
The Liquid User Experience API
Andrea Gallidabino

Software Institute, Faculty of Informatics, USI
Lugano, Switzerland

andrea.gallidabino@gmail.com

Cesare Pautasso
Software Institute, Faculty of Informatics, USI

Lugano, Switzerland
c.pautasso@ieee.org

ABSTRACT
In the past years the average number ofWeb-enabled devices owned
by each user has significantly increased. Liquid Web applications
enable users to take advantage of all their devices sequentially to
migrate their running applications across them or simultaneously
when running different views of the same application at the same
time on each device. Developers of liquid Web application need to
control how to expose the liquid behavior of their cross-device Web
applications to the users. To do so, they can use the API of Liquid.js
we describe in this paper. Liquid.js is a framework for building
component-based rich Web applications which run across multi-
ple Web-enabled devices. The framework is based on technologies
such as Polymer, WebRTC, WebWorkers, PouchDB and Yjs. Liq-
uid.js helps to build decentralized Web applications whose compo-
nents can seamlessly flow directly between Web browsers carrying
along their execution state. The Liquid.js API gives developers fine-
grained control over the liquid user experience primitives, device
discovery, and the lifecycle of liquid Web components.

KEYWORDS
Liquid Software, Web Components, API

ACM Reference Format:
Andrea Gallidabino and Cesare Pautasso. 2018. The Liquid User Experience
API. InWWW ’18 Companion: The 2018 Web Conference Companion, April
23–27, 2018, Lyon, France. ACM, New York, NY, USA, 8 pages. https://doi.
org/10.1145/3184558.3188738

1 INTRODUCTION
As more and more heterogeneous devices (e.g., mobile phones,
tablets, laptops, but also watches, cars and smart TVs) are used to
access theWeb, it becomes important to take responsiveWeb design
– where Web applications can adapt to individual devices – to the
next level [10]. The liquid software metaphor [7, 13] represents how
software should behave when it is deployed across multiple devices:
as a liquid adapts to the shape of its container, similarly, liquid
software flows across and adapts to take full advantage of the set of
devices on which it is deployed. Liquid software can: (1) adapt its
user interface to the set of devices being concurrently used to run
the application; (2) seamlessly migrate a running application across
multiple devices following the user attention [11]; (3) synchronize
the state of applications distributed across multiple devices.

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’18 Companion, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5640-4/18/04.
https://doi.org/10.1145/3184558.3188738

Native mobile platforms have started to feature continuity/hand-
off capabilities to address multi-device usage, a feature that is only
starting to become present in few individual Web applications, but
so far has been mostly ignored within the underlying Web plat-
form. In this paper we describe the developer API of the Liquid.js
for Polymer framework, which is used to build component-based,
decentralized Web applications that can be dynamically deployed
across multiple Web-enabled devices.

Liquid.js for Polymer1 is a prototype framework for developing
liquid Web applications which can be used with existing Polymer-
based rich Web applications. To get started, the framework simply
requires developers to annotate existing Polymer custom elements
to explicitly indicate which property values should be transferred
or synchronized across devices [4]. This paper fully describes the
features and the APIs exposed by the framework that can be used
by developers for creating customized liquid user experiences with
fine-grained control over the lifecycle of liquid Web applications:
decentralized Web applications that can be dynamically deployed
on multiple Web-enabled heterogeneous devices.

Liquid.js allows developers to support the following use case sce-
narios [6]: • Sequential use - one single user runs the application
using one single device at a time. The user can switch from one
device to another and continue to run the same application on the
second device with the expectation that: 1) the application seam-
lessly adapts to the new device hardware and software capabilities
and 2) the user can instantaneously resume working on the new
device. For example, after planning a trip using a map displayed
on a large-screen fixed device, the directions are transferred on a
mobile device that will be carried along while traveling. • Simul-
taneous use - one user connects to the application from multiple
devices at the same time, i.e., the user opens a session by running
the application both on his phone and on his laptop simultaneously.
For example, credit card payments entered on e-commerceWebsites
using a personal computer may require approval by using the fin-
gerprint or face scanner found on a smartphone before the checkout
transaction completes. Depending on the capabilities of the devices
connected, each device may show a responsive view of the same
user interface, or it could display a dedicated view, allowing each
device to play a distinct and complementary role in the distributed
user interface of the application [8]. • Collaborative use - sev-
eral users open and run the same application on multiple devices.
The collaboration between the users can be either sequential or
simultaneous. For example, users build a collaborative slideshow by
selecting pictures taken with their personal phones to be displayed
on a shared public display. The multi-user scenarios with liquid
software and data flowing across device ownership boundaries has
important privacy and security implications that are not discussed

1Website: http://liquid.inf.usi.ch/ and GitHub: https://github.com/liquidjs

https://doi.org/10.1145/3184558.3188738
https://doi.org/10.1145/3184558.3188738
https://doi.org/10.1145/3184558.3188738
http://liquid.inf.usi.ch/
https://github.com/liquidjs

in this paper. Also the API presented in this paper does not feature
any authentication or access control mechanism, which is out of
scope for this paper where we focus on the single-user scenarios.

