Collaborative Software Architecture Decisions:
Structure and Dynamics

Doctoral Dissertation submitted to the
Faculty of Informatics of the University of Lugano
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by
Marcin Aleksander Nowak

under the supervision of

Prof. Dr. Cesare Pautasso

September 2014

Dissertation Committee

Prof. Dr. Mehdi Jazayeri University of Lugano, Switzerland
Prof. Dr. Michele Lanza University of Lugano, Switzerland
Prof. Dr. Patricia Lago VU University Amsterdam, the Netherlands

Prof. Dr. Olaf Zimmermann University of Applied Sciences of Eastern Switzerland,
Rapperswil, Switzerland

Dissertation accepted on 12 September 2014

Research Advisor PhD Program Director

Prof. Dr. Cesare Pautasso Prof. Dr. Igor Pivkin and Prof. Dr. Stefan Wolf

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Marcin Aleksander Nowak
Lugano, 12 September 2014

ii

Abstract

The complexity of modern computer systems is often comparable to that of
biological systems. As much as this complexity can be effectively hidden from
the end-user, it is inherently absorbed in the design of the system. Software
Architecture is an effective design abstraction that allows designers to divide and
conquer the complexity. A modern way of looking at the Software Architecture is
to see it as a set of principal design decisions. The design of Software Architecture
for large and complex systems often requires expertise exceeding what can be
delivered by the individual software architect; therefore, successful design relies
on effective collaborative decision making within the design team of diverse
domain experts.

We tackle the problem of collaborative decision making in the software ar-
chitecture design teams by proposing the decision argumentation viewpoint
extension to the architecture description standard. Its main purpose is to sup-
port fine-grained decision argumentation modeling. Within the viewpoint, we
devise the architecture decision consensus lifecycle and a design issue choice state
machine that enable precise characterization of the decision state.

Based on the argumentation viewpoint we define an analytical framework
designed to estimate the structural and temporal characteristics of decision models.
The framework comprises fifteen metrics and offers a comprehensive look into
the state and dynamics of the decision making process.

Building upon this foundation, we designed and implemented the Software
Architecture Warehouse (SAW) - a tool to assist software architects in collaborative
decision making during architecture design workshops. SAW features low-latency,
structured architecture decision capturing and decision consensus management.

Furthermore, the Software Architecture Warehouse is accompanied by the
implementation of the decision argumentation metrics framework. Finally, we
evaluate the framework by applying it on the decision spaces recorded during
the master’s course on Software Architecture and Design. We conclude with a
discussion over the interpretation of differences observed between the workshops
assisted by the use of the Software Architecture Warehouse and those supported
by EtherPad, an alternative unstructured collaborative editor. In the last words,
we address threats to validity, limitations, and we hint at future work.

il

v

Kurzfassung

Die Komplexitdt moderner Computersysteme wird oft mit jener biologischer
Systeme verglichen. Auch wenn diese Komplexitdt erfolgreich vor dem Endbe-
nutzer verborgen werden kann, ist sie inhdrent im Systemdesign enthalten. Die
Software-Architektur ist eine effiziente Software-Abstraktion, die den Entwicklern
ermoglicht, diese Komplexitat aufzuspalten und somit zu {iberwinden. Eine mo-
derne Perspektive auf die Software-Architektur besteht darin, in ihr eine Gruppe
von wichtigen Designentscheidungen zu sehen. Die Entwicklung einer Software-
Architektur fiir gro8e und komplexe Systeme erfordert haufig Fachwissen, welches
das eines einzelnen Software-Architekten iibersteigt, daher beruht ein erfolgrei-
ches Design auf effizienter kollaborativer Entscheidungsfindung innerhalb eines
Entwicklungsteams aus Experten fiir verschiedene Bereiche.

Die vorliegende Arbeit versucht, das Problem der kollaborativen Entschei-
dungsfindung in einem Software-Entwicklungsteam zu 16sen, indem die
Entscheidungs-Argumentationsperspektive als Erweiterung zum Architekturbe-
schreibungsstandard vorgeschlagen wird. IThr Hauptzweck ist, eine kleinteilige
Entscheidungs-Argumentationsmodellierung zu unterstiitzen. In dieser Perspek-
tive soll der Architekturentscheidungs-Konsens-Zyklus entworfen werden und
einen Automaten zum Auswahlstatus von Designfragen, der eine prazise Charak-
terisierung des Entwicklungsstatus erlaubt.

Auf der Entscheidungs-Argumentationsperspektive basierend wurde ein ana-
lytischer Rahmen definiert, um die strukturellen und zeitlichen Charakteristika
von Entscheidungsmodellen zu ermitteln. Der Rahmen umfasst 15 Metriken und
bietet einen umfassenden Uberblick iiber den Status und die Dynamiken des
Entscheidungsprozesses.

Auf dieser Grundlage aufbauend, soll das Software Architecture Warehouse
(SAW) entwickelt und implementiert werden — ein Instrument, das Software-
Architekten wihrend des Architektur-Workshop in der kollaborativen Entschei-
dungsfindung helfen soll. Das SAW enthélt eine strukturierte Architekturentschei-
dungsaufnahme und ein strukturiertes Entscheidungskonsens-Management, beide
mit einer geringen Latenz.

Desweiteren wird das Software Architecture Warehouse ergéanzt um die Im-
plementierung eines Frameworks von Entscheidungs-Argumentations-Metriken.

vi

Schliel3lich evaluiert die vorliegende Arbeit das Framework durch Anwendung
auf die Entscheidungsraume, die wiahrend des Master-Kurses iiber Software-
Architektur und Software-Design erfasst wurden. Die Arbeit schlief3t mit einer
Diskussion der beobachteten Unterschiede zwischen der Benutzung des Softwa-
re Architecture Warehouse und EtherPad, einem alternativen unstrukturierten
kollaborativen Editor. Weiter werden im Schlusswort noch Limitierungen des
gewahlten Ansatzes angesprochen und mogliche zukiinftige Forschungsansatze
skizziert.

Sommario

La complessita dei moderni sistemi informatici € spesso comparabile con quella
dei sistemi biologici. Per quanto questa complessita possa essere efficacemente
nascosta all’'utente finale, essa ¢ intrinseca nel design del sistema stesso. L’Archi-
tettura del Software & un’efficace astrazione a livello di design che permette ai
progettisti di suddividere e gestire la complessita.

Oggigiorno, 'Architettura del Software puo essere vista come un insieme di
decisioni di design. Il design dell’Architettura del Software per sistemi grandi e
complessi spesso richiede 'esperienza di pitt di un singolo architetto del software,
infatti, la realizzazione di un design di successo si basa sulla collaborazione nel
processo decisionale di un team di designers formato da esperti di diversi settori.

