
properties of the services that JOpera uses as components.

First of all, it should be emphasized that JOpera provides extensive support for
many different types of components with the goal of providing the developer with a
flexible, convenient and extensible model without sacrificing efficiency (in terms of
low overhead) during service invocation.

It should also be noted that introducing a component model supporting a wide
variety of component types can be very useful in keeping the composition language
simple.

4.1. Motivation

In some of the existing process based systems for service composition (e.g. [29, 112]),
the services to be composed are all assumed to be of a single type: Web services.
It should be noted that when facing software integration problems at an Internet-
wide scale, Web services seem to be the most appropriate solution [89]. However,
for other kinds of deployment settings and service integration scenarios, other types
of components are still likely to be used. More specifically, in the context of the
JOpera Visual Composition Language presented in the previous chapter, it would
be an unnecessary restriction to assume that JOpera’s component services must all
be Web service compliant. In fact, there are many existing, well established service
access protocols that should not necessarily be considered as out of date, when
compared to Web services [3]. As stated by the jbpm.org project [18]:

BPEL4WS, BPML, WSCI are all "workflow standards” based on web
services. While web-services are cool and a nice buzzword, we think it
is a big limitation to restrict a workflow engine to only Web services.
There are so many other nice protocols like HT'TP, RMI, CORBA, EJB,
TCP/IP, UDP/IP, JMS, ... As a workflow engine is mostly used for
enterprise application integration, it seems ridiculous for an engine to
support only Web services and ignore all other protocols. In our opin-
ion, a workflow engine should communicate with each system in the
technology that is most appropriate and not force the development and
maintenance of Web service wrappers.
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We fully agree with such a view, and have also designed the JOpera system to
support components than can be accessed through a variety of protocols, includ-
ing, but not limited to Web service compliant ones. This way, the developer of a
composite application is not limited to use components accessible only through the
SOAP protocol and, in case of components supporting more protocols, the system
can use the most appropriate one in terms of performance, security and reliability.

The need for supporting a variety of service access protocols is also recognized in
the Web services community. To this end, the WSDL interface description standard
supports an open-ended set of transport protocols. Therefore, a Web service, whose
interface must be described using WSDL, does not necessarily need to be invoked
using the relatively slow SOAP protocol if the client understands other (non stan-
dard) protocols which may offer better performance. Currently, however, alternative
protocols are not yet widely supported and as long as they are not standardized,
using them would defeat the main point of the Web service vision, where everything
should be standardized in order to achieve widespread interoperability [5].

Moreover, even when following this approach, in order to bridge the gap between
the existing component heterogeneity and the uniform Web services standards, wrap-
pers and interface adapters are still required, to make the “legacy” types of com-
ponents and protocols fit with the new standards. This approach both introduces
additional, unnecessary execution overhead and shifts development and maintenance
costs from the infrastructure to the end user [174].

As we will present in this chapter, in JOpera we have chosen not to restrict the
types of component services to Web service compliant ones, described by a WSDL
document and accessible through SOAP (Section 4.3). Additionally, a JOpera com-
ponent can represent, for example, the execution of a UNIX or Windows command
line in the operating system shell (Section 4.4), a remote procedure call or method
invocation (Section 4.5), a job submitted to a batch scheduling system of a cluster
of computers (Section 4.9), an SQL query to be sent to a database (Section 4.6.2),
and an XSL style sheet transformation to be applied to some XML data packet
(Section 4.7.3). Furthermore, for modeling services built out of fine-grained oper-
ations, small scripts written in Java can be directly and efficiently embedded in a
process (Section 4.5.1). From these examples it can be seen that, with JOpera, the
developer may conveniently choose the most appropriate component type in terms
of the effort required to integrate it into a process and still be relatively sure that
the runtime overhead of accessing the service will be as small as possible.

Finally, as it would be impossible to provide out-of-the-box support for all pos-
sible kinds of components, we will also discuss how to extend JOpera’s open compo-
nent model. Considering the previous discussion, we believe it is less expensive to
build once a generic adapter to integrate a certain type of components into JOpera,
instead of having to setup a different Web service wrapper for each of the components
of that particular type that have to be called from within a process.
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4.2. Component Meta-Model

Before describing in detail the properties of each of the component types currently
supported by JOpera, we introduce JOpera’s component meta-model. This way,
we both motivate the flexibility and the extensibility of the component model and
summarize the information required to model and to access each type of component.

JOpera’s model of a component type mainly defines a set of attributes describing
how to invoke the component service’s functionality and how to structure the data
exchanged with it. More in detail, when adding a new component type to JOpera’s
model it is necessary to define and design:

1. What is the set of system parameters. Depending on the specific type of
component, a different set of system parameters may be used to control the
service invocation and to access related metadata. The values of these system
input parameters are set at design time, either when registering a new service
with the system’s component library or when composing the services with other
ones. In general, most of the system input parameters can contain placeholders
that are substituted with the values of the corresponding user-defined input
parameters at runtime. Finally, the system output parameters store the raw
result of the service invocation.

2. How to map control flow events. Basic control low events include: the starting
of the service invocation and the corresponding notification that the service
invocation has completed. More sophisticated events may involve the interac-
tion with an ongoing service invocation, i.e., the ability to abort, suspend and
resume it.

3. How to schedule the invocation. A service can be invoked either synchronously
or asynchronously, with respect to JOpera’s internal threading model. A syn-
chronous invocation involves less overhead but can delay other concurrent
invocations. On the other hand, asynchronous invocations are queued!. Fur-
thermore, for asynchronous component types, JOpera may choose among a set
of alternative providers where the service should be invoked. For other compo-
nent types, this form of scheduling may not be an option, due to performance
or protocol restrictions.

4. How to map data flow. Input and output data needs to be transferred back
and forth between JOpera’s parameter-based representation and the service’s
own representation.

5. How to interpret failures. Not only do service invocations finish; sometimes
they fail. Depending on the type of component, failure detection may be based
on different assumptions.

!See chapter 7 for more information on the various service invocation mechanisms.
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User User
Input Component Output
Parameters Parameters

Figure 4.1.: Data flow interface of a component
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Figure 4.2.: Data flow mapping inside a component

4.2.1. Data Flow Mapping

From the point of view of transferring control, the invocation of a large number of
different component types is not so difficult to model, as this amounts to describing
the invocation of the service and the corresponding notification that the service’s
invocation has completed [209].

In our experience, however, a more difficult challenge lies in modeling the data
to be exchanged with the service and in how to map JOpera’s parameter based
representation (Figure 4.1) to the service’s internal one. For some component types
this can be relatively simple, at least from a syntactical perspective, where standards,
e.g., SOAP, define how to format the input data and how to interpret the output
data. In other cases, e.g., when integrating legacy UNIX applications, the problem
is much more difficult and there is no general solution, i.e., the ad-hoc development
of wrappers may be required.

In order to provide the necessary flexibility to integrate several different com-
ponent types, in JOpera we follow a two step approach to address the problem of
mapping user-level data parameters to the actual structure of the data understood
by the component type. At this point, it should be noted that user parameters are
application dependent and therefore have nothing to do with the system parame-
ters, which instead model the information required to access a particular type of
service. The mapping between user (application) parameters and system (compo-
nent type) parameters is specified once, when a new service component is registered
with JOpera. This mapping can be derived automatically, e.g., by reading the
WSDL description of a Web service.

The data flow mapping depicted in Figure 4.2 can be formally represented as a
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composition of two mappings (m;, m,) which are applied to fit the input and output
parameters of a certain service call C' to the given interface S. More precisely,
the interface of a service contains a set of user-defined input ([I]) and output ([O])
parameters:

[0] = S(l1])

Furthermore, a set of predefined service types C; are available. These define the
representation of the corresponding access mechanisms and invocation protocols in
terms of input ([¢]) and output ([o]) system parameters:

[o] = Ci(ld])

In order to bind a service interface to an implementation of a given service type,
it is necessary to provide the corresponding input m; : [i] = m;([I]) and output
me 1 [O] = m,([o]) mappings. At runtime, these mappings are composed with the
invocation of service of a given type as follows:

[0] = S([i]) = mo(Ci(mi(I))

Following such mapping, before a service can be invoked at runtime, the user in-
put parameters are translated to its system input parameters. The main mechanism
to model and perform this mapping (m;) consists of using parameter placeholders,
which identify one user input parameter and are replaced with its content when the
mapping is evaluated. These placeholders follow the simple convention of including
the name of a parameter between 7 characters [98, 144].

The service is then invoked and the results are placed in the system output
parameters corresponding to its type. The reverse mapping m, from the system
output parameters to the user-defined output parameters is applied. As opposed to
the input mapping, where a relatively large number of user parameters are assigned
to a small number of system parameters, in this case it is more complex to take
the content of a few parameters, e.g., the output of a program or a Web page, and
model how to extract the application dependent information. For data having a
relatively well defined syntax, e.g., XML, it is possible to follow the convention of
encoding parameter names as tags and insert their values between those tags [?]. In
general, ad-hoc wrappers can be plugged into JOpera with the purpose of scraping
the values of the output parameters from the arbitrarily formatted data produced
by the service.

4.2.2. Abstract Service Types

In order to emphasize the feasibility of the approach, in the rest of the chapter
we show how to apply the component meta-model proposed in this dissertation to
a large number of different component types. In some cases, there should be no
difficulty in recognizing the difference between the protocols and the mechanisms
required to access different types, e.g., Web services (Section 4.3) and UNIX com-
mand lines (Section 4.4). In other cases, although the underlying mechanism is
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fairly similar — e.g., UNIX command lines and Java virtual machines (Section 4.5.4)
— we made a distinction to show that the component model doesn’t have to strictly
follow a classification of service access mechanisms. Thus, we also show that it is
flexible enough to accommodate user-oriented distinctions, which facilitate the of
use of components of a certain type.

To summarize the current set of component types supported by JOpera’s compo-
nent model, we have listed their most important features regarding the mapping of
control, scheduling, input and output data and failures in Table 4.1. Furthermore,
to give an overview over the content of the chapter, in Figure 4.3 we also present the
inheritance relationships between some of the various types, as far as the definition
of the set of system parameters associated to a given component type is concerned.