2 RELATEDWORK
In the literature there are many frameworks that enable the creation
of Web applications with behaviors originally described in the
Liquid Software manifesto [13]. Nevertheless Liquid.js is the first one
to propose an API featuring the liquid user experience primitives
described in [5].

PolyChrome [1] is a centralized Web framework for building
co-browsing applications, where the implemented views can span
on multiple surfaces deployed on multiple devices. The framework
defines and supports four predefined layouts: stitching, replication,
nesting, and overloading. The PolyChrome API makes a distinction
between interactions and events: interactions change the data of the
application and are sent to the Web server where the central state
of the application is stored; events change the view displayed on
the devices and are directly exchanged between all paired devices.
Polychrome can create components out of legacy applications in
order to create views spanning across multiple devices. Polychrome
makes the whole Web application liquid, while Liquid.js targets
component-based applications: in Liquid.js it is possible to migrate,
fork and clone individual components across different devices so
that developers can have full control on the granularity of the liquid
user experience.

In the cross-device distributed user interfaces research area XD-
MVC [9] is a Web framework which can be used to develop decen-
tralized cross-device applications focused on automatic cross-device
adaptation of its user interface. The framework allows to easily
decompose and migrate component-based Web application built on
the Polymer framework. Migration is implemented at the applica-
tion level, however only the state is synchronized between devices.
From the developer point of view, migration is implemented by
clipping off child components from their parents depending on
which device they are deployed, simulating the expected migration
behavior expected by Liquid software. XD-MVC supports declara-
tive adaptation of the view layer as views and components can be
annotated with rules that describe how components are expected
to be shown across multiple devices. By interpreting up these rules,
XD-MVC is able to decide which parts of a view need to be clipped
depending on the configuration of the set of connected devices. The
Liquid.js API we present in this paper allows developers to pro-
grammatically control and fine-tune the deployment configuration
of liquid Web applications and could be used to implement similar
rule-based adaptation policies.

3 LIQUID.JS FOR POLYMER
Liquid.js for Polymer [3] is a Web framework for building decen-
tralized, component-based, liquid Web applications that can be
deployed across multiple heterogeneous devices. The assumption
is that applications developed using Liquid.js are built using the
Web Components standard, which provides the necessary abstrac-
tions to structure the application user interface and its state into
modular, reusable and composable units and that can be indepen-
dently deployed across multiple devices. While for sequential usage

scenarios it is sufficient to make the whole Web application liquid,
a fine-grained component-based approach is particularly suitable
for simultaneous usage scenarios. This way, developer may control
the deployment configuration of each part of the user interface and
best decide how to empower the users to rearrange and lay out the
Web application across all available devices.

More specifically, we assume that components are built with
the Polymer framework, developed by Google. Liquid.js is compat-
ible with any of the Polymer components that can be found on
the Catalogue of Web Components2 as well as with any Polymer
component built by Web developers complying with Polymer v1.x
rules. Liquid.js transparently takes care of the state synchroniza-
tion thanks to Yjs [12], a connector for concurrency control and
conflict resolution which communicates over both WebSockets and
WebRTC peer to peer connections.

Developers using Liquid.js [4] need to inject the Liquid behavior
into the Polymer components they decide to make Liquid so that
they can be dynamically migrated to run on other devices. More
precisely, the Liquid behavior gives to a stateful Web component
the ability to be dynamically deployed, migrated, forked, and cloned
on any Web browser-enabled device.

To do so, the state of a Web component can be annotated fol-
lowing the Liquid.js conventions. Developers can choose which
components are Liquid and they can explicitly define which prop-
erties should be shared with other devices upon the migration
of the component. Liquid.js reads the annotated components and
transparently manages asset deployment, state migration and syn-
chronization between components running on different devices.
The Liquid.js convention labels any Polymer component import-
ing the Liquid behavior as a liquid component, and any Polymer
property that need to be synchronized as a liquid property. Liquid
properties can only be defined inside a liquid component. A liq-
uid component can be instantiated on any device running a Web
browser connected to the liquid Web application discovery server.

Liquid.js allows users to instantiate any component provided
by the Web application on any of their devices, furthermore it
allows users to migrate those components directly across any other
device. By default, Liquid.js wraps the Polymer component around
a frame which displays a menu with the corresponding liquid user
experience actions (i.e., migrate the component to another device
as shown in Figure 2a). Developers can however choose to hide
such frame and completely redesign and customize the liquid user
experience using the API described in this paper.