Noi affrontiamo il problema della collaborazione del processo decisionale in
un team di designers dell’Architettura del Software proponendo un’estensione al
modello che funge da punto di vista argomentativo nel processo decisionale agli
standard descrittivi dell’architettura.

Lo scopo principale & quello di supportare la modellazione dettagliata di
argomentazioni nelle decisioni. All'interno dell’estensione & elaborato il ciclo di
vita delle decisioni a livello architetturale, come anche i problemi legati al design,
per caratterizzare in modo preciso lo stato della decisione.

Lavorando sul punto di vista delle argomentazioni, abbiamo definito un fra-
mework analitico studiato per stimare le caratteristiche strutturali e temporali
dei modelli decisionali. Il framework comprende quindici metriche e offre una
comprensiva introspezione nello stato e nelle dinamiche del processo decisionale.

Basandoci su cio, abbiamo studiato e sviluppato il Software Architecture
Warehouse (SAW), uno strumento in grado di assistere gli architetti del software
nel processo decisionale collaborativo durante i workshops architetturali. SAW
offre un modello per registrare le decisioni architetturali e gestire il processo
decisionale in modo strutturato e a bassa latenza.

Software Architecture Warehouse comprende inoltre 'implementazione del
framework per le metriche argomentative delle decisioni precedentemente men-
zionato. Valutiamo infine il framework applicandolo sullo spazio delle decisioni
raccolte durante il corso di master di Software Architecture e Design. Concludiamo
con un’interpretazione delle differenze osservate fra i workshops che utilizzavano

vil

viil

Software Architecture Warehouse e quelli che invece facevano uso di EtherPad,
un sistema non strutturato di collaborazione alternativo. Nell’ultimo paragrafo
menzioniamo i punti deboli, limitazioni e diamo suggerimenti su sviluppi futuri.

Streszcezenie

Ztozonos¢ wspotczesnych systemow komputerowych jest poréwnywalna ze ztozo-
noscia systemow biologicznych. Jest ona czesto ukryta przed koncowym uzytkow-
nikiem poprzez wchloniecie jej przez architekture systemu. Architektura opro-
gramowania jest wydajng abstrakcja projektu informatycznego, ktéra umozliwia
projektantom okielznanie ich ztozonosci. Wspotczesnie, architektura oprogra-
mowania jest postrzegana jako zbiér fundamentalnych decyzji projektowych. W
zwigzku z tym, ze projektowanie ztozonych systeméw komputerowych czesto
przekracza kompetencje pojedynczego architekta, aby uzyska¢ wysokiej jakosci
projekt, niezbedna jest skuteczna wspétpraca pomiedzy ekspertami z réznych
dziedzin przy podejmowaniu decyzji projektowych.

W tej pracy podejmujemy temat grupowych decyzji projektowych w zespotach
pracujacych nad architekturg oprogramowania. Proponujemy rozszerzenie stan-
dardu dokumentacji architektury oprogramowania (ISO 42010) o punkt widzenia
skupiajacy sie na szczegbtowej argumentacji decyzji projektowych. W ramach
tego punktu widzenia definiujemy cykl zycia konsensusu dla decyzji i maszyne
stanow kwestii projektowych.

W oparciu o ten punkt widzenia zdefiniowaliSmy model analityczny stuzacy
do badania struktury i dynamiki modeli decyzji projektowych. Model ten sktada
sie z pietnastu metryk i umozliwia doglebny wglad w stan faktyczny i proces
podejmowania decyzji.

Na tej podstawie zaprojektowalismy i zaimplementowalismy Software Archi-
tecture Warehouse (SAW) — narzedzie ktére wspomaga architektéw w procesie
grupowego podejmowania decyzji projektowych. SAW wspiera szybkie i uporzad-
kowane dokumentowanie decyzji oraz zarzadzanie konsensusem.

Dodatkowo SAW jest wyposazony w implementacje wyzej wymienionego
modelu analitycznego. Przydatno$¢ tegoz modelu demonstrujemy na przykltadzie
analizy danych zebranych w ramach magisterskiego kursu architektury oprogra-
mowania oferowanego na uniwersytecie w Lugano. W oparciu o zebrane dane
i model, przedstawiamy interpretacje réznic pomiedzy grupami projektowymi;
jedna wspomagana przy uzyciu SAW, a druga grupa wykorzystujaca generyczny
grupowy edytor tekstu (EtherPad). Na zakonczenie omawiamy ograniczenia i
stosowalnos¢ naszych wynikow, oraz przedstawiamy perspektywy na przyszios¢.

X

Acknowledgments

This work would not be possible without support and encouragement of many
people. First, I would like to thank my thesis advisor, Prof. Dr. Cesare Pautasso.
Without his support and supervision, this work would not be possible at all.
Thanks to his open mind and encouragement, I was able to stay on track through
the dire straits of the research process. His meritorious critique and advice assured
a high-quality outcome.

I should strongly acknowledge the effort that, my colleague, Vasileios Triglianos
has put into proofreading the final draft of the thesis. His fresh eyes have had
a significant impact on the editorial quality of this dissertation. I would like to
thank the rest of my research group: Dr. Saeed Aghaee, Masiar Babazadeh, Dr.
Daniele Bonetta, Vincenzo Ferme, and Dr. Achille Peternier. I would like to thank
my thesis committee, Prof. Dr. Olaf Zimmermann, Prof. Dr. Michele Lanza, Prof.
Dr. Patricia Lago, and Prof. Dr. Mehdi Jazayeri for their direction and invaluable
advice along this project.

I feel obliged to mention Jan Lalek, Andrzej Rybczynski and Adam Matusiak
of Lafot. Work that we have done together has been a forming experience that
have inspired me to pursue this particular research field. I am also beholden
to a number of fabulous managers that I had the pleasure to work with: Dirk
Weidemann, Reinhard Koehler, for involving me in super interesting projects and
for all the personal development opportunities given to me.

A significant amount of development work on the Software Architecture
Warehouse has been contributed by the master students of the Faculty of the
Informatics. Your work is greatly appreciated. I am confident that during this
work we all have learned an important lesson about web application development.
Thank you: Ievgenii Riabokon, Masiar Babazadeh, Adnan Alhariri, Mark Pruneri,
Omar Elabed, and Alessandro Andreani.

I owe a big thank you to Dr. Cherilyn Keall for her invaluable advice on style
and language, which gave a finishing touch to this dissertation.

This work was partially supported by the Swiss National Science Foundation
with the CLAVOS project (Grant Nr. 125337).