As it can be seen in Figure 4.3, all component types inherit these common
system parameters, which will be omitted from the following descriptions.

timeout  The timeout system input parameter controls the maximum al-
lowed execution time. If set, a service invocation will be automati-
cally interrupted and failed if it does not complete within the given
time.

wrapper  This system parameter indicates the policy to be used in order to
extract the user-defined output parameters from the system pa-
rameters returned by the component type. This parameter pro-
vides the developer with the flexibility of defining custom mapping
policies in order to override the default XML-based one.

state The state output system parameter is set to either Finished or
Failed to indicate the outcome of the service invocation.

realtime The realtime parameter measures the duration of the service invo-
cation in milliseconds.

mdine) baogownan g wayshis yndufy

4.3. Web Services

These components represent the invocation of a remote service published on the
Web. Currently, such services can be accessed in two ways:

1. (SOAP) The service’s interface is described in WSDL, and the service is acces-
sible through the SOAP protocol.

2. (HTTP) The service is accessible through HTTP only, and the retrieved infor-
mation is formatted using HTML.

4.3.1. SOAP

This first component type models the latest form of standard compliant Web ser-
vices, whose interface and location are described in a WSDL document [246].
Furthermore, these components are remotely accessible through the SOAP pro-
tocol [245]. Thanks to these standards, it is possible to automatically import the
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Component Type Control? Input and OQutput Data  Failure
Web components
Web Service (S0AP)  Synch/S SOAP SOAP SOAP Fault
Web Server (HTTP) Synch/S CGI/URL HTML HTTP Error
Local components
Shell Command (UNIX/NT) Synch CmdLine, Stdout ExitCode,
Stdin StdError
Java components
Java Program (JVM) Synch CmdLine, Stdout ExitCode,
Stdin StdError
Java Script (JS) Immediate Local Variables Exception
Java Method (JAVA)  Synch Method Parameters Exception
Java Remote (RMI) Synch/S Method Parameters Exception
Method
Script components
Script (SCRIPT) Synch CmdLine, Stdout ExitCode,
Stdin StdError
Database Query (SQL) Synch/S Parameters interesting JDBC Error
problem
XML components
X-Path Query (XPATH) Synch XML XML X-Path Pro-
cessor Error
Style Sheet Trans- (XSL) Synch Parameters ~ XML XSLT Pro-
formation cessor Error
System components
JOpera Echo (ECHO) Synch XML XML XML Parser
Error
JOpera Process (OPERA)  Asynch/S Implicit Parameters and Failures
JOpera Reflection (JOP) Immediate Parameters XML JOpera Er-
ror
Cluster computing components
BioOpera (PEC) Asynch/S  CmdLine Stdout ExitCode,
StdError
Portable Batch (PBS) Asynch CmdLine Stdout N/A
System
Messaging components
eMail (EMAIL) Asynch/S  Text Text eMail Server
Error
Java Message Std. (JMS) Asynch/S  String String JMS Error
Business process modeling components
BPEL activity (BPEL)  Synch Parameters None Throw
Workflow task (WF) Asynch/S  Text Text User Error

?As discussed in Section 7.4.2 on page 167, the invocation of the service can happen accord-
ing to different control flow patterns: Immediate (Figure 7.9); Synchronous (Figure 7.10);
Asynchronous (Figure 7.11); Synchronous/Scheduled (Figure 7.12); Asynchronous/Scheduled

(Figure 7.13)

Table 4.1.: Component Types Summary
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service’s WSDL description into JOpera’s component library and use it to generate
the corresponding component declarations, including the appropriate skeleton of the
SOAP request messages.

Web services offer the benefit of standard-based interoperability between hetero-
geneous programming languages and platforms. With this technology, the effort of
building systems composed out of services distributed across the Internet is greatly
reduced, at the price of a relative high runtime overhead due to the nature of the
protocols involved.

In the following examples of Figure 4.6 on page 57 and Figure 4.8 on page 69
we show how different Web services can be composed into a process together with
other kinds of services.

System Parameters A Web service component is described by the following
attributes:

WSDL This system input parameter contains the URL used to locate the
description of the service. The referred WSDL document contains
information about the service’s interface and its bindings to one
or more providers and transport protocols.

service the name of the service, selected from the ones described in the
WSDL document.

operation the name of the actual operation to be invoked.

SUDPWDUID waPshiG nduf

port in case an operation is bound to multiple transport protocols, the
value of this parameter identifies the one to choose.
soapin the body of the SOAP request message to be sent when invoking
the service.
Q soapout This system output parameter contains the SOAP response (or
§ fault) message as it is returned by the service.
S status A status code which indicates whether an error occurred.

errormsg A description of the error, with debugging information.

Control and Scheduling The invocation of the service happens synchronously. In
case multiple bindings are defined in the service WSDL description, the choice of
the most optimal binding (and port) constitutes a form of scheduling.

Data The values of the user-provided input parameters are inserted in the SOAP
request message using the previously described placeholder mechanism. In most
cases, each input parameter corresponds to a SOAP message block. If necessary,
JOpera escapes the content of the parameters so that it conforms to the required
SOAP/XML encoding. The output parameters are filled by reading the SOAP
response (if any).
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Failures The invocation of a Web service may fail for one of the following reasons:

WSDL not found The URL of the WSDL description of the service could
not be dereferenced.

invalid WSDL The WSDL description was found, but could not be un-
derstood.

invalid SOAP request The SOAP message could not be sent because it contains
invalid data.

service not responding No response message from the service has been received
after a certain timeout has expired.

SOAP fault The service has responded with a soap fault message.

4.3.2. HTTP

In addition to standard compliant Web services, with JOpera it is also possible
to conveniently retrieve information from traditional Web-based services which are
accessible with HT'TP only and typically format their content using HTML. Consid-
ering that there are many existing browser-based information sources and computa-
tional services available on the Web (see [19, 70, 87, 129, 139, 210] for some examples
related to Bioinformatics), it becomes important to streamline the integration into
a JOpera process of such type of services. It should be noted that such integration
could still be feasible through other means, i.e., by invoking external HT'TP client
programs or by creating a WSDL/SOAP wrapper for each website involved. How-
ever, this approach would require more setup work by the user when building the
process and potentially entail a higher execution overhead at runtime.

System parameters The interaction with a Web server is controlled by the
following input and output system parameters.

5+ URL the URL identifying the remote resource to access

S  method the HTTP Method (POST/GET/PUT/HEAD) to employ

~  headin the optional HTTP headers sent along with the request
body the optional body of the POST request message to be sent

Q status the HTTP status code

§ errormsg the description of the error, if any.

S headout the HTTP headers of the response message.

page the content of the response message.

Control and Scheduling The Web server is contacted synchronously. By extend-
ing this model with a more precise description of the URL input parameter, it would
be possible to introduce a form of client-side scheduling of HT'TP requests among a
set of alternative mirrors of a certain Web site. This way, the address of the selected
mirror would be substituted into the URL before the request to the Web server is
sent.
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Data The user input parameters are encoded in the URL in case of a GET request
or in the body for POST requests. The resulting HTML page needs to be scraped
for filling the user’s output parameters with their content.

Failures The retrieval of a Web page can fail for several reasons:

unknown server The server address in the URL could not be resolved.
server not responding The Web server did not respond after a timeout expired.
HTTP error The HTTP status parameter is different than 200 (OK).

Example 4.1: Stock Quote Currency Conversion

In this example we present a process used to retrieve quotes in the desired
currency for a user-provided stock symbol. This process combines two Web
services, one quoting stock prices [262] and the other one performing currency
conversions [261]. Although it is a simple example, it shows an application of
the basic features of the language in the context of Web service composition
without too many unnecessary, application related details. Furthermore, in
this example we compare two different versions of the process, one emphasizing
reusability, the other performance achieved through parallelism.

ConvertQuote - DataFlow

> ConvertQuote Input <

symbol ] (country)

V

usa

getStockQuote

amount J [ country2 J (country1 j

?ConvertAmount

Result

< ConvertQuote Output >

Figure 4.4.: Data flow view of the ConvertQuote process

The first version is the ConvertQuote process shown in Figure 4.4. This
process takes a stock symbol and a country as input parameters and returns
a quote for the given stock market symbol converted to the currency of the
given country. The symbol parameter is passed to the getStockQuote lookup
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service which returns the current price in its Result output parameter. This
value is then passed to the amount input parameter of the ConvertAmount sub-
process together with the two countries between which the value should be
converted. The countryl parameter is set to the usa constant value, as the
price returned by the getStockQuote service is in U.S. dollars. The country2
parameter is bound to the country process input parameter, and can be chosen
by the user when starting the process. The amount output parameter, result
of the ConvertAmount sub-process is copied to the quote output parameter of
the main process.

ConvertAmount - DataFlow

ConvertAmount Input <

country1 country2 amount
String Strlng float

country1 country2
xsd: strlng xsd string b

getExchangeRate

Multiply
c=a*b;

CurrencyExchangePort_getRate

Result

xsd:float

< ConvertAmount Output >

Figure 4.5.: Data flow view of the ConvertAmount process

The example also contains an optimization. Considering that there is no
need to perform a currency conversion between identical currencies, a condition
can be attached to the ConvertAmount sub-process to skip its execution if its
countryl and country2 input parameters contain the same value. In this case
the value of the quote output parameter of the process is taken directly from
the Result of the getStockQuote service.

The ConvertAmount sub-process calls the ConvertAmount process (Fig-
ure 4.5), which uses a currency exchange rate service (getExchangeRate) and
adapts its interface to perform the conversion of a given amount of currency.
To do so, two input parameters countryl and country2 are passed to the
getExchangeRate service, which returns the corresponding exchange rate in
its Result output parameter. This value is multiplied with the amount process
input parameter to compute the converted amount process output parameter.
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This process composes services of different granularity: the slow, coarse
grained invocation of a Web service (getExchangeRate) with the fine grained
Multiply task, which references a Java expression used to multiply two float-
ing point numbers. In this example, the Currency Exchange Rate service has
been wrapped inside a sub-process to emphasize the reusability of this interface
adaptation, which can be called from many processes.

StockQuoteConvert - DataFlow

symbol
xsd:string

getStockQuote

> StockQuoteConvert Input < usa

symbol country
country2 country1
String String - -
xsd:string xsd:string

?
" getExchangeRate

Result Result

xsd:float xsd:float

< StockQuoteConvert Output >

Figure 4.6.: Data flow view of the StockQuoteConvert process

An alternative version of the same process ConvertStockQuote is shown
in Figure 4.6. Here all of the previously separated tasks are located within
the same process. This implementation can be automatically produced from
the previous example by letting JOpera expand the content of the sub-process
ConvertAmount inside the caller process.