Whenever a component moves across devices, if the target does
not yet own the assets of the component, it will request them
from the source so that they can be dynamically loaded on the
new device. To do so, Liquid.js supports both a centralized and
decentralized approach to distribute and deploy the assets of a Web
application. Like any other traditional Web application, the server
of the liquid application (see Figure 1) stores all the assets of the
application (i.e., the HTML, CSS, and JavaScript files containing
the definition of liquid components). As assets are downloaded by
the clients connected to the application, Liquid.js no longer relies
only on the central Web server. Since clients own a copy of the
assets they can help the server by sending the assets to new clients

2https://www.webcomponents.org/

https://www.webcomponents.org/

Client-side

HTTP Client

Liquid API

Liquid Behavior

Liquid C
om

ponent

PouchDB

Websocket Client

Server-side
Deployment

Server

Websocket
Server

Signaling
Server

 Polymer
 Component

y-liquid

Custom
Liquid User Experience

Assets

Liquid
WebWorker

Pool

Property

WebRTC Peer

Figure 1: Liquid.js Architecture

connecting to the application. Clients can distribute assets to their
neighbouring devices through peer-to-peer channels created with
the WebRTC Peer Connection and DataChannel APIs. Creating a
fully distributed architecture from the very beginning is impossible
with current Web technologies, because users connecting from
their Web browsers do not yet own a public IP address, thus they
need to connect to a Web server in any case for discovery purposes.
Therefore the server of the liquid application takes care of the
discovery of the clients by implementing a Signaling Server which
can also be used for relaying messages between the devices that
cannot create a direct WebRTC connection between them.

Liquid.js identifies liquid properties, liquid components and de-
vices with unique identifiers (URIs). The framework applies an
identifier to each device upon connection and it assigns an identi-
fier to liquid components and their properties whenever they are
instantiated. These identifiers can be used as URIs [2] within the
framework whenever there is the need to refer to them, e.g. in order
to migrate a liquid component from a device to another the source
componentURI and the target deviceURI have to be known. Liquid.js
URIs follow the liquid URI scheme and are dereferenceable through
the framework and not by using the HTTP protocol. URIs simplify
the design of the API as the same methods can be applied both to
components deployed on the device issuing the command as well
as to remote components.

The liquid behavior transparently communicates directly with
the core components of the library, the Liquid API component, and
the y-liquid component (see Figure 1). The latter defines the imple-
mentation of a connector for the Yjs framework [12] which takes
care of synchronizing data structures between devices. Whenever
the state of the component’s liquid properties changes, the Yjs and
the y-liquid connector create and send synchronization messages
which are automatically delivered to other paired devices.

The existing behavior of any application built without using
Liquid.js (legacy Polymer components) is left unchanged also if
it is upgraded to liquid, as the components still have full access
to any W3C HTML5 APIs or any imported library defined in the
main JavaScript environment. Liquid.js wraps the solid Polymer
components and sets up proxy traps and object observers on the
annotated Polymer properties. This approach allows to separate
concerns between the liquid behavior and the actual component
behavior without requiring developers to change the code they

already own. Instead, they only need to explicitly annotate as liquid
the properties whose values should be migrated or kept synchro-
nized across devices. For more information on the internals of
Liquid.js, refer to [3].

4 THE LIQUID.JS API
The core Liquid.js API deals with device configuration and discov-
ery, controls the liquid component lifecycle and exposes the liquid
user experience primitives that can be used for advanced customiza-
tion scenarios of the default user experience controls provided by
Liquid.js. Additionally, the API offers a cross-device version of many
useful HTML5 APIs, such as Liquid WebWorkers, for offloading
computationally intensive tasks across devices, Liquid Storage, for
managing the runtime state of components shared across multiple
devices, and Local Persistence, for storing snapshots of component
state. The Assets API supports peer to peer deployment of the Web
application assets and the Connection API provides a decentralized
event bus. Many of the described methods are asynchronous be-
cause they require inter-device communication. In this case, they
return Promises to represent the successful or failed completion of
the asynchronous method invocation.

4.1 Framework Configuration API
The Framework Configuration API (see Table 1) allows developers
to configure the client-side of Liquid.js and instantiate the Liquid.js
framework properly. The configuremethod expects an options object
(see Listing 1 for default values) in which the developer should at
least define the host address of the Web server used for discovery
and asset deployment.