X1

X1l

Danksagung

Diese Dissertation wére ohne die Unterstiitzung und den Zuspruch vieler Men-
schen nicht moglich gewesen. Darum mochte ich die Gelegenheit ergreifen, mich
an dieser Stelle bei ihnen zu bedanken. An erster Stelle danke ich meinem Be-
treuer Cesare Pautasso. Ohne seine Unterstiitzung und seinen Rat wére diese
Arbeit sicherlich nicht moglich gewesen. Seine Aufgeschlossenheit und Ermuti-
gungen haben mir geholfen mich nicht im Forschungsprozess zu verlieren. Seine
konstruktive Kritik und seine produktiven Ratschlédge haben fiir die hohe Qualitét
des endgiiltigen Resultats gesorgt.

Mein besonderer Dank gilt dariiber hinaus meinem Kollegen Vasileios Triglianos,
der viel Zeit und Miihe in das Korrekturlesen der endgiiltigen Version investiert
hat. Seiner Aufmerksamkeit ist nichts entgangen und seine Ratschldge haben
die Lesequalitét dieser Dissertation deutlich verbessert. Ich mochte ebenfalls
den ibrigen Mitgliedern meiner Forschungsgruppe danken: Dr. Saed Aghaee,
Masiar Babazadeh, Dr. Daniele Bonetta, Vincenzo Ferme und Dr. Achille Peternier.
Desweiteren mochte ich den Priifern, Prof. Dr. Olaf Zimmermann, Prof. Dr.
Michele Lanza, Prof. Dr. Patricia Lago, und Prof. Dr. Mehdi Jazayeri fiir ihre
Anleitung und wertvollen Ratschldge danken.

Ebenso zu Dank verpflichtet bin ich Jan Lalek, Andrzej Rybczynski und Adam
Matusiak. Unsere Zusammenarbeit war fiir mich eine wichtige Erfahrung, die
mich dazu inspiriert hat, weiterhin in diesem Feld zu forschen.

Mein Dank geht auch an eine Reihe von ausserordentlichen Managern, mit
denen ich das Vergniigen hatte zusammenzuarbeiten, vor allem an Dirk Weide-
mann und an Reinhard Koehler dafiir, dass sie mich in sehr interessante Projekte
einbezogen haben und mir viele Moglichkeiten zur personlichen Entwicklung
geboten haben.

Einen bedeutenden Beitrag zur Entwicklungsarbeit des Software Architecture
Warehouse haben die Masterstudenten der Fakultét fiir Informatik geleistet. Ich
bin davon {iberzeugt, dass wir alle wihrend dieser Arbeit viel iiber die Entwicklung
von Web-Anwendungen gelernt haben. Vielen Dank an: Jewgeni Riabokon, Masiar
Babazadeh, Adnan Alhariri, Mark Pruneri, Omar Elabed und Alessandro Andreani.

xiil

Xiv

Schliesslich danke ich noch Dr. Cherilyn Keall fiir ihre wertvollen Ratschlage
in Bezug auf Sprache und Stil, die dieser Dissertation den letzten Schliff gegeben
haben.

Diese Arbeit wurde teilweise vom Schweizerischen Nationalfonds (SNF) im
Rahmen des CLAVOS-Projekts gefordert (Stipendium Nr. 125337).

Ringraziamenti

Questo lavoro non sarebbe stato possibile senza il supporto e I'incoraggiamento
di molte persone.

In primis, vorrei ringraziare il mio supervisore di tesi Prof. Dr. Cesare Pautasso.
Senza il suo supporto e la sua supervisione questo lavoro non sarebbe stato
possibile. Grazie alla sua apertura mentale ed al suo incoraggiamento, sono stato
in grado di rimanere in pista affrontando le difficolta del processo di ricerca. Le
sue critiche ed i suoi consigli hanno assicurato I'alta qualita del risultato.

Vorrei ringraziare in modo particolare Vasileios Triglianos per il suo sforzo
nella lettura della bozza finale della tesi. Il suo aiuto ha avuto un impatto rilevante
sulla qualita editoriale del manoscritto. Vorrei anche ringraziare il resto del mio
gruppo di ricerca: dr. Saeed Aghaee, Masiar Babazadeh, dr. Daniele Bonetta,
Vincenzo Ferme, dr. Achille Peternier. Vorrei ringraziare il mio comitato tesi, Prof.
Dr. Olaf Zimmermann, Prof. Dr. Michele Lanza, Prof. Dr. Patricia Lago, e il Prof.
Dr. Mehdi Jazayeri per la loro direzione e preziosi consigli per questo progetto.

Sento il dovere di menzionare Jan Lalek, Andrzej Rybczynski e Adam Matusiak
della Lafot. II lavoro svolto insieme ¢ stato un’esperienza formativa che mi ha
ispirato a proseguire in questo particolare campo di ricerca.

Sono anche grato a una serie di favolosi manager con cui ho avuto il piacere
di lavorare: Dirk Weidemann e Reinhard Koehler, per avermi coinvolto in progetti
molto interessanti e per tutte le opportunita di sviluppo personale che mi hanno
offerto.

Una notevole quantita di lavoro di sviluppo sul Software Architecture Ware-
house ¢ stato svolto dagli studenti di master della facolta di Scienze Informatiche.
Il vostro lavoro & stato molto apprezzato.

Sono convinto che durante questo lavoro, abbiamo tutti imparato delle lezioni
importanti sullo sviluppo di applicativi Web. Grazie a: Ievgenii Riabokon, Masiar
Babazadeh, Adnan Alhariri, Mark Pruneri, Omar Elabed e Alessandro Andreani.

Devo un grande ringraziamento a Dr. Cherilyn Keall per i suoi preziosi consigli
sullo stile ed il linguaggio che hanno dato un tocco finale a questa dissertazione.

Questo lavoro e stato parzialmente supportato dallo Swiss National Science
Foundation con il progetto CLAVOS (Grant Nr. 125337).

XV

xvi

Podzickowania

Ta praca nie byta by mozliwa do zrealizowania bez wsparcia i zachety wielu 0séb.

W pierwszej kolejnosci chcialbym podziekowaé¢ mojemu promotorowi Pro-
fesorowi dr. Cesare Patuasso. Bez jego pomocy i nadzoru ta praca w ogdle nie
dosztaby do skutku. Dzieki jego otwartosci umystu i wsparciu w trudnych mo-
mentach, bytem w stanie pozosta¢ na wlasciwym kursie. Konstruktywna krytyka
i merytoryczna pomoc byta gwarancja wysokiej jakosci ostatecznego wyniku.