We have included this additional example to show that by reducing the
modularity of the process it is possible to exploit the parallelism between the
getStockQuote lookup service and the getExchangeRate service. In the pre-
vious example they had to be invoked sequentially, as the latter was started
only after the invocation of the sub-process. In this example they are invoked
in parallel, as there are no data flow dependencies between them. The retrieved
Result parameters are merged through the previously described Multiply Java
expression to compute the converted stock price. The fact that this process
doesn’t contain any sub-process invocation also contributes to a reduction in
the runtime overhead, as the sub-process call is no longer necessary.
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4.4. Shell Commands

Another type of components, quite different from remote Web services, are com-
mands to be executed on a shell of the local operating system (UNIX, NT). A Shell
command is typically used to provide a generic mechanism of integrating entire
applications into a process. As long as these applications do not provide an ex-
plicit API, the command line may be the only viable mechanism to allow JOpera
to interact with such legacy applications and control their execution. Historically,
shell commands connected in a pipe and filter architectural style have been one of
the earliest successful form of reusable components, where complex systems can be
built out of simple combinations of subsystems [125]. Analogous to UNIX pipelines,
JOpera processes can be built by drawing data flow connections between individual
command invocations, with the option of specifying non linear topologies and the
possibility of executing the various pipeline stages on different machines.

In other words, the services provided by essentially any executable program,
which can be started by typing a command line at the prompt of the operating
system shell, can be accessed with this component type. We distinguish between
UNIX (Linux, Solaris, MacOS X, etc.) and NT (Windows) components to let the user
enter the shell command using the syntax appropriate for the environment where the
program will run, and also for catching errors, as it is not possible to run Windows
applications on UNIX (and in most cases, viceversa). In order to exchange data with
the external program, JOpera employs both the command line itself and pipe-based
interprocess communication mechanisms.

As we will show with the Java Program (Section 4.5.4) and Scripts (Section 4.6.1)
component types, the Shell Command component type can be extended to provide
the user with a more convenient, template-based model of the command line.

System Parameters To execute a shell command the following system parameters
are available:

5+ command The command line to be sent to the operating system shell. Tt
= contains both the path to the executable program as well as its
- command line parameters.
shell The optional choice of the shell to use for interpreting the command.
stdin This parameter contains the data to be sent to the running program

on its standard input.

stdout  This output system parameter stores a copy of the output of the
program.

stderr  This parameter buffers the error messages produced by the program.

retval  This parameter contains the operating system exit code. Following
the UNIX convention, a value of 0 indicates a successful execution,
any other value is interpreted as an error.

mdimo

Control and Scheduling The shell commands are invoked synchronously.
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Data The values of the user input parameters are transferred to the external pro-
gram both using its command line and can also be copied onto its stdin system input
parameter. By default, the standard output produced by the program is parsed fol-
lowing an XML syntax in order to extract the values of the output parameters,
although a user-provided plugin for parsing the application-dependent output can
override this behavior.

Failures The invocation of a shell command can fail for several reasons. JOpera
interprets the value of the retval system parameter, which contains the exit code
of the process as it is returned by the operating system, to distinguish between a
successful execution (0) and a failed execution (non-0). In both cases, it also stores
the program’s standard error into the stderr parameter so that the user can gather
useful debugging information.

4.5. Java

As JOpera’s runtime kernel is written in Java, this offers the interesting opportunity
to integrate various flavours of Java components into a process with different degrees
of granularity and overhead. JOpera can embed small Java scripts (JS) directly into
a process, or it can efficiently call local (JAVA) or remote (RMI) methods of Java
classes and also offers a convenient way to start external Java virtual machines
(JVM).

In an enterprise application integration scenario, where most of the business logic
has been developed with Enterprise Java Beans and related technologies, it is possi-
ble to access such distributed software components from a process by modeling and
invoking them as Web services. However, at runtime this would impose an excessive
overhead. Especially if the process runs locally, within the same environment where
most of the Java components have been deployed, the Web service interoperability
and firewall-tunneling properties would not be of advantage. Furthermore, at design
time, all of the beans to be integrated still need to be manually published as Web
services. Although there is a growing set of tools to provide automatic support for
this kind of operations, they still entail an additional development and maintenance
cost, which would be reduced if the services provided by the beans become directly
accessible from a process.

At the other end of the granularity scale, the Java programming language also
provides a convenient way to program very small computations to be called at a
certain point during the execution of a process. This way, parameter values can be
easily converted, or checked for correctness. Furthermore, multiple output values
can be quickly computed starting from a set of input parameters, minimizing the
overhead due to parameter passing. To perform similar computations remotely
using a Web service would be extremely inefficient [27]. Similarly, the values on
which conditions depend on (e.g., a loop counter) can be conveniently updated with
a small Java snippet, or script, as we will present in the following section.
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4.5.1. Java Scripts

This component type models the most efficient way of embedding Java code into a
process, where a small script written in Java can be executed with minimal overhead.
As suggested by the previous examples (Figure 3.10 on page 33, Figure 4.5 on
page 56), it can be very beneficial to use this kind of component to perform small
computations in a process. If the same computation would have to be invoked using
a different mechanism (e.g., Web services), the overhead of the protocols involved
would make it impractical to do so?.

System Parameters For this component type, there is only one system input
parameter which contains the script itself.

script The script (or Java method body) to be embedded into the process.

exception If an error occurs, this system output parameter contains the message
of the Java exception.

Control and Scheduling By design, the script is invoked immediately, i.e., within
the same thread that executes a process. This has a very small overhead. However,
if the script runs for too long it may delay the execution of other processes.

Data flow There is a one to one correspondence between user defined parameters
and the Java variables that can be implicitly used in the script. JOpera’s compiler
automatically declares Java variables for each input and output parameters. For
this reason, and for this component type only, it is not allowed to have input and
output parameters with the same name, as they would be mapped to the same Java
variable. After the script has completed, the values assigned to the Java variables
are copied into the corresponding output parameters.

Failures JOpera detects a failure if a Java exception is raised and it is not caught
during the execution of the script.

4.5.2. Local Java Method Calls

For more complex Java code that cannot be embedded into a process as a script
like in the previous case, JOpera provides the local method call component type.
More precisely, it is possible to invoke directly any static methods of a given class.
For other, non-static, methods, JOpera first creates an object of the class (assuming
that the class supports the empty constructor) and then calls the specified method
of the newly created object.

2This issue has also very recently surfaced within the BPEL4WS [112] community, where a
proposal called BPELJ is currently under discussion. Very briefly, it suggests to extend this
Web service composition language with a new “keyword” (or activity type) to incorporate
so-called Java snippets into a process [111].
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System Parameters The following system parameters are used to identify the
method and the class to be invoked:

classpath The Java class path where to find the class to be loaded.
classname The fully qualified name of the class.
method The method to invoke.

exception If an error occurs, this system output parameter contains the message
of the Java exception.

Control and Scheduling The dynamic loading of the class and the method invo-
cation happen synchronously within the same Java virtual machine which runs the
JOpera kernel.

Data flow JOpera’s input parameters correspond directly to the method’s param-
eters. There is only one output parameter which contains the value returned by the
method.

Failures Any uncaught exception raised during the method invocation will fail this
component type.

4.5.3. Remote Method Invocations

System Parameters In addition to the parameters of a local method invocation,
a remote method invocation requires the following system input parameter:

rmireg The address of the RMI registry to use when looking up the name of the
class to invoke.

The mappings for Control, Data and Failures are equivalent to the previously de-
scribed Local Method Invocation component type (Section 4.5.2).

4.5.4. External Java Programs

For convenience, it is possible to model external Java programs as a different compo-
nent type, altough the execution semantics are very similar to the Shell Command
component type. In fact, this is an example on how to conveniently extend the Shell
Command component type with a predefined command line. As opposed to the
previous Java related components, where parameters are passed on the stack of a
Java method call, in this case data is exchanged with the external JVM through the
same (and more expensive) mechanisms used with the Shell Command component

type.
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System Parameters To call an external Java program it is necessary to specify
the following system parameters, which are used to build the command line for
inoking an external JVM

S jvm The optional choice of the Java virtual machine to use.
T  options The JVM options to use, if any.
” classpath The Class Path where the external JVM searches for the class to
be loaded.
classname The name of the class to execute.
args The command line arguments passed to the main method of the
class.

The mappings for Control, Scheduling, Data, and Failures are equivalent to the
previously described Shell Command component type (Section 4.4).

4.6. Script Components

Scripts are components that involve the execution of an external program (or script)
written in traditional scripting languages, including but not limited to PERL [250],
Python [240], or domain-specific scripting languages, such as Darwin [86]. In this
category we also include database scripts written in SQL [38].

Scripting languages have been traditionally a very successful form of program-
ming glue code, as they enable developers to automate the interaction between a set
of applications, which are reused as coarse grained components [171, 203]. We have
included scripts in the JOpera component model for the following reasons.

First of all, it frequently occurs that the interaction between different applications
is initially automated using this kind of technology [182]. However, following this
bottom up approach, after such scripts reach a certain level of complexity, or if
there is a need of integrating scripts written in different languages and intended to
be run on different platforms, current scripting environments do not offer a viable
solution. By making it easy to invoke external scripts from within a process, it
becomes possible to build a process (or a visual meta-script), which defines how the
various scripts interact.

Furthermore, scripts are great for developing wrappers, where the interface of
“legacy” applications can be non invasively modified to fit with the rest of the
process. Once such wrapper is available, it should be as easy as possible to invoke
it from a process.

Finally, thanks to JOpera monitoring environment, it becomes possible to track
the progress of such processes built out of scripts, a task which usually requires
additional programming effort with traditional scripting languages.
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4.6.1. Scripts

In order to execute a script, JOpera invokes the scripting language interpreter and
passes it a) the script and b) the input parameters. Similar to invoking an external
Java program, this component type is an extension of the Shell Command component
type. The script to be executed can be stored into an external file or can be also
embedded into the component description. In practice, in order to enhance the
portability of the service definitions, it can be quite useful to store such scripts,
especially if they are small, as part of the description of the component.