1 defaultOptions = {
2 host: 'localhost ', // Web server address
3 port: 80, // Web server port
4 signalingServerRoute: '/signaling ', // Route for

accessing signaling server
5 relayMessages: false , // Automatically relay ALL

messages via the Web server
6 useRoutingTables: true , // Optimize sending messages
7 optimizePackageBroadcastMessages: true , // Optimized

message broadcast
8 workerPool: {} // Preloaded Liquid WebWorkers
9 }

Listing 1: Configuration default options

Table 1: Liquid.js API: framework configuration

Method name and parameters Return value
Configuration Methods

configure(options) Promise()
getLoadableComponents() Promise(componentTypes[])

getAllComponentURIs([DeviceURI]) Promise(componentURIs[])
getAllComponentInstances() componentInstances[]

getComponentInstance(componentURI) componentInstance
getDevicename() devicename

setDevicename(devicename) -
Events(returned values)
devicenameChange(devicename)
Triggers when the server accepts the notification of the
devicename change.
loadableComponentsListUpdate(componentTypes[])
Triggers when the available list of components on the server
side changes and returns a list of componentTypes[]. The list
includes only the components available on the server, and not
the ones that can be obtained directly from other clients.

The getLoadableComponents returns the list of components stored
and accessible from the server-side. To enumerate the component
types cached and available from other devices, use the Assets API.

Since it is difficult for the user to recognize a device by its de-
viceURI, Liquid.js allows developers to assign devicenames to the
devices with the method setDevicename. The function can be called
only on the device issuing the API method, it is not possible to
change the deviceName of remote devices. If the developer chooses
to label devices with a name, it can replace all occurrences of de-
viceURI with the assigned devicename in all methods calls of the
API. The server guarantees the uniqueness of the devicename.

The remaining methods of this API return a snapshot of the cur-
rent deployment configuration of the liquid Web application. The
getAllComponentURIs method returns either the componentURIs
identifiers of all instantiated components inside the target device(s),
or by default all URIs of the instantiated component on the issuing
device. To access the actual components (the JavaScript object rep-
resenting their custom element) use the getAllComponentInstances
and getComponentInstance. These can only retrieve components
instantiated on the device executing the command, since it is impos-
sible to return a reference to a remote object. If the developer calls
the getComponentInstance with an invalid componentURI, or a URI
pointing to a remote component, the value undefined is returned.

4.2 Component Lifecycle API
The Component Lifecycle API (Table 2) are the core methods of
the Liquid.js framework. Together with the Liquid User Experi-
ence primitives migrate, fork, clone (see next Section 4.3) can be
used to implement customized liquid user experiences. The LUE
primitives themselves are a pipelined composition of the methods
described in this Section. Exposing them in the API provides access
to fine-granular mechanisms so that developers can combine them
in different ways to fine-time their own liquid user experience.

The loadComponentType is the first necessary step in the com-
ponent lifecycle. It first checks that the assets of a component are

loaded on the issuing device. If they are not yet loaded, it will re-
quest them from the Web server and dynamically load them into
the Web browser. The second step on the lifecycle consists of the
createComponent method, which creates and appends the HTML
custom element tag corresponding to the Polymer component to the
target DOMElement inside the DOM. The registerComponent takes
an existing Polymer component and marks it as liquid component.
If a component is not registered with Liquid.js, then any method
called on this component will fail apart from registerComponent
and deleteComponent. For convenience, the instantiateComponent
method simplifies the process of instantiating a component in a
single call, which is functionally equivalent to pipelining the three
methods loadComponentType → createComponent → registerCom-
ponent. The deleteComponent removes the target component from
the DOM and deletes it; a deleted component is lost forever as its
state cannot be retrieved. The only way to save and later restore
a component is to store a snapshot of its state by using the Local
Persistence API (see subsection 4.6).

The liquid storage for stateful component synchronization meth-
ods can be used if the target liquid component defines at least one
liquid property. The getState method returns a snapshot of the state
of a liquid component in the form of {propertyName : value}. The
setState method allows to apply a state snapshot to the target com-
ponent. The pairComponent and pairProperty establish a binding
between two properties or between all properties sharing the same
name of two different component instances so that their values will
be kept synchronized thereafter. The pairing is reverted by calling
either the unpairComponent or unpairProperty methods.

4.3 Liquid User Experience (LUE) API
The Liquid User Experience API (see Table 3) builds upon the com-
ponent lifecycle and liquid storage APIs to deliver the following
three primitives [5]:

• Migrate: a liquid component (and its runtime execution state)
is transferred from one device to another. Whenever a user per-
forms a migrate command on a component, he perceives that it
visually moves from the source device to the target device while
the original instance of the component disappears on the source de-
vice. Once the migration completes, the user can continue working
on the target device resuming from the state immediately before
the migration was triggered. Every time a component is migrated,
the framework transparently transfers 1) the migrated component
assets and 2) a snapshot of its state; the target device loads the asset
if it was not already loaded, then it instantiates a new component
on the target device and finally it applies the snapshot of the state
sent from the source device.