Chcialbym bardzo podziekowa¢ mojemu koledze — Vassileos Triglianos za
wysitek, ktéry wlozyt w korekte ostatecznej wersji tej pracy. Jego swiezy punkt
widzenia znacznie podniést jakos¢ edytorska tekstu. Chciatbym réwniez podz-
iekowac pozostatym czlonkom mojej grupy badawczej, to jest: dr. Saeed Aghaee,
Masiar Babazadeh, dr. Daniele Bonetta, Vincenzo Ferme, dr. Achille Peternier.
Specjalne podziekowania naleza sie¢ moim recenzentom: prof. dr Olaf Zimmer-
mann, prof. dr Olaf Zimmermann, prof. dr Michele Lanza, prof. dr Patricia Lago,
oraz prof. dr Mehdi Jazayeri, za ich nieoceniony wktad w przygotowanie tej pracy.

Czuje sie zobowiazany podziekowac¢ Janowi Lalkowi, Andrzejowi Rybczynskiemu
i Adamowi Matusiakowi z firmy Lafot. Czas, ktdry spedziliSmy pracujac razem byt
doswiadczeniem ktdre zainspirowato mnie do naukowego zglebiania architektury
oprogramowania.

Chcialbym réwniez podziekowa¢ dwém swietnym managerom z ktérymi
miatem przyjemno$¢ pracowac: Dirk Weidemann i Reinhard Koehler, za zaan-
gazowanie mnie w interesujacych projektach i umozliwienie rozwoju.

Znaczaca cze$¢ pracy przy implementacji Software Architecture Warehouse
zostata wykonana przez studentéw studidw magisterskich uniwersytetu w Lugano.
Jestem przekonany, ze w czasie naszej wspolpracy wszyscy wiele nauczylismy sie
na temat aplikacji internetowych. Dziekuje: Ievgenii Riabokon, Masiar Babazadeh,
Adnan Alhariri, Mark Pruneri, Omar Elabed i Alessandro Andreani.

Gorace podziekowania naleza sie dr Cherilyn Keall za jej nieoceniong pomoc i
porade jezykowa, ktéra nadata ostateczny ksztalt tej pracy.

Ta praca byla czesciowo finansowana przez Szwajcarska Fundacje Naukowa
(SNF) z projektu CLAVOS (Grant nr 125337).

Xvil

xviil

Contents

[Contents]

[List of Figures|

[List of Tables
(1__Introduction

(1.2 Architecture Decision Argumentation Modeling|

(1.3 Collaborative Architecture Decision Making|

(1.4 Estimation of Collaborative Architecture Decisions Quality].

(1.5 Contributions|

1 T < I

(2 Background|
(2.1 Architecture Design Process|.
[2.1.1 Quality of Software Architecture| .
[2.1.2 Architectural Knowledge|
[2.2 Knowledge Management|.
[2.2.1 Decision Making Process|

[2.2.2 Wicked Problems|.
(2.3 Computer Supported Collaborative Work]

...............

...............

...............

[2.3.1 The Problem of Collaborative Design|

[2.3.2 Positioning in Environment|

[2.4 Collaborative Design of Software Architecture|

2.0 Summary|,

13 Related Work and the State of the Art

[3.1 Architecture Views and Decision Modeling|

XiX

xvii

XXiX

U DD WWN -

N

10
12
14
15
17
20
20
21
22
23
23

25

XX

Contents

[3.2 Architectural Knowledge Management and Decision Support Tools| 32

(3.3 Collaborative Design Paradigms| 32
[3.3.1 Design Issue: Model Location| 33
[Design Alternative: Centralized|. 33

[Design Alternative: Distributed| 34

[3.3.2 Design Issue: Synchronization| 34
[Design Alternative: Manual 34

[Design Alternative: Automatic| 35

[3.3.3 Design Issue: Meta-Model Type| 35
[Design Alternative: Implicit Meta-Model| 35

[Design Alternative: Explicit Meta-Model| 36

[3.3.4 Design Issue: Collaborative Design Paradigm| 36
[Design Alternative: Shared File| 37

[Design Alternative: Wiki 37

[Design Alternative: Shared Repository| 38

[Design Alternative: Collaborative Editor] 39

[Design Alternative: Blackboard| 39

3.4 LIVENEeSS| v v it e e 40
[3.4.1 Design Issue: Conflict Prevention|. 40
[Design Alternative: None|. 41

[Design Alternative: Locks| 41

[3.4.2 Design Issue: Conflict Resolution| 41
[Design Alternative: Manual| 42

[Design Alternative: Automatic| 42

[3.4.3 Design Issue: Liveness| 42
[Design Alternative: Nonef. 43

[Design Alternative: Low| 43

[Design Alternative: Medium|. 43

[Design Alternative: High{ 44
...................................... 44
[3.6 Potential Gap|. 49
[3.7 Summary| e 49
llaborativ: re Archi re Decision 51
4.1 Typical Scenarios| 51
[4.1.1 Architecture Synthesis| 51
4.1.2 Architecture Evaluation|. 52
[4.1.3 Synthesis and Evaluation|. 53

4.2 Scoping the Research Problem| 53

bodl Contents
[4.2.1 Team Situational Awareness and Architecture Design| . .. 54
{4.2.2 Collaborative Architecture Design Decision Consensus (RP;)| 54
[4.2.3 Quality of the Collaborative Architecture Decisions (RP,)|. 55

4.3 Research Thesis| 56
4.4 SUMMAIY| . . . v v v vttt e e e e e e e e e e e e e 57
[5 Architecture Decision Argumentation Viewpoint| 59
[5.1 Decision Model and Argumentation Viewpointf 59
[5.1.1 The Lifecycle of Positions within Alternatives| 63
[5.1.2 The Lifecycle of a Design Decision| 65

(5.2 Summary| e e e 66
6 Software Architecture Warehouse| 67
[6.1 Shared Design Space Awareness|o v v v v v ... 68
(6.2 Usage CONteXt v v v v ittt e et e e e e et e 69
(6.3 Application Scenario| e 69
6.4 SAW Features| uuiiennnennenn.. 71
[6.4.1 Project-Based Design and Reusable Design Issues| 72
[6.4.2 Decision Elicitation| 72
[6.4.3 Collaborative Brainstorming| 75
[6.4.4 Decision Making| 75
[6.4.5 Position Conflict Management|. 76
|6.4.6 Focus Tracking and Convergence| 76
[6.4.7 Progress Monitoring|o vuv ... 76

[6.5 Architecture Design Decisions| 81
[6.5.1 Design Issue: Model Location| 81
[6.5.2 Design Issue: Synchronization| 82
[6.5.3 Design Issue: Meta-Model Type| 83
[6.5.4 Design Issue: Conflict Prevention|. 83
[6.5.5 Design Issue: Conflict Resolution| 84