System parameters This component type inherits the parameters describing the
Shell Command component type. Additionally, the command parameter is replaced
by the following:

lang the scripting language interpreter to use.

embedded  flag indicating whether the script is embedded or it is to be found
in an external file.

script the embedded script, it may also contain parameter placeholders
that will be expanded before the script is passed to the interpreter.

scriptref the filename where the script is stored. In this case the script
cannot contain any parameter placeholders as it can only receive
input data through the command line.

args the command line arguments to pass to the script.

mdug

The mappings for Control, Scheduling, Data, and Failures are equivalent to the ones
of the previously described Shell Command component type (Section 4.4).

4.6.2. SQL

A database query is also a useful component type for conveniently sending a set of
SQL statements to an external database and, if applicable, retrieve the results of
the query and store them in the output parameters.

With this component type, it becomes easy, for example, to write a process that
stores persistently into a database table the data produced by services belonging
to other component types. Conversely, a process can also be used to extract data
from a database and process it with the services provided by other component
types. This component type also provides the infrastructure to build a process to
integrate data coming from different sources, some of which can be SQL database
queries. As opposed to invoking external services or applications that interact with
a database, using this component type may provide a faster development option, as
the development of external database clients is not required. At runtime, to further
reduce the execution overhead, JOpera’s database adapter can pool shared database
connections among all of its concurrently running processes.

63



4. COMPONENT TYPES

System Parameters In order to describe an SQL script to be sent to a database
we use the following system parameters:

5+ dbtype The database type. This information is needed to locate the
= appropriate JDBC driver.

;,; server The address of the database server.

ch port The port of the database server.

§ user, pass The authentication information used to connect to a certain
R database.

S database  The name of the database to use.

§ script The script with the SQL statements to execute.

§ prepare An optimization flag indicating whether the statement should be
- prepared.

QO status The JDBC status after the query has been executed.

§ errormsg  The JDBC error message, if any.

S data The result of the query.

Control and Scheduling Given the client-server type of interaction, components
of this type are executed synchronously. Considering a database replication scenario
where a set of alternative database servers is available, the server address can be
chosen dynamically by a scheduler.

Data There are several approaches to exchanging data with a database server
through JDBC. With the usual placeholders mechanisms the values of the input
parameters can be replaced directly into the SQL script before this is sent to the
server. As an alternative, in case of prepared statements, the parameters of the
SQL statement are passed using a positional encoding to the server: the order in
which the input parameters are defined must correspond to the order in which the
parameters are referenced in the SQL statement.

Also for modeling the results of a query, so that they can be stored into user
output parameters, there are different approaches. Considering that it is possible
to refer to each field of a tuple by name, and assuming that the database schema is
known in advance, a simple approach is to name the user-defined output parame-
ters of SQL components with identifiers corresponding to the fields of the resulting
dataset. Nevertheless, how to efficiently encode the potentially large results of a
query so that they can be used in practice in the rest of the process remains an
interesting (and open) optimization problem.

Failures An SQL script may fail for various reasons, which are summarized by the
value of the JDBC status parameter. To simplify error recovery, it is assumed that
each SQL component is invoked within its own transaction.
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4.7. XML Data Manipulation

In practice, Web services of a realistic complexity expect to receive large data struc-
tures as input messages and may also produce complex XML documents as result.
Inside SOAP messages, such data structures are normally encoded in XML strings
conforming to an XML schema instance [247], which is referenced by the Web ser-
vice interface description. Messages returned from one service can only rarely be
forwarded directly to another [15]. Instead, some form of XML Data manipulation
is usually needed for transforming and adapting such message to a different data
model, which may have different syntax or semantics [212]. Similarly, complex re-
sults of a Web service may need to be partitioned so that they can be passed on to
many of the other services composing a process. Finally, XML data coming from
several sources may have to be consolidated into a single result document to be
returned to the user.
With JOpera there are two ways of approaching this problem:

1. It is always possible to leverage existing XML manipulation technologies, e.g.,
style sheet transformations (XSLT [243]) or the XML Path query language (X-
Path [244]). This way, users familiar with these languages can embed XSLT
transformation or X-Path expressions directly into a process by creating data
filtering tasks which can be applied to the XML data in transit.

2. However, for a certain class of transformations, the JOpera Visual Composition
Language can be used directly to model XML transformations in a visual way.
These operations concern the encoding and decoding of XML complex-types.
Furthermore, the split and merge operators for list-based iteration have been
extended to support lists encoded in XML.

Complex types A complex type is a record-like data structure which is com-
posed out of elements of a certain data type, which can be simple (e.g., integer,
boolean or string) or, again, complex [247]. For each complex type defined in
the data model of a certain service’s interface, we define two symmetric oper-
ations: pack and unpack. These operations are used to encode the XML rep-
resentation of a data packet of a certain complex type (pack) and, conversely,
to extract from its XML serialization each individual elements (unpack).

These pack and unpack operations are automatically created by JOpera when
importing the XML schema referenced by the Web service interface definition.
A pack operation, for a certain complex type, has multiple input parameters,
representing the elements of the complex type and one output parameter,
which contains the encoded complex type. An unpack operation receives one
input parameter, with the serialized complex type, and returns the values
of its element in separate output parameters. The parameter types of the
operations are copied from the original schema, allowing to statically check
whether the pack and unpack operations are connected correctly. Furthermore,
JOpera uses this type information to suggest the appropriate operation when

65



4. COMPONENT TYPES

the user selects a parameter of a Web service having a complex data type.
In case of data structures with nested complex types, we propose a modular,
composable construction, where each complex type is encoded individually.
The various packing operations can be then plugged together to form the final
XML serialization.

4.7.1. XML Components

This category groups components used to manipulate data conforming to the XML
format. Especially in the context of Web service composition, where XML data is the
accepted standard format for data representation, it becomes important to easily ac-
cess the XML transformation capabilities offered by these components types. In this
area, a great variety of standards and new languages have been recently proposed.
As representatives, we have chosen to model XPath queries and XSLT transforma-
tions, in order to show that it is possible to integrate such type of technologies within
JOpera’s component model. If necessary, it should not be too difficult to extend
this category with other examples.

Although some of the system parameters depend on the specific type of XML
component, there are some commonalities, concerning also the mapping of Control,
Data and Failures, which are described in the following paragraphs.

System Parameters In general, an XML Component uses the following system
parameters for processing an XML document:

xmlin This system input parameter contains the XML data to be processed.

xmlout The result XML data, if any.
status The code which identifies whether an error occurred.
errormsg The user readable information about the error.

Control and Scheduling XML Components are invoked synchronously, and no
form of scheduling is supported.

Data The XML document to be processed is copied from the user-defined input
parameters into the xmlin system parameter. The result is stored into the xmlout
parameter, and can be then mapped the user-defined output parameters depending
on the specific component type.

Failures XML Component can also fail. In general this may happen because the
XML input data is syntactically incorrect or because there was an error while per-
forming the actual operation. The status and errormsg system output parameters
can be used to detect and debug the problem.
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4.7.2. XPath Queries

An XPath expression is used to filter out of an XML document the required infor-
mation [244].

System Parameters In addition to the parameters common to all XML compo-
nents, the X-Path component type also uses the following one:

script The X-Path expression to be applied to the XML data.

4.7.3. Style Sheet Transformations

Extensible stylesheet language transformations (XSLT') define a set of rules that, for
example, are applied to an XML document to produce another XML document [243].

System Parameters In addition to the parameters common to all XML com-
ponents, the XSLT component type also uses the following system input parameters:

embedded flag indicating whether the style sheet is embedded or it is to be found
in an external file.

script the embedded style sheet.

scriptref the filename where the style sheet is stored.

Data This component type also uses the same xmlin and xmlout parameters for
transferring the input and output XML document. Furthermore, it is also possible
to use parametric style sheets, where the output of the transformation still depends
on the input XML document but it is controlled by the content of some additional
parameters. Given that the parameters from within the style sheet are accessed by
name it is possible to establish a one to one correspondence between the style sheet
parameters and the user-defined input parameters of the component.

Example 4.2: Google Search

As an example of XML Processing with the JOpera Visual Composition Lan-
guage and the XML components, we present how to retrieve a list of URLs from
the results of a Google search. Since this WWW search engine’s API has been
published as a Web service [88], it is possible to import its interface definition,
including its data model, into JOpera. In order to extract the required list of
URLs, in the first example (Figure 4.7) we present a compact solution using
X-Path queries. In the second example (Figure 4.8) we only use the JVCL’s
XML data manipulation features.

First of all, Google’s search results are returned as a single data structure
into the return output parameter. In Figure 4.7 we apply (in parallel) two data
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filtering tasks (FilterURLs and FilterCount) to Google’s return parameter.
These tasks take an xpath expression and apply it to the content of their xmlin
input parameter. The filtered data is returned in the xmlout parameters, which
are then copied into the process output parameters.

ProcessGoogleSearchXPath - DataFlow

doGoogleSearch

GoogleSearchPort_doGoogleSearch

/IURL/text() /lestimatedTotalResultsCount/text()

FilterURLs FilterCount <_‘/
—_— — xpath

XPATH

V

xmlout

(return) ( estimatedTotalResultsCount )

< ProcessGoogleSearchXPath Output >

Figure 4.7.: Ezxample of XML Processing with the JVCL and X-Path.

As an alternative (Figure 4.8), the less compact JVCL notation can be used
to achieve the same result through different means. As opposed to modeling
the data transformation with a declarative approach, we define operationally
the data flow of the transformation.

More concretely, through the Unpack_return operation, it is possible to ex-
tract the component elements of the complex type returned by Google. These
are, among others, the searchTime (indicating how long the query took),
the estimatedTotalResultCount (indicating the estimated number of page
hits) which is copied to the process ouput parameter with the same name, the
estimateIsExact boolean parameter (indicating whether such number is ex-
act) and, most important, the resultElements list. For simplicity, we have
hidden the rest of the data elements of this type. In order to extract the list of
URLSs we iterate over this list with the split operator. For every element, con-
tained in the resultElements_item parameter, the Unpack resultElements
operation returns the value of its content, including the desired URL. By apply-
ing the merge operator, the various values of the URL parameters can be now
collected into the urls process output parameter.
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GoogleSearchXSD - DataFlow

> GoogleSearchXSD Input <

maxResults

restrict)\B( safeSearch J

restrict)/( safeSearch J

searchTime '<t—| Unpack_return |—‘>' estimatelsExact

(resuItEIements J (eslimatedTotaIResuIlsCounl J

o

( estimatedTotalResultsCount H GoogleSearchXSD Output >
A

return

resultElements_item

(snip_pet)<t—| Unpack_resultElements URL

T
summan itle

Figure 4.8.: Ezample of XML Processing with the JVCL only
This process retrieves a list of the URLs returned by a Google search.