• Fork: the fork method allows to instantiate a copy of any
liquid component on a new device. From the user perspective, the
source component running on the initial device is unaffected by the
primitive. However, on the target device a new instance of the same
liquid component appears carrying over the same state. Along with
the state it had on the source device, the component carries over
also the same view it was previously presenting. The copies are not
connected after the command finishes executing, and the states of
the original component and the forked one can evolve separately.

Table 2: Liquid.js API: component lifecycle and liquid storage

Method name and parameters Return value
Component Lifecycle

loadComponentType(componentTypeURI) Promise(componentTypeURI)
createComponent(componentType[,DeviceURI, DOMElem, UIType]) Promise(createdComponentURI)

registerComponent(componentURI) Promise(componentURI)
instantiateComponent(compType[,DOMEl, UIType]) Promise(instantiatedComponent)

deleteComponent(componentURI) Promise()
Liquid Storage for Stateful Component Synchronization

getState(componentURI) Promise(stateSnapshot)
setState(componentURI, stateSnapshot) Promise(componentURI)

pairComponent(sourceCompURI1, targetCompURI2) Promise()
unpairComponent(sourceCompURI1, targetCompURI2) Promise()

pairProperty(sourcePropURI, targetPropURI) Promise()
unpairProperty(sourcePropURI, targetPropURI) Promise()

Table 3: Liquid.js API: Liquid User Experience (LUE)

Method name and parameters Return value
Liquid User Experience

migrateComponent(sourceCompURI, targetDevURI) Promise(migratedComponentURI)
forkComponent(sourceCompURI, targetDevURI) Promise(forkedComponentURI)
cloneComponent(sourceCompURI, targetDevURI) Promise(clonedComponentURI)

• Clone: similarly to the fork method, cloning allows to instan-
tiate a copy of a liquid component on any target device. Differently
from the fork method, the state of the original and of the cloned
components is kept synchronized.

The LUE primitives are actually implemented as compositions
of the component lifecycle methods (see subsection 4.2): e.g. the
migrateComponent method is implemented by pipelining the fol-
lowing methods: connectDevice → getComponentState → getLoad-
edAssets → requestAsset → loadAsset → loadComponentType →
registerComponent → createComponent → setComponentState →
deleteComponent. The pipelines defining the forkComponent and
the cloneCompoment methods are very similar to the migrateCom-
ponent one, without the final call to deleteComponent in the case of
the fork primitive, and the additional call to pairComponent for the
clone primitive.

4.4 Device Discovery API
The Device Discovery API (see Table 4) allows developers to access
and read the metadata related to the set of remotely connected
devices constituting the execution environment of the liquid Web
application. The framework fingerprints all connected devices us-
ing ClientJS, this information is the only information stored on
the Web server of Liquid.js and is broadcast to all machines when-
ever they connect to the application. The deviceInfo object has the
following form: {deviceURI, clientjsFingerPrint, devicename, hard-
wareData}. In the fingerprint we include the information about the
current platform type, recognizing the following three categories:
Desktop/Laptop, Tablet, and Phone. There are other possible plat-
form values, but currently Liquid.js supports these three as they
can run Web browsers supporting its dependencies (e.g., WebRTC,
Polymer). The getDevicesList and the getDeviceInfoList ask Liquid.js

Table 4: Liquid.js API: Device Discovery

Method name and parameters Return value
Device Discovery

getDeviceInfo() deviceInfo
getDeviceURI() deviceURI
getDevicesList() availableDeviceURIs[]

getDevicesInfoList() availableDeviceInfos[]
Events(returned values)
devicesListUpdate(availableDeviceInfos[])
Triggers when a new device connects to the server and is
available to be paired. The event callback receives the entire list
of {deviceURI , client jsFinдerPrint ,devicename, customData}
identifying each connected device.

to retrieve the latest version of the list of the known and currently
available devices from the Web server. The getDeviceURI methods
returns the URI of the device issuing the command.

4.5 Liquid WebWorker API (beta)
The Liquid WebWorker API (see Table 5) is used for sharing the
computational power of multiple devices to run computationally-
heavy tasks by automatically offloading WebWorkers from weaker
devices to more powerful ones.