[6.6 Selected Design Aspects| 85
[6.6.1 Client-Server Splitf 85
[6.6.2 Rich Web-Application| 86
|6.6.3 Graph-based Decision Space Meta-Meta-Model| 88
[6.6.4 Node Graph Observer and Notification System| 89
[6.6.5 Smart Client-Side Graph Caching|. 89
6.6.6 Deployment|, 90

(6.7 Summary| e e 91

xxii Contents

[7 The Analyzer 93
...................................... 93
[7.1.1 QUeStiONS| . . . v v v v v e e e e e e e e e e e 94
[7.1.2 MELTICS| . . . v v o e e e e e e e e e e e e e e e 94
[Structural Metrics| o 95

[Content Metrics|, 97
[Argumentation Metrics| oL 99

[7.1.3 Interpretation Modell 105

(7.2 Analysis Workflow]. 108
[7.2.1 Data AcquiSition] v vttt 108
[7.2.2 _Event Identification| 110
[7.2.3 Decision Model Structure Recognition| 111
[7.2.4 Micro-Metrics| v v v vt i e e 112
[7.2.5 Item Identification Micro-Metrics| 112

[[tem Dynamics Micro-Metrics| 113
[Argumentation Micro-Metrics| 115

[ssue Micro-Metrics 116

[Project Micro-Metrics| 117

[/.3 SUMMAIY| . . . v v v vttt et e et e e e e e e 117
[8 Evaluation| 119
8.1 Formative Evaluationl. 119
(8.2 Empirical Evaluation| 122
[8.2.1 Participants|ottt e 124

2.2 Baseline and Observationf.o oo v v v ... 125

8.2.3 DataCollection|., 125

B3 RESUITS . -« v vt e e 125
[8.4 Interpretation] o i it i e e e 162
[8.4.1 Question 1: How aligned are the decisions?| 162
[8.4.2 Question 2: How volatile is the consensus over the decisions?[162
[8.4.3 OQuestion 3: How democratic are the decisions?| 163

8.5 Summary| 164
(8.6 Threatsto Validity|. 164
(8.6.1 Internal Validity| 164
[8.6.2 Construct Validity] 165

8.6.3 External Validity] 165

Xx1il Contents

[9 Conclusions| 167
9.1 Summary| 167
[9.2 Contributions| v v v it e e e 168
[9.3 Timitations| . . « v v v v v e 169
9.4 Tessonslearned|. 170
9.5 TheRoad Ahead|. 171
The D 173

Bibliography 183

XX1V Contents

List of Figures

[2.1 Generalized architecture design process model after [HKN"07]]|. . 9
I2.2 Twin Peaks model of requirements and architecture [NusO1]| . .. 10
[2.3 Chain of quality implications between design process activities| . . 11
[2.4 Chain of quality implications between design artifacts| 11
I2.5 CORE Architectural Knowledge model [dBFLO07]]| 13
[2.6 Nonaka and Takeuchi spiral model of knowledge conversion. [NT95/]| 15
[2.7 Overview of Choo’s knowledge model [I[Cho06)] 16
[2.8 Four basic decision making modes identified by Choo in [[Cho06].| 16
[2.9 An elementary, four-step decision making process| 17
(3.1 Kruchten’s 4+1 architectural view model [KCDO9]]|. 26
13.2 SOAD UML Meta-Model [[ZKL™09]|. 27
[3.3 Architectural decision meta-model after ISO 42010 [ISO11||. . .. 29
[3.4 An example of architectural decision model after ISO 42010 [ISO11/]| 29
[3.5 Meta-model of the relationship viewpoint [vHAH12al]| 30
[3.6 Meta-model of the chronological viewpoint [VHAHI2a 31

[3.7 Meta-model of the stakeholder involvement viewpoint [VHAH12al]| 31
[3.8 The AD viewpoint exposing relations between design space elements| 32

4.1 The meta-model of this dissertation| 56
I5.1 AD meta-model after ISO 42010 [ISOI1]J| 60
[5.2 AD viewpoint exposing linkage with issues and alternatives| 61
[5.3 The argumentation viewpoint meta-model|. 62
[5.4 A template for the view created with the argumentation viewpoint| 63
[5.5 Architecture Decision from the SOA design space| 64
[5.6 The state diagram of a design alternative| 64
[5.7 The state diagram of the lifecycle of a design decision| 65
[5.8 An example design issue with four design alternatives| 66

XXV

XXVi List of Figures

6.1 Logical information flow through the SAW|. 67
6.2 Context of the Software Architecture Warehousel. 68
[6.3 A navigation path through the Ul views of the SAW| 70
6.4 Decision Elicitation view in the SAW| 73
[6.5 Project overview inthe SAW| 74
[6.6 the SAW presenting an issue detail view with one alternative| . . . 77
[6.7 The project summary view inthe SAW| 78
|6.8 The SAW view presenting a design issue with three alternatives] . 79
[6.9 The design issue detail view in the SAW| 80
|6.10 A layering structure that exposes the client-server split of the SAW| 86
|6.11 Decomposition of the main module of the SAW user interface|. . . 87
|6.12 Decomposition of the decision module of the SAW user interface|. 88
[6.13 Event propagation through the shared graph model| 90
|6.14 A deployment view of the SAW in a network| 91
[7.1 An example of design space comprising projects| 96
[7.2 An example of an event log concerning a design Issue| 98
[7.3 An example of a position space with two issues|. 99
[7.4 An example of an event log concerning a design issue|. 103
[7.5 An example of an event log concerning a design issue|. 103
[7.6 An event log concerning a design decision|. 104
[7.7 An event log concerning a design decision| 104
[7.8 A six step design workshop analysis workflow| 109
[7.9 Anexampleofaneventlogl 112
[7.10 A schematic lifecycle of the architecture design workshop| 113
[8.1 List of design issues in an early prototype of the SAW|. 121
[8.2 Issue detail view in the early prototype of the SAW| 123
(8.3 Issue detail view in the contemporary SAW| 124
8.4 Issuecount (M1)| i i i i i ittt e et e 126
[8.5 Alternative count (M2)|. 127
[8.6 Histogram of the number of alternatives per issue (M2)[. 128
[8.7 Histogram of the number of contributors (M3)| 129
[8.8 Proportion of the consensus states (M3)| 129
[8.9 Proportion of the choice states (M3)| 130
[8.10 Proportion of the choice states (M4)[. 131
[8.11 Histogram of decision makers count (M4)| 132
[8.12 Proportion of the choice states (M4)[. 133