By comparing the two examples it should be noted that with JOpera it is
possible to perform basic XML manipulations with the approach most appro-
priate for the user’s level of experience. By choosing the X-Path based solution
(Figure 4.7), the advanced user can perform the data filtering with a a compact,
declarative notation. On the other hand, with the operational, pure JVCL ap-
proach (Figure 4.8), it is possible to leverage the compiler’s type checker to
guide the user in finding the correct visual solution.

Example 4.3: Mismatching Services Adaptation

In the previous example, we have shown how to extract some information out of
an XML document representing a complex data structure. Here, we would like
to continue with this type of scenario and show another example on how to use
the JOpera Visual Composition Language and the XML manipulation compo-
nents to program the mapping required to make two services with mismatching
interfaces fit with each other.
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This example illustrates how to convert postal addresses between a service
which returns them using a Swiss format (defined by the XML Schema [247]
snippet of Figure 4.9) to the US format (Figure 4.10) understood by another
service.

Both services have been built to manipulate postal addresses, both services
use an XML Schema to define their data model. The information is even
encoded in XML and transferred between the two services using the same SOAP
protocol. Unfortunately the two services cannot be interconnected directly,
because their data models are different and unless a mapping between the two
interface type definitions is designed and applied to the data in transit, the
second service will reject the addresses received from the first one due to both
syntactical and semantical incompatibilities [212].

<xsd:complexType name="Adresse">

<xsd:sequence>
<xsd:element name="name" type="xsd:string" />
<xsd:element name="nachname" type="xsd:string" />
<xsd:element name="strasse" type="xsd:string" />
<xsd:element name="plz" type="xsd:int" />
<xsd:element name="ort" type="xsd:string" />
<xsd:element name="kanton" type="xsd:string" />
</xsd:sequence>

</xsd:complexType>

Figure 4.9.: XML Schema definition for the Adresse type.

<xsd:complexType name="Address">

<xsd:sequence>
<xsd:element name="name" type="xsd:string" />
<xsd:element name="street" type="xsd:string" />
<xsd:element name="number" type="xsd:int" />
<xsd:element name="town" type="xsd:string" />
<xsd:element name="state" type="xsd:string" />
<xsd:element name="zip" type="xsd:string" />
<xsd:element name="country" type="xsd:string" />
</xsd:sequence>

</xsd:complexType>

Figure 4.10.: XML Schema definition for the Address type.

As we can observe from Figures 4.9 and 4.10, the Adresse complex type
does not match the Address type. Although some of its fields (elements) store
equivalent information, e.g., the postal code, the fields are named differently
(plz vs. zip). We also have a data aggregation conflict in the way the person’s
name is stored: using two fields (name, nachname) to differentiate between first
name and last name, and only one field (name). In this case, the same field
name (name) is used to tag incompatible information, if the fields with the
same name would be considered to be matching, some information (the last
name) would be lost. Furthermore, the first service returns Swiss addresses
only, therefore there is no equivalent field to represent the country information,
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required by the second service. Finally, the information about the street is also
represented differently, using one field (strasse) in the Adresse type and two
fields (street, number).

Although, at first sight, it may seem quite difficult to solve all of these
problems, the data flow diagram with JOpera’s solution is not too complicated
(Figure 4.11) and all but the last incompatibility, concerning the street field,
can be solved in an intuitive manner.

<Adresse>
<name>Cesare</name>
<nachname>Pautasso</nachname>
<strasse>Hirschengraben 84</strasse>
<plz>8072</plz>
<ort>Zurich</ort>
<kanton>ZH</kanton> UnpaCk_Adresse

</Adresse>

\
[namej ( nachname j [strasse j

Concatenate Split Switzerland

[streetj [ number j

<Address> \&

<name>Cesare Pautasso</name>
<street>Hirschengraben</street> pack_Address
<number>84</number>
<town>Zurich</town>
<state>ZH</state>
<zip>8072</zip>
<country>Switzerland</country>
</Address>

name

Figure 4.11.: Visual mapping between two XML complex types
This visual mapping converts postal addresses from a Swiss (top)
to an American syntax (bottom).

The data flow graph of the mapping between the two complex types can be
followed from top to bottom. For some pairs of fields (e.g., plz to zip), where
we have a mismatch only at the description level, we can directly link the
equivalent fields with a data flow connection. The country field, for which an
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equivalent field is missing, can be bound to a constant value. The other fields
have incompatibile values, therefore it is not enough to redirect the values
to the appropriate field. Instead, the values need to be manipulated using
string handling operators, which can be used to concatenate the values of two
fields (name, nachname) into one (name), as well as to split the value of one
field (strasse) into two (street and number). Now, in general, determining
which part of a string value corresponds to a street name and which part
corresponds to a street number may be rather difficult. For this example,
and for the corresponding XSL transformation (Figure 4.12), we will assume a
street number to be always stored at the end of the string, following the Swiss
convention, and that it is separated from the street name by a blank character.

The example of JOpera’s visual mapping of Figure 4.11 can be compared
to the equivalent XSL transformation of Figure 4.12. Depending on the fa-
miliarity of the developer with this technology, using a visual mapping may
be a more or less productive approach, when compared with the XSL-based
solution. In principle, it is possible to take JOpera’s visual representation and
use it to generate the corresponding XSL code. For performance reasons we
chose an alternative approach, which should maximize both the users’ produc-
tivity (drawing a mapping can be faster than debugging XSL code) and the
runtime execution’s performance (JOpera’s compiler generates Java executable
code from the visual notation), as we will present in Section 8.2 on page 183.

<xsl:template match="/Adresse">
<Address>
<name>
<xsl:value-of select="name"/>
<xsl:text> </xsl:text>
<xsl:value-of select="nachname"/>

</name>
<street>
<xsl:value-of select="substring-before (strasse,' ')"/>
</street> input
<number> W
<xsl:value-of select="substring-after (strasse,' ')"/>
</number>
<town>
<xsl:value-of select="ort"/> script o AdressetoAddress
</town> XSLT XSLT Transform
<state>

<xsl:value-of select="kanton"/>
</state>

<zip> output
fxsl:value—of select="plz"/> Address
</zip>
<country>
<xsl:text>Switzerland</xsl:text>
</country>
</Address>

</xsl:template>

Figure 4.12.: FEquivalent XSL mapping
An alternative, equivalent representation based on XSL of the visual mapping
in Figure 4.11 (left). The style sheet can also be invoked from a JOpera
process (right).
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Performance, however, should not be the only criteria for comparing the
two solutions. As indicated in Figure 4.11, it is possible to recognize in the
visual mapping the following three stages: 1) The unpack_Adresse operator
extracts information from the original syntax of the source service. 2) A visual
mapping based on data flow arrows and operators is used to define the trans-
formation appied to such information. 3) The pack Address operator formats
the results according to the syntax of the destination service’s representation.
As discussed in [178], it is important to keep these aspects separated. This way,
the semantic-level mapping can be specified in terms which are independent of
the actual syntax-level formatting of the information. Since the XSL transfor-
mation of Figure 4.12 does not support such clear distinction, it remains more
difficult to understand and maintain.

4.8. System Components

These components represent basic facilities and services provided within the JOpera
system that can be invoked from a process without any external dependencies. They
include a testing mechanism for echoing back the same input data as output, the
internal mechanism used for calling sub-processes and a set of components exposing
part of the JOpera API (Section 7.5), so that it becomes accessible from within a
process.

4.8.1. Echo

The Echo system component type has been introduced for testing purposes, but can
also have useful applications. For example, the previously mentioned (Section 4.7
on page 65) pack and unpack operators used to encode and decode XML complex
data types are implemented using this system component.

Essentially, the components of this type repeat the received input data back as
output, and do not involve the interaction with any external service provider.

System Parameters This component type has one system parameter with two
manifestations:

input  This input system parameter can be assigned with the value to be re-
turned.

output By definition, this output system parameter contains the same value as
the input parameter.

Control and Scheduling This type of components is executed synchronously.
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Data Considering that parameter placeholders can be used to build the input sys-
tem parameter and that the content of the output parameter is interpreted according
to the usual XML syntax, in practice it is possible to use this type of component to
model n to m simple data transfers where a set of n parameters is mapped onto a
different set of m parameters, where m < n.

Failures Components of this type only fail if the output data parameter cannot
be parsed in order to extract the specified user output parameters.

4.8.2. Process Invocation

This type of system components is used behind the scenes to implement the sub-
process construct of the JOpera Visual Composition Language. Although syntac-
tically different, a sub-process is semantically equivalent to an activity referring to
this kind of component, which represents the invocation of a process.

System Parameters

procname This parameter contains the name of the process to be invoked.
In most cases its value is fixed at compile time. However, to
model a form of late binding, it is possible to dynamically replace
its value at runtime.

spawn This flag indicates whether the process should be started asyn-
chronously. In case of asynchronous process calls, the invocation
of the component completes as soon as the process has started.
By default, process invocations are synchronous, i.e., they com-
plete after the called process has terminated.

lookup This flag is used to ask JOpera to look for processes that have
already been run with the same input parameters so that their
results can be recycled and no new process needs to be started.

priority This parameter controls the scheduling priority of the process

numinstances This controls the number of instances of the process to be started.
By default only one instance of a process is started wth a sub-
process call. This parameter is used to perform scalability test-
ing.

resources This parameter constraints the scheduling of the tasks within the
invoked process to the specified set of resources.

delete If this flag is set, the process instance will be deleted automati-
cally after it has completed its execution.

SU2PUIDAD J WaISAG Jnduf

exception This system output parameter identifies the tasks that caused
the failure of the process.

procid This parameter contains the ID of the invoked process. In case
of asynchronous calls, it allows the caller to identify the process
which is running in the background in order to interact with it.

mding)
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Control and Scheduling Sub-processes are invoked asynchronously by queuing a
“start process” request which contains additional information identifying the caller
process. When the invoked process completes this information is used to notify the
caller that the sub-process has completed.