The createLiquidWorker method allows the developer to create a
WebWorker that can be shared across devices. If developers need to
create multiple Liquid Workers, they can call the method createLiq-
uidWorkerArray and pass an array listing all the Liquid Workers to
be created. The purpose of the pairDeviceWorkersmethod is to estab-
lish a trust relationship between devices so that all Liquid Workers

Table 5: Liquid.js API: worker offloading

Method name and parameters Return value
Liquid.js API

createLiquidWorker(workerName, workerURI) Promise(worker)
createLiquidWorkerArray({workerName, workerURI}[]) Promise(workers[])

pairDeviceWorkers(DeviceURI) Promise(DeviceURI)
postLiquidWorkerMessage(workerName, message) Promise(callResponse)

terminateLiquidWorker(workerName) Promise(workerName)
Liquid Worker API

postMessage(message) Promise(callResponse)
_postMessage(message) Promise(callResponse)

terminate() Promise()

Table 6: Liquid.js API: local persistence

Device level
saveDeviceState(key) Promise(key)
loadDeviceState(key) Promise(key)
getAllDeviceState() Promise(deviceStateSummaries[])
getDeviceState(key) Promise(deviceStateSummary)

Component level
saveComponentState(key,

compURI)
Promise(key)

loadComponentState(key) Promise(key)
getAllComponentState() Promise(compStateSummaries[])
getComponentState(key) Promise(compStateSummary)

Property level
savePropertyState(key, propURI) Promise(key)

getAllPropertyState() Promise(propertyStateValues[])
getPropertyState(key) Promise(propertyStateValue)

identified by the same name in the source device and in the target
device can be executed replacing the other. When the postLiquid-
WorkerMessagemethod is called, Liquid.js will attempt to reduce the
worker execution time and automatically decide whether the mes-
sage should be sent to the local worker or to a remote one running
on the pool of paired devices. Finally the terminateLiquidWorker
methods ends the lifecycle of a Liquid worker.

The developer can access the Liquid worker API also without
passing through the Liquid.js object, since the Liquid worker ob-
ject itself exposes an API. If that is the case then the methods
postMessage and terminate have the same functionalities of postLiq-
uidWorkerMessage and terminateLiquidWorker. The _postMessage
method bypasses the offloading functionality and ensures the task
is executed on the local device.

4.6 Local Persistence API
The Local Persistence API (see Table 6) allows saving snapshots of
the state of liquid components inside a PouchDB3 database running
within the Web browser. The snapshot of the state can be saved at
the device, component or property levels and any snapshot of the
state can be loaded whenever the corresponding method is invoked.
The snapshot is taken internally by the Liquid.js framework and
3https://pouchdb.com/

Table 7: Liquid.js API: Assets (peer to peer)

Method name and parameters Return value
Assets

requestAsset(name, deviceURI) Promise(script)
loadAsset(name, script, type) Promise(name)

getAsset(name) script
getLoadedAssets() names[]

Events(returned values)
isLoadingStatusChange(status)
when Liquid.js starts or ends fetching assets from the server or
another client. The event carries the current loading status: true
if Liquid.js is fetching or loading an asset, false otherwise

does not need to be passed as a parameter to the save functions.
The memento of the state is stored in JSON format, so that it can
be exchanged across devices by using the event bus. The three
abstraction levels allow the developer to save a snapshot of the
corresponding state by giving the unique key that will be used by the
PouchDB database to identify the snapshot. All abstraction levels
define a getAll and get method for snapshots retrieval. Finally the
device and component levels also define a load method which will
restore on the current device the retrieved snapshot, themethodwill
instantiate and reload the state of all liquid components contained
in the snapshot. The property-level API does not define any load
method because properties cannot be instantiated independently
from the liquid component they belong to.

4.7 Assets API
The Asset API (see Table 7) is used to request and load asset files.
In order to create a distributed environment that rely on the Web
server as little as possible, Liquid.js allows clients to exchange
asset files among one another. To make this possible, at least one
connected client needs to own a cached copy of the assets initially
stored on the Web server. For security reasons not all assets can be
shared using the Asset API, the list of shareable assets must be filled
in a configuration file. Assets can be shared only on-demand, clients
cannot send assets directly to other clients if the receiving client did
not send a request. The requestAsset method allows the developer
to poll a device for a specific asset which can then be executed on
the machine by calling the loadAsset function. The getAsset method

https://pouchdb.com/

Table 8: Liquid.js API: device connection and event bus

Method name and parameters Return value
WebSocket and WebRTC

isSocketConnected() isSocketConnected
sendSocketCustomMessage(msg) -

So
ck
et

socketDisconnect() -
connectDevice(deviceURI) Promise(deviceInfo)

disconnectDevice(deviceURI) Promise()
sendMessage(message) -D

ev
ic
e

getConnectionList() connectedList
Events(returned values)
connect(deviceID)
when the client connects to the server for the first time.
disconnect()
when the client disconnects from the server.
reconnect()
when the client reconnects to a server, this event is triggered
instead of the connected event.
Custom Events
It is possible to use the socket connection opened by Liquid.js
to communicate with the server side or allow the server to push
custom data to the client. By sending a socketCustom message
defined as {type, payload}, liquid.js fires an event type with
parameter payload on the receiving client.

retrieves the script of any asset that was previously executed on
the machine, and the getLoadedAssets methods returns an array
containing all names of executed scripts. The loadingChange event
is associated to this API: whenever Liquid.js is in the process of
requesting or loading a file from another client it will set its loading
status to true, in all other cases the status is set to false.