[8.13 Histogram of the activity timespan (M5)| 135

XxXVii List of Figures

[8.14 Properties of the issues related to the activity timespan (M5)| . . . 136
[8.15 Properties of the alternatives related to the activity timespan (M5)| 137
[8.16 Number of artifacts depending on the cut-off threshold time (M5)| 138
[8.17 Artifacts’ properties plotted against the population cut-off time (M5)[139
[8.18 The time since last change — histogram (10-minute intervals) (M6)|140
[8.19 Activity time plotted against the time of the last change (M5)|. . . 141
[8.20 Properties of issues plotted in time since last change (M6)|. 143
[8.21 Properties of alternatives in the time since the last change (M6)| . 144
[8.22 Number of positions with distinctive types in experiment runs (M7)[146

[8.23 Histogram for the number of positions per decision (M7)| 146
[8.24 Proportion of the consensus states (M8)| 148
[8.25 Proportion of the consensus states for alternatives (M9)| 149
[8.26 Proportion of the choice states (M10)[. 151
[8.27 Time that decisions spent in the consensus state (M11)[. 151
[8.28 Relative amount of time that issues spent in the choice state (M12)|154
[8.29 Histogram of time elapsed since the last position (M13)| 157

[8.30 Number of alternatives and number of deciders per issue (M13)| . 158
[8.31 Number of positions and number of deciders per decision (M13)[. 158

[8.32 A proportion of the design issue choice states (M13)| 159
[8.33 A proportion of the alternative states (M13)|. 159
[8.34 Histogram of the number of consensus state transitions (M14)| . . 160
[8.35 Histogram of the number of choice state transitions (M15)| 161

[8.36 Proportion of the final choice states (M15)| 161

xXxViii List of Figures

List of Tables

[2.1 Architecture vs. Design vs. Implementation| 8
[2.2 Clusters of architectural roles characteristics [[CLvVO7] 10
[2.3 Software product qualities after ISO 9126 [ISO91]] 11
[3.1 Mapping between the elements of diverse AD meta-models| 28
[3.2 Summary of decisions for each collaborative design paradigm level| 33
[3.3 Summary of decisions for each liveness level 40
|6.1 Mapping between features of a data warehouse and the SAW|. . . 71
[7.1 Metrics 1 and 2 calculated for sample design space| 96
[7.2 Metrics 3 to 6 calculated for a sample design issuef. 98
[7.3 Metrics 7 and 8 calculated for a sample decision space| 101
[7.4 Metrics 9 and 10 calculated for a sample decision space| 101
[7.5 Metrics 3, 4, 12, and 15 calculated for a sample design issues|. . . 102
[7.6 Metrics 11, 13 and 14 calculated for two sample positions| 104
[7.7 Metrics related to the questions concerning consensus| 106
[7.8 Mapping between data warehouse and Analyzer] 108
[7.9 Anexample setof rawevents|. 111
[7.10 Summary of coupling between micro-metrics and metrics| 114
IA.1 Micro-metric values matrix for decision spaces| 174
IA.2 Micro-metric values matrix for design issues| 177
IA.3 Micro-metric values matrix for selected design alternatives| 181

XXIX

XXX List of Tables

Chapter 1

Introduction

In this dissertation we explore the collaborative design of software architecture
using a contemporary approach to software architecture, viewing it as a set of
principal design decisions [[TMDQ9]. Efficient software architecture design calls
for new ways of making and managing decisions as a team [[TGAT3]]. We propose
an extension to the architecture description standard (ISO 42010) that focuses
on decision argumentation, and we observe it under experimental conditions.

Modern computer systems often reach levels of complexity comparable to
biological systems. Software Architecture is a design abstraction often used to
master such complexity so that it can be managed by the designers. In order to
deliver high-quality architecture design for complex software system, the design
team often needs to cover vast areas of expertise that effectively exceed the
capacities of a single software architect [TGA13]]. At the same time, physically
bringing together domain experts to participate in an architecture design workshop
creates a significant logistical overhead, in particular if the meetings need to take
place regularly over an extended period of time. With help of teleconferencing
technologies it is possible to bring together otherwise physically distributed teams.
Unfortunately, telecommuting inherently reduces communication bandwidth
between the team members. Constrained communication is particularly a problem
for medium and large design teams.

A significant difficulty in running architecture design workshops is in the
codification of the decisions in a way that is not overly intrusive for the process,
but leaves outcome that is informative for the designers and developers, and can
be reused in future designs. Model-driven engineering is a widespread technique
commonly used to address the complexity of software systems. Unfortunately,
on the other hand, the tools and methods used to model effectively software
architecture fall short when used to model design decisions during dynamically

2 1.1 Problem Statement

progressing design workshops. On the other hand, general purpose collaboration
tools often miss the expressive power required for detailed modeling. Specifically
for software architecture, the ISO 42010 standard proposes a model of architecture
design decisions [[SO11]]. The standard and its extensions effectively model
decision status, rationale, and many other aspects, but not the argumentation
that leads to the decision itself.

1.1 Problem Statement

The problem with architecture decisions is how to make good decisions. The
best way to evaluate architecture decisions would be to observe how successful
the design that results from the decision making is. In practice there is a multi-
tude of factors that influence the success (or failure) of a particular design, that
combined with the long time and significant effort required to implement the
system, make it very difficult to track the impact of individual decisions. Instead
of this holistic approach, we have decided to focus first on individual decisions. In
this setting, we have found that good decision needs to be 1) smart and 2) well
informed [HanO5!]. Our research does not aim at supporting decision makers
with artificial intelligence or data mining technologies, so we assume that the
design team is smart enough to understand the problem domain and based on
this information make smart (rational) decisions. In terms of decisions being
well informed, we make the assumptions that, thanks to the requirements engi-
neering, the designers are provided with enough information about the problem
domain and that they have enough expertise as a group, to successfully challenge
individual design issues.

An ability to perceive, understand and predict the dynamics of an environ-
ment, constitute so-called Situational Awareness (SA) [End00]. In literature,
three levels of SA are recognized. The first level concerns solely the perception
of the environment. The second level is attributed both to perception and com-
prehension. Finally, the third degree of SA is related to the capacity to predict
future dynamics of the environment based on its perceived past and present states.
We follow the heuristic according to which a high degree of SA is essential for
delivery of high-quality architecture decisions.