Data Both input and output data between the sub-process and the invoked process
are exchanged implicitly. By definition, a sub-process has the same user-defined
input and output parameters as the invoked process. Therefore, there is no need to
explicitly model this data transfer that happens automatically.

Failures The failure of the synchronously invoked process will always trigger the
failure of the calling sub-process. In this case, the exception system output param-
eter can be used to identify the tasks that first caused the problem. An asynchronous
process call will fail only if the process cannot be started, e.g., because its name is
invalid.

4.9. Cluster Computing

In our work in the context of the BioOpera project [23], we used the JVCL language
to model cluster (and grid) computations as processes, where the execution of each
task involved the scheduling of the corresponding service invocation, in order to
determine the optimal node of the cluster (or grid) to provide the computational
service. As a natural generalization of this approach, in this section we present
another type of components, related to cluster computing.

Cluster computing components model the ability to submit a computational
job to a cluster of computers, or more precisely to the resource management and
batch scheduling system which controls such cluster. Examples of these systems
include Condor [150], the Sun Grid Engine [222] or the Portable Batch System [24]
and BioOpera [23]. Mapping a service invocation to the submission of a job to
one of these systems opens up the interesting opportunity of building grid-oriented
processes that coordinate computations across heterogeneous cluster management
systems, spanning across multiple sites and organizations [22].

Although some details may vary depending on the actual system, in general,
such job submission involves the packaging of the computational job into a script
and the description of the requirements of the job in terms of computing and storage
resources in metadata associated with the job submission. As we have seen so far,
such information can be modeled with system input parameters in a straightforward
manner.

4.9.1. PBS

The Portable Batch System [24] is an example of a cluster resource management and
scheduling system used to optimize between the resource utilization of the cluster
and the turnaround time of the submitted jobs. Its interface is based on queues.
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Each queue accepts jobs in form of scripts that contain both metadata (attributes)
and the actual sequence of shell commands to be executed on one or more hosts of
the cluster. The output produced by PBS jobs is typically stored into temporary
files.

System Parameters This is the minimal number of system parameters that

describe a PBS job submission®.

queue  The name of queue of the batch scheduling system to which the job should
be submitted.

script Script which contains the attributes controlling the job and the commands
to be executed as part of the job.

stdout This system output parameter contains the output produced by the job.
stderr The error messages printed by the job.
pbsid  The PBS job id.

Control and Scheduling Jobs are submitted asynchronously to a PBS queue,
which is periodically polled to determine the state of the job. As an alternative, an
email notification can be sent when the job has completed.

Data Typically PBS jobs exchange data through external files, therefore the user-
defined input and output parameters contain the names of such files.

Failures As PBS only returns the completion notification for a job, it is not clear
how to determine its outcome in a general way. However, if a problem occurs during
the job submission, e.g., the selected queue is not available, this condition can be
detected immediately.

4.9.2. BioOpera

System Parameters The BioOpera component type extends the UNIX compo-
nent type with scheduling capabilities modeled by the following system parameters.

resource The name of the resource on which the command should be executed.

host The name of the host on which the actual execution has been scheduled.

3A more extensive model would explicitly include as system input parameters describing each
of the job attributes defined by PBS (e.g., priorities, file staging, resource requirements, etc.).
These attributes would be automatically encoded together with the command script into a job
submission.
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Example 4.4: Parallel Image Rendering

In this example we show how to use the JOpera Visual Composition Language
to program a parallel computation used to speed up the rendering of ray-traced
images with a cluster of computers. This computation has been built by com-
posing a set of Shell Commands that are run through the BioOpera scheduler.

The structure of the RenderImage process can be reused for other, similar
data parallel computations, where a large computational task is partitioned into
smaller, independent units (or chunks) that can be then executed in parallel
by submitting them to the cluster management system. Once all units have
completed their results are merged for further post-processing.

Renderimage - ControlFlow

\ 4

Partiton @ ----> PovRay ® ----> Combine @ ----> Cleanup

Figure 4.13.: Control flow view of the RenderImage process

As represented in Figure 4.13 the process is composed of four tasks, which
are executed in sequential order: Partition, PovRay, Combine, Cleanup. For
enhanced readability, the data flow graph is shown in two separate views Fig-
ures 4.14 and 4.15, the first covering the parameters of the first two tasks, and
showing the parallel computation. The second shows the data flow of the last
part of the process, where the results of the parallel computation are merged.

Renderlmage - DataFlow/1

> Renderlmage Input <

— )
( modelname J [datapath } [Widmht numChunks }

[datapath] (widthj [height] max
N

(modelname )—l>| PovRay Partition

< Renderlmage Output > row |

Figure 4.14.: Data flow view of the first part of the RenderImage process

The process receives the following input parameters: modelname and
datapath contain the name and the location of the scene to be rendered; width
and height contain the desired size of the resulting image. The numChunks pa-
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rameter is used to control the number of partitions. As shown in Figure 3.13,
the value of this parameter could be set automatically by JOpera’s resource
manager based on the current state of the cluster.

In this example the final image is partitioned into horizontal slices, each
of which can be rendered in parallel. Other partitioning strategies are also
possible, e.g., vertically or along a grid, but, considering the way image data
is stored (along horizontal scanlines), they would make the merging step more
difficult. The Partition task, invoked at the beginning of the process, uses the
height of the image to produce the rows parameter, which contains the list of
row indexes where each parallel rendering should start. The delta parameter
contains the number of rows that should be rendered for each partition.

After the image Partition task has finished preparing the work to be done
in the parallel part of the computation, for each row in the rows parameter,
a parallel execution of the PovRay application [189] is started, as indicated by
the split operator between the two parameters. This task receives as input the
datapath and modelname parameters, indicating where it should read the scene
description to be rendered. Furthermore, the size (width and height) of the
final image, as well as the size (delta) of the horizontal slice are also passed
to the task. The partially rendered images are written into the same datapath
directory so that they can later be merged by the Combine task, which also
receives the datapath and modelname input parameters (Figure 4.15) and uses
them to look for the various slices of the image.

Renderlmage - DataFlow/2

modelname Combine datapath

> Renderlmage Input <

_*.ppm *.log *.ini

A

[ modelname J [datapath J

< Renderlmage Output > Cleanup

[ modelname j [datapath j

Figure 4.15.: Data flow view of the second part of the RenderImage process

Once the final image has been produced, a parallel instance of the Cleanup
task is started for every different type (_*.ppm, *.log, *.ini) of temporary
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file to be removed from the datapath directory. Given the typical number of
partitions used and the number of temporary files created during the parallel
rendering, it pays off to also perform the cleanup in parallel for each type of
file.

The RenderImage process is an example of a process with a partially implicit
data flow. First of all, the process does not model the transfer of image data
between the rendering (PovRay) and merging (Combine) tasks. Instead, it is
assumed that such data is exchanged through a file system shared among all
nodes of the cluster. Therefore, these tasks need to follow the same file naming
conventions, so that it is enough to give a directory path name in the common
datapath parameter to be able to reconstruct which files need to be merged
into the final result. As a consequence, the control flow diagram in Figure 4.13
cannot be automatically derived from the data flow of the process and the
additional constraints between the PovRay, Combine and Cleanup tasks have
been manually added.

4.10. Messaging Components

Message based interaction is the basis for building loosely coupled distributed sys-
tems out of services, which are invoked asynchronously. Omne of the interesting
results of applying JOpera component meta-model to this type of components is
that no extension to the composition language is required to distinguish between
the synchronous and asynchronous invocations of services. Furthermore, thanks to
this type of components it becomes possible to model the asynchronous cancellation
of the execution of a process. Likewise, processes, which are normally used to de-
scribe the asynchronous interaction with services, can use these components to also
implement such conversations.

In this context, we present two different types of components used for syn-
chronously sending and receiving messages. The first one uses the SMTP [193]
and the IMAP/POP [55, 169] protocols, collectively known as electronic mail. The
second type of messaging component is based on the Java Message Service (JMS)
specification [220].

In general, the model of these components has a similar structure, as it is neces-
sary to provide addressing information (identifying the source and destination of a
message, e.g., a queue), the content of the message and additional header information
including, e.g., the priority of a message or timestamps and further identification
information. In practice, we have chosen to classify these components in different
types in order to present the developer with a model closer to the one used in the
underlying messaging system.
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4.10.1. Email

This type of component is used for sending and receiving electronic mail messages.

System Parameters The first set of parameters are input parameters used to
identify the email server to use. Then, depending on the value of the command
parameter, the next set of parameters are used as input (to send a message) or as
output (to receive a message).

5+ server The address of the email server.
T  protocol The protocol (SMTP, POP, IMAP).
- user, pass If required by the protocol, the user authentication information
to access the email account

id Optional message identification information.

command Whether to send or receive a message.
5 from This system input parameter contains the email address of the
s sender of the message.
g to, cc, bcc These parameters contains the email addresses of the recipients.
o headers This parameter contains additional headers for the message,
§ which specify, for example, the priority of the message or
=4 whether a return receipt is expected.

subject The subject of the message.

body The main text of the message.

attachments A list of attachments.

Control and Scheduling A message is sent or received asynchronously. When
receiving a message, the invocation of this component returns after either a message
has been received or the given timeout has expired.

Data The user defined input (or output) parameters can be mapped to both the
body and the attachments of the message being sent (or received).

Failures Failures that prevent the message from being sent are detected from the
corresponding SMTP status codes. Similarly, the status output parameter indicates
whether a message has been successfully received within the given timeout.

4.10.2. JMS

This component type models the messaging services of the Java Message Standard
specification [220)].

The mappings for Control, Scheduling, Data, and Failures are very similar to
the ones of the previously described EMail component type (Section 4.10.1).
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System Parameters Like the previous example, some system parameters are used
as input or as output depending on the value of the command parameter.

S+ server The JNDI name of the JMS connection factory used to access
s the messaging system.

~ command Whether to send or receive a message.

5+ destination  This parameters contains the queue or topic name used to
= identify the recipient of the message.

S replyto This system input parameter is used to identify the sender of
g the message.

§ messageid Optional message identification information.