4.8 Connection API and Event Bus
The Connection API (see Table 8) defines all methods that can be
used by the developers to communicate with other devices, or with
the Web server if they need to exchange data with it. The API ex-
poses three methods that can be used to enhance the server-client
communication passing through a WebSocket channel: the isSocket-
Connected method returns the current status of the connection, the
sendSocketCustomMessage method is used for direct communica-
tion with the server through special purpose socket messages, and
the socketDisconnect method closes the connection with the server.
The remaining four methods are used to interact with the WebRTC
channels connecting clients: the connectDevice ask Liquid.js to open
a connection between the current device and the target device,
similarly the disconnectDevice forces to close an opened connection
between target clients; the sendMessage method allows developer
to exchange messages with other clients; and the getConnectionList
method returns an array containing all deviceURIs of all devices
that share an opened connection with the issuing device.

The device connection API triggers the connect, disconnect and
reconnect events whenever the socketConnected status changes.
Moreover the developers can define their own custom sockets

events if they are developing Web applications that need to com-
municate directly with the Web server.

5 CUSTOM LIQUID USER EXPERIENCE
EXAMPLES

We have used the Liquid.JS API to build the demos available on
http://liquid.inf.usi.ch. The screenshots in Figure 2a and 2b show
the same picture liquid component instantiated in two differentWeb
applications loading the default visual user interface of a Liquid.js
application and a customized version.

The liquid Web application shown in Figure 2a has a toolbar on
which it is possible to see the current connectionStatus of the ap-
plication, see and edit the devicename of the device and instantiate
new components by using the dropdown menu. Each instantiated
liquid components is wrapped with a frame which displays a menu
containing a list of possible actions to apply on the selected com-
ponent, e.g. from the dropdown menu users can choose to migrate,
fork or clone the component to the devices named ThisDevice and
OtherDevice, fork on all connected devices or delete the component.

The liquid Web application shown in Figure 2b also features a
toolbar. With it, the user can only see the automatically generated
devicename (i.e., P0, P1, P2), can toggle a button switching the
selected LUE primitive betweenmigrate and clone and press a green
button labeled as share (in the screenshot it is green). Whenever the
user presses the share buttons it switches on and off the white icons
shown on the top-right corner of the picture liquid components (see
left picture). Those icons provide affordances which can be dragged
to migrate or clone the component elsewhere. The target device is
also represented as a colored icon located within the dark frame
shown surrounding the browser window. This frame appears as
soon as the user starts dragging the white liquid component icon. If
the dragged icon is dropped on any of those devices the component
will be migrated or cloned on the target device, depending on the
pre-selected action. Listing 2 shows the code executed when the
user drops the icon on one of the colored circles.

6 CONCLUSIONS AND FUTUREWORK
With Liquid.js it is possible to migrate, fork and clone Polymer
components once they import the Liquid behavior. A Polymer com-
ponent contains the definition of its UI (HTML5 and CSS3), its logic
(JavaScript) and its state (Web Component Properties). The API
design takes advantage of standard Web/JavaScript idioms such
as URIs for the identification and location of entities which can
be deployed locally or remotely and Promises to simplify dealing
with asynchronous, long-running operations. We have attempted to
keep the Liquid.js API free from Polymer-specific concepts so that
it can be generally applicable to other Web component frameworks
in which the state of a component can be explicitly represented as
a set of properties.

The liquid user experience primitives we provide move and syn-
chronize all layers (model, view, controller) of a component from
one device to another along with the assets defining it. While our
experience with developing liquid Web applications indicates that
this is a reasonable solution for programmatically implementing
the liquid user experience, our next goal is to design a rule-based

(a) Liquid.js default user experience (menu-based)

(b) Liquid.js custom user experience (drag and drop)

Figure 2: Default and customized Liquid User Experiences

approach so that developers can declaratively specify how the liq-
uid components should be deployed across multiple devices. On
one side, the liquid user experience defines how a user interacts
with the software in a multiple device environment to configure

1 onDropShare: function(e) {
2 let componentURI = e.dataTransfer.getData('component ')
3 let targetDeviceURI = e.target.dataset.identifier
4 let operation = this.getToggleButtonOperation ()
5 if(operation == 'migrate ') {
6 Liquid.migrateComponent(componentURI , targetDeviceURI)
7 } else {
8 Liquid.cloneComponent(componentURI , targetDeviceURI)
9 }
10 }

Listing 2: Icon Drop Event Handler for Figure 2b Invoking
the Migration or Cloning Liquid User Interface Primitives
of the Liquid.js API

and re-arrange its distributed user interface. On the other side,
developers should be able to define rules to automatically adapt
and continuously re-adapt their applications to the set of available
devices, while still letting the user further customize where and
how the UI of the software should be displayed. The Liquid.js APIs
we described in this paper provides all necessary mechanisms to
experiment with different forms of complementary view adaptation.