Due to the fact that during an architecture design workshop the architecture
decisions are made collaboratively, another essential property of a good architec-
ture decision is its consensuality. Related to it is the so-called Team Situational
Awareness (TSA) [[End95]], which extends the concept of Situational Awareness.
A high level of Team Situational Awareness requires not only that all design team

3 1.2 Architecture Decision Argumentation Modeling

members have a high SA individually, but also that this awareness be shared
among themselves. In terms of collaborative architecture decisions, we assume
that a high degree of TSA is reflected by the decision consensus.

Therefore we state the thesis of our work to be:

Support for low-latency, structured architecture decision argumentation
improves the quality of the collaborative decision making process.

In order to address this thesis we have pursued active research in three directions:
architecture decision argumentation modeling, supporting collaborative archi-
tecture decision making, and estimation of collaborative architecture decisions
quality. We introduce them in the following sections.

1.2 Architecture Decision Argumentation Modeling

Effective management of architecture decision models requires a well tailored
meta-model. Surveying the state of the art we have realized that there exists
a number of competing decision meta-models. In order to retain maximum
flexibility in regard to the decision meta-model, we have decided to step-up
the abstraction level and operate on the elementary structure of a knowledge
graph [[Zha02]]. This way our methods can be easily applied regardless of the
particular meta-model choice.

We have adopted ISO 42010 standard architecture description as the basis
of the decision meta-model. Due to the fact that the standard does not offer
explicit argumentation modeling, we proposed a specific decision argumentation
viewpoint. Within the viewpoint, we have devised a notion of position that is
used to represent fine-grained decision argumentation of individual decision
makers. An analysis of the aggregated state of multiple positions within the
context of design decisions let us define a decision consensus lifecycle. Similarly,
an aggregated state of multiple decisions, that are related to the design issue, lets
us define the design issue choice state.

1.3 Collaborative Architecture Decision Making

In order to investigate the state of the art in supporting architecture decision
management, we have inspected a broad range of generic and specialized tools.
The outcomes of our survey are organized into a design space centered around
two core design issues: the collaboration paradigm, and the supported liveness

4 1.4 Estimation of Collaborative Architecture Decisions Quality

level. Within this design space, we have identified a combination of decisions
that would serve for the purpose of supporting collaborative decision making.
This provided us with the basis for the design and implementation of the Soft-
ware Architecture Warehouse — a prototypical tool supporting software architects
during the architecture design workshops with high liveness and a structured
argumentation model.

1.4 Estimation of Collaborative Architecture Decisions
Quality

The prerequisite for managing quality is the ability to estimate it [LMO06/]. In order
to measure qualities of the collaborative architecture design decisions, we have
devised an analytical framework of decision metrics. The metrics are designed
to analyze structural and dynamic characteristics of decision models, with a
particular focus on the collaborative decision argumentation. The framework
consists of fifteen metrics that are geared towards three questions: 1) how aligned
are the decisions, 2) how volatile is the consensus over the decisions, and 3) how
democratic are the decisions.

The Software Architecture Warehouse is accompanied by the analytical frame-
work implementing the aforementioned decision metrics suite.

1.5 Contributions

This dissertation advances the state of the art in collaborative architecture decision
making with the following three contributions:

Architecture Decision Argumentation Viewpoint — an extension of the con-
temporary software architecture description standard (ISO 42010), which
allows comprehensive modeling of the collaborative argumentation behind
the architecture decisions,

Software Architecture Warehouse (SAW) - a collaborative, web-based archi-
tecture decision management tool designed to support collocated and re-
mote architecture design workshops by providing features supporting high
degree of team situational awareness within the architecture design team.
SAW implements the Architecture Decision Argumentation Viewpoint in
practice,

5 1.6 Structure

Collaborative Architecture Decision Metrics —an analytical framework designed
to estimate structural and dynamic characteristics of a collaborative archi-
tecture decision space.

1.6 Structure

The rest of the dissertation is structured as follows:

In Chapter[2|we provide broad background covering three major fields that our
research stems from. We introduce the discipline of Software Architecture Design,
specifically its quality concerns. As the discipline is very knowledge intensive,
the considerations over Architectural Knowledge lead us into the second major
field, Knowledge Management (KM). Within KM we investigate specifics of the
knowledge-based decision making process with a peculiar focus on the so-called
wicked problems and strategies for addressing them. Finally, we wander into the
field of Computer Supported Collaborative Work to build a foundation for the
collaborative design of software architecture.

In Chapter [3| we dive into Software Architecture modeling and explore the
design space covering the collaborative Software Architecture design paradigms
and the tool liveness. Within the design space of seven design issues we investigate
and recover decisions implied by 17 tool designs.

Chapter |4]introduces typical scenarios of software architecture design; archi-
tecture synthesis, architecture analysis, and a hybrid of both. Analyzing these
scenarios we state two research problems:

1. Collaborative architecture design decision consensus,
2. Quality of the collaborative architecture decisions.

Following that, we have elicited respective research questions:

1. How to support collaborative software architectural decision making?
2. How to identify and quantify properties of a good, collaborative design
decision making process?

Finally, we arrive at the research thesis for our work.

In Chapter [5| we propose a viewpoint extension of the ISO 42010 standard
decision model aimed at modeling decision argumentation. With it, we thor-
oughly examine choice and consensus state spaces. The Decision Argumentation
Viewpoint opens completely new opportunities for the analysis of an architecture
design workshop dynamics. In order to address them, in this chapter, we propose

6 1.6 Structure

a set of Goals, Questions and Metrics, together with matching interpretation
model.

In Chapter [f] we document the Software Architecture Warehouse — our applied
contribution to the field of collaborative architecture decision modeling. The
description covers a range of features that make it stand out from the competition.

Chapter covers the Analyzer — an implementation of argumentation
viewpoint analytics.

Next, in Chapter (8l we provide a report on the formative evaluation of the
SAW and a demonstration of the analytics framework, that we have performed
within the Software Architecture and Design courses at the University of Lugano.

Finally, Chapter [9 wraps up the thesis with a summary, conclusions and
perspectives on future research.

Chapter 2

Background

Software architecture is the discipline practiced by software architects. It emerged
out of the experience with the design and implementation of complex software
systems gathered by software engineers. The foundations for defining Software
Architecture were laid by Perry and Wolf [PW92]]. The first case-study based
approach to the field was presented in 1994 by Garlan and Shaw [[GS94]. De-
spite numerous attempts of the community [[SEI10]], no universally recognized
definition of Software Architecture exists. Bass et al. proposed in [BCKO3[]:

“The software architecture of a program or computing system is the
structure or structures of the system, which comprise software compo-
nents, the externally visible properties of those components, and the
relationships between them. ”

The IEEE 1471-2000 standard [loEEQQ]] states:

“Architecture is the fundamental organization of a system embodied in
its components, their relationships to each other and to the environment
and the principles guiding its design and evolution.”