S deliverymode This optional parameter specifies the reliability guarantees for

the message, i.e., whether the message is sent best-effort or it
is stored persistently.

headers This parameter contains additional headers and properties for
the message.
content The content of the message, string encoded.

Example 4.5: Asynchronous Process Call

In this simple example we show how to use the messaging components to model
the asynchronous interaction between two processes. The example is equivalent
to a synchronous (i.e., blocking) sub-process call, however the two processes
exchange data by sending messages and the sub-process construct is not used.
Furthermore, the example can be easily generalized to model arbitrary multi-
party interactions using different message queues.

Figure 4.16 shows the data flow of the ClientProcess. This process sends
the value of its input parameter c as data on an input queue. At the same
time, as there is no control flow dependency between the Send and Receive
tasks, it waits to receive a message on the output queue. Once the data
arrives, it is copied to its output parameter f, before the process finishes.

It should be noted that after the input message has been sent, there is no
particular constraint that limits what the process may do. In fact, other tasks
can be added to be executed independently of whether an output message has
been received. Furthermore, in this simple example no correlation betweeen the
input and output messages is enforced. If the output queue already contains
messages before the ClientProcess is started, one of such messages could be
received even before one is sent on the input queue. By using additional
parameters of the messaging components in combination with reflection, is
possible to associate the ID of the process to the messages in transit. Thus,
only the messages related to a particular process instance will be processed by
such instance.
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ClientProcess - DataFlow

> ClientProcess Input <

\

input queue

output queue

QA

B

< ClientProcess Output >

Figure 4.16.: Data flow view of the ClientProcess

Figure 4.17 shows what happens on the other end of the two message queues.
Symmetrically, in the ServerProcess, messages are received from the input
queue, processed and the results sent on the output queue. During execution,
the ReceiveRequest task waits for an incoming message on the input queue.
Once a message has been accepted, its data is passed to the ¢ input parameter
of the Compute task, which transforms it into the f parameter. Its value is
copied into the data parameter of the SendResult task, which sends it in a
message on the output queue. At this point the execution of one instance of

the ServerProcess completes.

ServerProcess - DataFlow

> ServerProcess Input <

input queue

| ReceiveRequest |

V

output queue

< ServerProcess Output >

Figure 4.17.: Data flow view of the ServerProcess
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4.11. BPEL Basic Activities

In this section we present how some of the basic activities defined as part of the
BPEL4WS [112] specification can be modeled by a particular JOpera component
type. This way, the functionality provided by these activities can be accessed from
within a process without having to extend the JVCL language with new constructs.
Out of the various BPEL basic activities we only need to model three ones (wait,
throw, and empty) for the others (assign, reply, receive, and invoke) have an
equivalent mapping to either a JVCL constructs (data flow bindings) or other com-
ponent types (Messaging or Web services)?.

System Parameters The three BPEL basic activities we are interested in model-
ing do not produce any data as output, therefore only one input system parameter
will suffice:

bpel BPEL representation of the basic activity to be executed.

Control, Data, Failures Depending on the content of the bpel parameter, differ-
ent actions are carried out synchronously (without scheduling). Where applicable,
input data can be inserted in the BPEL representation through the usual parameter
placeholder mechanism.

<throw faultName faultVariable/>

The invocation of this component will always fail. The faultVariable attributes
indicates from which user-defined input parameter the additional information about
the fault should be taken.

<wait (for|until)/>

The invocation of this component will return after the given relative or absolute
timeout has expired.

<empty/>

The invocation of this component will return immediately without any effect.

4This decision is explained in the presentation of the mapping of BPEL4WS to JOpera’s process
model in Section 6.4 on page 125.
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4.12. Workflow Tasks

This type of component models human-oriented tasks that are usually assigned to
a person for being taken care of. Traditional business process models included this
component type as the only basic form of activity to be composed into a workflow. In
JOpera, without including these component types, the interaction between a process
and the user running it normally happens only when the process starts, as the user
supplies the input parameters of a process. By using the debugging environment,
a user can always interact with a running process to resolve unexpected situations.
However, in some cases, it is useful to explicitly model in a process a point in the
execution where the interaction with the user is always required. For example, a
human operator may have to check the partial results of a process and use them to
make a decision on how the rest of the execution should proceed. Likewise, exception
handling tasks may correspond to the invocations of the services provided by human
troubleshooters.

System Parameters As the user-defined input and output parameters are also
visible to the person handling the workflow task, the system parameters are used
for describing what needs to be done and controlling who should do it.

task This input system parameter contains a textual description of what
needs to be done as part as the workflow task.
role This parameter identifies the set of people within a certain organiza-

tional unit that can and should handle the workflow task.

errormsg This output system parameter contains the user-provided description
of what caused the failure in the execution of the task.
operator The operator to whom the task has been assigned.

Control and Scheduling Workflow tasks are executed asynchronously through a
so-called Worklist handler which uses the role parameter to schedule the execution
of the task among the available human resources.

Data When the task needs to be executed, within the active worklist item, in
addition to its basic description, the user can also directly read the value of the
input parameters and fill in the values for the output parameters.

Failures Similar to other component types, also workflow tasks can fail either
because nobody has executed them within a certain time or because during their
execution a problem occurred.
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4.13. Discussion

With all of the examples of different component types presented in this chapter, we
have attempted to show the flexibility of JOpera’s component model, which pro-
vides the developer with a choice of several different mechanisms for describing and
accessing the services to be visually composed into a process. More specifically,
thanks to our simple component meta-model, from the perspective of the developer,
the heterogeneity of the available component types does not sacrifice the unity of
interface principle, where the same user interface should be used for the same task,
regardless of how it is implemented behind the scenes [266]. In our case, regardless
on what is the actual mechanism used to invoke a service, its representation within
a process, both in terms of its visual syntax and of its parameter based interface, re-
mains the same for all types of components. In Chapter 7, while presenting JOpera’s
architecture, we will show how the support for heterogeneous component types has
been designed taking into account the trade-off between efficiency and flexibility, i.e.,
between keeping the service invocation overhead small and conveniently providing
support for a wide range of component types.

On a different level, it should be also noted that, in general, we have been model-
ing services as components which are readily available, ignoring their dependencies.
On the one hand, it is the job of the service provider to ensure the satisfaction of such
internal dependencies, which may go from solving installation and deployment is-
sues all the way to the management of the underlying hardware infrastructure [225].
Therefore, as opposed to traditional component based software engineering, the
client should only be interested in modeling what the services provide and may
disregard their requirements when composing them.

On the other hand, from JOpera’s point of view, component definitions introduce
an external dependency between the definition of the component itself and the ex-
ternal service providing the actual functionality. This can have repercussions when
process definitions and the included component definitions are moved to a different
process execution environment, i.e., processes become unusable because the services
they require are missing in the new environment.

First of all, in JOpera, the clear separation between processes and their compo-
nent service definitions helps to make the process descriptions themselves indepen-
dent of such changes, as the processes are defined in terms of service interfaces only.
The required adaptation work is thus limited to the component definitions only.

More in detail, for component types modeling globally accessible services with
a remote implementation, e.g., Web services, this dependency is quite small as it
amounts to the given URL of the WSDL document and to the interface definition
of the service contained in such document. As long as both of these pieces of
information do not change, it is still possible to modify the service’s implementation
or move the location of its provider, without invalidating the component definition.

For other component types, e.g., UNIX applications, the bond between the com-
ponent definiton and the external application is stronger. If, for example, the process
and the included component definitions are ported to a different execution environ-
ment, it must be ensured that the referred applications are locally accessible and
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that all of their dependencies (e.g., in terms of file naming conventions) are satisfied.
Depending on the application, this may amount to a simple reinstallation or it may
entail more difficult configuration work.

In case of components such as Java scripts or other component types that support
the embedding of the service’s implementation within the component definition, such
dependencies to external artifacts are minimized. As long as the required version
of the scripting language interpreter can be found, the scripts can be immediately
executed in the new environment.

To address these process portability issues, thanks to the information contained
in JOpera’s component model, when deploying a process into a new execution en-
vironment, it is possible (up to a certain extent) to actively check that all of its
dependencies are satisfied and that all of the required services are available and
accessible.

As a final note we would like to emphasize that, relaxing the constraints on
the type of components that can be composed can contribute to the generality
and simplicity of the composition language. Since all JOpera component types
have the same parameter-based interface, no ad-hoc language construct is needed to
discriminate between the invocation of services of different types (for example, it is
not necessary to distinguish with different language constructs between synchronous
invocation or asynchronous, message based interaction). If it becomes necessary to
access information dependent on the specific component type, reflection through the
use of system parameters can be applied®. Still, also this mechanism is based on a
consistent visual syntax, uniform across all component types.

All in all, we believe that the possibility of choosing (wisely) between the use of
Web Services or other kinds of services can be of great value, as the most appropriate
component type in terms of performance, security, reliability and convenience of use
can be chosen.

5See Section 3.7 on page 34 for more information and some examples on using system parameters
with reflection in the JVCL language.
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In this chapter we present the definition of the the Opera Modeling Language
(OML), the process modeling language used by the JOpera system. The Opera
Modeling Language is a natural evolution of the Opera Canonical Representation
(OCR) first described in [98]. As opposed to the text-oriented syntax of OCR,
the Opera Modeling Language uses a syntax based on XML and it includes several
additional features.

First of all, OML is the foundation for the JOpera Visual Composition Language
(JVCL), the visual process modeling language of the JOpera system described in
Chapter 3 and first presented in [187]. All of the visual elements of the JVCL
language and the corresponding non-visual elements (processes, tasks, parameters,
and so on) are stored in XML documents with the format defined by OML.

Second, an OML document stores separately the processes, which define the
composition, from the programs, which defines the components. With this, a library
of program definitions can be built and reused within multiple processes. Further-
more, an OML document also contain the model of the component types that can
be invoked from JOpera, as presented in the previous chapter.

Finally, we will show in the next chapter that OML also defines an executable
process model, as processes written in OML can be compiled to several executable
representations.

5.1. Meta-Meta Model

In order to improve the understandability of the following description of the Opera
Modeling Language (OML) in this section we would like to briefly introduce our
notation and describe the modeling techniques used in the rest of the chapter. An
OML document is an XML document, therefore it can be formally described using
a Document Type Definition or an equivalent XML Schema [247]. Although such
XML Schema is readily available in Appendix A, in this chapter we would like to
present the Opera Modeling Language in a clear, more readable form. Furthermore,
at the time OML was first designed, XML Schema had not yet come into existence
and we had to follow our own (very simple) data modeling approach based on the
following ideas.