Acknowledgements. This work is partially supported by the SNF
with the "Fundamentals of Parallel Programming for PaaS Clouds"
project (Nr. 153560).

REFERENCES
[1] Sriram Karthik Badam and Niklas Elmqvist. 2014. Polychrome: A cross-device

framework for collaborative web visualization. In Proc. of the Ninth ACM Interna-
tional Conference on Interactive Tabletops and Surfaces. ACM, 109–118.

[2] Andrea Gallidabino. 2016. Migrating and Pairing Recursive Stateful Compo-
nents Between Multiple Devices with Liquid.js for Polymer. In Proc. of the
16th International Conference on Web Engineering (ICWE). 555–558. https:
//doi.org/10.1007/978-3-319-38791-8_47

[3] Andrea Gallidabino and Cesare Pautasso. 2016. Deploying Stateful Web Com-
ponents on Multiple Devices with Liquid.js for Polymer. In Proc. of CBSE. IEEE,
85–90.

[4] Andrea Gallidabino and Cesare Pautasso. 2016. The Liquid.js Framework for Mi-
grating and Cloning StatefulWeb Components across Multiple Devices. In Proc. of
the 25th International Conference on the World Wide Web (WWW), Demonstrations.
183–186. https://doi.org/10.1145/2872518.2890538

[5] Andrea Gallidabino, Cesare Pautasso, Tommi Mikkonen, Kari Systa, Jari-Pekka
Voutilainen, and Antero Taivalsaari. 2017. Architecting Liquid Software. Journal
of Web Engineering 16, 5&6 (September 2017), 433–470.

[6] Google. 2012. The New Multi-screen World: Understanding Cross-platform
Consumer Behavior. (2012). http://services.google.com/fh/files/misc/
multiscreenworld_final.pdf.

[7] John Hartman, Udi Manber, Larry Peterson, and Todd Proebsting. 1996. Liq-
uid software: A new paradigm for networked systems. Technical Report 96-11.
University of Arizona.

[8] Maria Husmann, Nicola Marcacci Rossi, and Moira C. Norrie. 2016. Usage Anal-
ysis of Cross-Device Web Applications. In Proc. 5th ACM Intl. Symposium on
Pervasive Displays. ACM, 212–219.

[9] Maria Husmann and Moira C. Norrie. 2015. XD-MVC: Support for Cross-Device
Development. In 1st Intl. Workshop on Interacting with Multi-Device Ecologies in
the Wild (Cross-Surface 2015). ETH Zürich, Switzerland, Zürich.

[10] Michal Levin. 2014. Designing Multi-device Experiences: An Ecosystem Approach
to User Experiences Across Devices. O’Reilly.

[11] Paul Luff and Christian Heath. 1998. Mobility in collaboration. In Proceedings of
the 1998 ACM conference on Computer supported cooperative work. ACM, 305–314.

[12] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. 2015. Yjs: A
Framework for Near Real-Time P2P Shared Editing on Arbitrary Data Types. In
Proc. of ICWE. Springer, 675–678.

[13] Antero Taivalsaari, Tommi Mikkonen, and Kari Systa. 2014. Liquid Software Man-
ifesto: The Era of Multiple Device Ownership and Its Implications for Software
Architecture. In Proc. of the 38th Annual IEEE Computer Software and Applications
Conference (COMPSAC). IEEE, 338–343.

https://doi.org/10.1007/978-3-319-38791-8_47
https://doi.org/10.1007/978-3-319-38791-8_47
https://doi.org/10.1145/2872518.2890538
http://services.google.com/fh/files/misc/multiscreenworld_final.pdf
http://services.google.com/fh/files/misc/multiscreenworld_final.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Liquid.js for Polymer
	4 The Liquid.js API
	4.1 Framework Configuration API
	4.2 Component Lifecycle API
	4.3 Liquid User Experience (LUE) API
	4.4 Device Discovery API
	4.5 Liquid WebWorker API (beta)
	4.6 Local Persistence API
	4.7 Assets API
	4.8 Connection API and Event Bus

	5 Custom Liquid User Experience Examples
	6 Conclusions and Future Work
	References