First of all, the overall structure of an OML document and the relationships
between its elements can be represented using a UML class diagram [176], where
each class corresponds to an element and each attribute of a class corresponds to an
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AbstractElement

Attribute1
Element
Reference1 | Attribute2 A i
v ggregation1 .
RefElement < @ ChildElement
Attribute5 Attribute3
Attribute4

<Element Attributel="" Attribute2="" Referencel="keyl”>
<Aggregationl>
<ChildElement Attribute3="” Attributed=""/>
<ChildElement Attribute3="” Attributed=""/>
</Aggregationl>
</Element>
<RefElement key="keyl” Attribute5=""/>
<Element Attributel="" Attribute2="" Referencel="keyl”/>

Figure 5.1.: Mapping UML to an XML document. Example of the relationship
between the syntax of a UML class diagram (above) and the corresponding XML
document structure (below) as it is defined in our Meta-Meta model. For clarity, the
values of most attributes have been omitted.

element’s attribute (Figure 5.1). Moreover, in the UML class diagram we use three
relationships: inheritance, aggregation and reference. The mapping between these
class relationships to the structure of the XML document is defined as follows:

e We use inheritance for improving the clarity of the UML diagrams, as the com-
mon attributes and the reference and aggregation relationships shared among
multiple classes can be abstracted into one. Thus, we can avoid describing the
same relationships and attributes more than once. In the actual document only
the concrete classes are instantiated into the corresponding elements, where
all the attributes and relationships of the ancestor elements have been moved
downwards along the hierarchy and inherited by the leaf elements.

e Aggregation, representing 1 — N relationships between XML document ele-
ments, corresponds to the nesting of such elements inside one another. Fur-
thermore, the nesting of elements happens through a single container node,
which is a child of the element corresponding to the container class and con-
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<xs:schema>
<xs:element name="AbstractElement”>
<xs:complexType>
<xs:attribute name="Attributel” />
</xs:complexType>
</xs:element>
<xs:element name="Element’”>
<xs:complexType>
<xs:extension base="AbstractElement”>
<xs:attribute name="Attribute2”/>
<xs:attribute name="Referencel” type="xs:IDREF”/>
<xs:all>
<xs:element name="Aggregationl” minOccurs="0" maxOccurs="1">
<xs:sequence>
<xs:element ref="ChildElement” minOccurs="0" maxOccurs="unbounded”>
</xs:sequence>
</xs:element>
</xs:all>
</xs:extension>
</xs:complexType>
</xs:element>
<xs:element name="ChildElement”>
<xs:complexType>
<xs:attribute name="Attribute3”/>
<xs:attribute name="Attributed” />
</xs:complexType>
</xs:element>
<xs:element name="RefElement”>
<xs:complexType>
<xs:attribute name="key” type="xs:ID”/>
<xs:attribute name="Attribute5”/>
</xs:complexType>
</xs:element>
</xs:schema>

Figure 5.2.: Mapping UML to an XML schema. XML Schema corresponding to
the example UML class diagram of Figure 5.1.

tains all aggregated elements as children. This way, it is possible to efficiently
navigate the document structure and discriminate between elements of differ-
ent types nested inside the same parent element. The name of the container
element corresponds to the name of the aggregation relationship.

e References are simply used for modeling M — 1 relationships, where the nest-
ing of document elements would not be satisfactory. Thus, an element e can
reference another element f, which can be found anywhere in the document,
by storing the unique identifier of f in one of its attributes. The name of such
attribute corresponds to the name of the UML reference relationship. The
type of this attribute is denoted with “ref:f” to indicate that the value of the
attribute is restricted to the keys identifing elements of the referenced type f.

As an example of how the previous rules can be applied, Figure 5.1 shows an

XML snippet, whose structure satisfies the UML class diagram above it. The XML
Schema corresponding to the UML class diagram is also shown in Figure 5.2.
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Interface ‘ Parameter

Activity

Task <+—— SubProcess

B o
OX\@

RefBox

TextBox

Arrow

Binding

Program ‘% GroupBox

AccessMethod

ComponentType

Figure 5.3.: Summary of the aggregation relationships between OML elements. For
clarity also selected inheritance relationships to concrete classes have been included.
This UML class diagram gives a good overview over the structure of an OML doc-
ument. Starting from the Root (OCR) element, it shows where the other elements
are located with respect to each other.

First of all, it should be observed that all of the nodes in the XML document
have tags matching the names of the UML classes. Also in the corresponding XML
Schema, the set of declared elements matches the UML classes. In the case of
the AbstractElement class, there is no corresponding document node shown in
the example. Although it would be possible to extend the meta-meta model with
constraints that limit which UML classes can generate document nodes, for the
purposes of describing the Opera Modeling Language we just imply that not nec-
essarily all of the UML classes in the model will correspond to XML nodes, but
all of the leaf classes in the inheritance tree will. More concretely, in the example
the Element class inherits the first Attributel from its ancestor AbstractElement.
The Aggregationi relationship between the Element and the ChildElement classes
corresponds to having one or more ChildElement nodes nested inside the same
Aggregationl node, which is found inside the first Element node of the example.
As specified in the XML Schema of Figure 5.2, for each aggregation relationship
there can be only up to one of such container elements. The Referencel attribute
of the Element nodes corresponds to the Referencel relationship in the class dia-
gram. The value of this attribute (key1) is used to establish a unidirectional link
between the two Element nodes and the RefElement one. As opposed to aggrega-
tion, where multiple children nodes can be nested into the same parent, by using
this reference-based mechanism together with keys that uniquely identify nodes, it
is possible to have many nodes referencing the same node from different locations
in the document.
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v A AW

NamedObject | Binding | ViewObject
AN L DN
Interface Task Parameter | View | | GroupBox | Box Arrow |
Process Program AccessMethod | ComponentType | Activity | SubProcess

Figure 5.4.: Summary of the inheritance relationships between OML elements.
This UML class diagram illustrates how the common attributes and the shared ref-
erence and aggregation relationships of the document elements have been structured
i a single-inheritance tree. The Object, NamedObject, ViewObject, Box, Task and
Interface elements are abstract and do not appear in an OML document.

5.2. Structure of the Opera Modeling Language

Following the meta modeling approach discussed in the previous section, the over-
all structure! of an OML document can be formally illustrated with the UML class
diagrams in Figures 5.3 (Aggregation relationships), 5.4 (Inheritance tree), 5.5 (Ref-
erence graph) and 5.6 (All relationships together). It can also be described as follows.

The root element (0CR) of an OML document can contain a set of Process, Pro-
gram and ComponentType definitions (Figures 5.3 and 5.7). In practice, the pro-
gram definitions and the required component types declarations are usually defined
once and included from separate OML documents.

The external Interface of a Process is defined by a set of input and output
parameters. Internally, a process contains the list of its component tasks (Activities
and SubProcesses), the data flow (Parameters and Bindings) and control flow graphs,
as well as their visual representation (Views). The data flow graph is stored as a
set of bindings between parameters or constant values. As the JVCL supports
multiple, overlapping views over the same data flow graph, the data flow graph is
also explicitly aggregated in the list of bindings of the process for efficiency reasons.
On the contrary, only one view over the control flow graph of a process is allowed.
Therefore, it is not necessary to store the control flow graph separately from the
view representing it.

In an OML document, nested inside Processes, the data flow and control flow
Views are represented as annotated graphs, i.e., they are composed of nodes (Boxes)
and edges (Arrows) linking pairs of nodes. In addition to the graph’s topology, the
View elements include additional layout information to store the two dimensional
position and size of the graph objects. Moreover, it is possible to group together
some elements of a view (ViewObjects) in order to constrain the automatic layout
algorithms that can be applied to the graph. The purpose of the most important

'Each OML element will be described in detail in the following section
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DestParam
__ GroupBox
Binding Parameter
SourceParam Elements
Reference ViewObject
Destination ~
Arrow RefBox | Reference
Source Process w
/ SubProcess
Task
ComponentType
ComponentType
AccessMethods ProgramID .
AccessMethod Program [<——— | Activity

Figure 5.5.: Summary of the reference relationships between OML elements. This
UML class diagram shows how the OML elements refer to one another. In par-
ticular, the visual elements (Arrow and RefBozx) refer to the model elements they
wisually represent. Moreover, references are also used to model the edges of the con-
trol and data flow graphs. Fach edge is modeled with a pair of references, linking,
for example, Arrows to the pair of RefBoxes between which a connection should be
drawn. Reference are also used to model the relationship between the Activity and
the Program to be invoked and, similarly, between the SubProcess and the Process to

be called.

elements of a View (RefBox and Arrow) is to visually represent other elements of
the process. More precisely, a box may represent, the container process, a task
or one of their parameters. Similarly, in a data flow View, an arrow linking two
boxes represents a data flow binding between the two parameters represented by
the boxes, and so on. As multiple elements of a view can represent the same process
element, we use a Reference relationship in the UML class diagram to model the
relationship between an element of the process model and its corresponding visual
representation. As previously explained, in the OML document this amounts to
storing the identifier of the referenced process element into the Reference attribute
of the visual element (Figure 5.5).

The Program elements store the set of available component services that can be
invoked with an Activity of a Process. Similar to Processes, also the Interface of pro-
grams is composed of a set of input and output parameters. Furthermore, a program
can contain multiple Access Methods which define different, alternative ways to in-
voke the functionality provided by the service. Access methods also have input and
output parameters, conforming to the template defined in the referenced Compo-
nentType. By definition, the input and output parameters of an access method and
the ones belonging to the corresponding component type are considered as system
parameters.
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Figure 5.6.: Complete UML class diagram of the OML elements. For completeness,
we include also this UML class diagram with all relationships between all elements

of an OML document.
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Figure 5.7.: Basic structure of an OML document. An OML document is com-
posed of Processes, Programs and Component Type definitions.

5.3. Elements of the Opera Modeling Language

After giving an overview over the structure of an OML document based on UML class
diagrams, in this section we continue with a more detailed description of each element
of an OML document. This description includes, as a reference, the list of all attribute
of each element, as well as all aggregation relationships for a 