A number of modeling languages were proposed in order to provide a common
communication platform among software architects. These range from the generic
Unified Modeling Language (UML [[FS99]) to specialized Architectural Description
Languages (ADLs). A comprehensive review and comparison of ADLs is provided
by Medvidovic and Taylor in [[MTOQ]. Given the sheer size and long lifespans of
today’s software systems the description provided by Kruchten et al. [KOS06]

“Software architecture ... is the key to achieving intellectual control over
[their | enormous complexity. ”

exposes the most crucial function of software architecture - an abstraction used
to tame complexity.

The amount of detail embraced by the architecture can be enormous. In order
not to overwhelm the recipient, the right balance between abstraction and minute-
ness is needed. One of the ways to strike this balance is to view architecture
from the perspective (viewpoint) emphasizing a particular aspect of the system.
Architecture frameworks (Kruchten 4+1 views [Kru95[], Zachman [[Zac87], TO-
GAF [Jos09], Siemens 4 views [[SNH95]]) define a broad range of architectural
viewpoints tailored either to the particular stakeholder, characteristic, or feature
of the design.

The difference between architecture, design and implementation (or code)
has been well exposed by Eden et al. [[EKO3]]. These concepts belong to different
abstraction levels and can be classified according to their intensionality and
locality, which are two orthogonal dimensions of abstraction:

“A specification is intensional iff there are infinitely-many possible in-
stances thereof. Conversely, all other expressions are extensional. ”

For example, architecture and design are intensional, because there are infinitely
many implementations that can fulfill them. Whereas, implementation is is a
specific software program.

‘A specification ¢ is local iff the following condition holds: If ¢ is
satisfied in some design model @ then it is satisfied by every design
model that subsumes ©.”

For example, design is local, because it comprehensively describes structures
within its scope. Architecture is non-local because particular pattern or style can
apply to specific abstraction level. Making it possible to apply another pattern or
style for lower (or higher) abstraction.

The abstraction levels of architecture, design and implementation are summa-
rized in Table

| Intensional Extensional
Non-Local Architecture -
Local Design Implementation

Table 2.1. Architecture vs. Design vs. Implementation

9 2.1 Architecture Design Process

Architecturally Architectural Candidate
significant — rehitectural L aArchitectural

requirements Synthesis Solutions
__Architectural !) l
Concerns Architectural Arggaeiézl;;i”y Architectural Validated
— Context —> Analysis requirements Evaluation architecture

Figure 2.1. Generalized architecture design process model after Hofmeister et
al. [HKN*0T7]

There exists no one, universally recognized division between architecture
design and implementation. Grady Booch wrote [Boo06|] that all architecture
is design, but not all design is architecture, which is right within the scope of
prescriptive design. A contradicting claim can be made about descriptive artifacts:
every system has an architecture, but some systems have no design.

2.1 Architecture Design Process

Architecting is typically seen as the activity linking the requirements [VLO8[] of
the problem domain [[Jac95]] to the design artifacts of the solution domain. The
relation between requirements and architecture is represented well by the Twin
Peaks model [NusO1]] (see Figure [2.2)). The Twin Peaks model adopts the spiral
model of software project management for iterating between architecture and
requirements. It allows the design process to cope with the “I'll know when I
see it” (IKIWISI [[Boe0Q]]) effect. The consecutive iterations are more refined and
contain larger amount of detail.

As shown in Figure the architectural design process first analyzes the
input architectural concerns and context to elicit the architecturally significant
requirements [[Durl1l]. These are then used to synthesize many candidate solu-
tions, which will then be evaluated and compared to allow the selection of the
best architecture.

In [[CLvVQ7] Clerc, Lago and van Vliet present the results of a survey made
among architects to determine their actual profile in terms of abstraction levels
and roles. They find no clear boundaries between what they call architecture

10 2.1 Architecture Design Process

Specification
General

Level of Detail

Requirements Architecture

Detailed _
Implementation dependence

Independent — =————————- Dcpendent

Figure 2.2. Twin Peaks model of concurrent and progressive development of

requirements and architecture [NusO1]

levels (e.g., enterprise vs. systems vs. software vs. information architecture)
and stakeholders (e.g., project manager vs. technical developer). Instead, they
identify clusters of the stakeholders’ characteristics with diverse demands on the
architectural knowledge access (see Table .

Cluster Label | Architectural Roles
Communicator | architectural educator, project leader
Low-Level designer, developer, reviewer of the code
Specialist consultant, technical specialist
High-Level architect, reviewer of the architecture
Other end-user, lead architect, security consultant

Table 2.2. Clusters of architectural roles characteristics [CLvV07]

2.1.1 Quality of Software Architecture

The quality of Software Architecture has a very multi-dimensional nature. A
selection from the basic collection of qualities of a software product as defined
in ISO 9126 [ISO91]] can be found in Table Qualities of the software end-

11

2.1 Architecture Design Process

FUNCTIONALITY

EFFICIENCY

RELIABILITY

REUSABILITY

MAINTAINABILITY

The architecture shall satisfy the stated or implied needs.

The architecture shall solve stated or implied needs
efficiently with respect to hardware usage (e.g. memory
usage and CPU load)

The architecture shall perform its required functions
correctly.

It shall be possible to reuse the architecture in other
applications in the same environment.

The effort required to make changes to the architecture shall
be low.

Table 2.3. Software product qualities after ISO 9126 [ISO91]

product are influenced by the quality of the whole chain of design artifacts and
processes leading to it [EC09]. Taking the generic software architecture design
process (Figure [2.1)), a rough approximation of the chain of quality implications
between the process activities can be pictured as in Figure In Figure 2.4/ we
show an equivalent diagram of implications between the design artifacts.

. . Implementation .
Analysis]—)[Design]—)[and testing]—)[Delivery

next iteration

Figure 2.3. Chain of quality implications between design process activities

Requirements Knowledge and Design and Product or
q decisions implementation service

Figure 2.4. Chain of quality implications between design artifacts

Our claim is that the quality of all these artifacts is linked and therefore in

12 2.1 Architecture Design Process

order to get predictable quality of the final product, one needs to be able to
estimate and control the quality of the artifacts preceding it in the chain.

2.1.2 Architectural Knowledge

Over time, some designs have proven to be particularly successful and out
of the chaos of spontaneous creativity, patterns emerged [HWBYZ13]]. Pat-
terns can be found at all abstraction levels [Ede05), [EHKO6] ranging from im-
plementation, through tactics, up to strategy. A number of design patterns
were first documented in the cornerstone book by Gamma et al. [[GHIV94].
Since then a significant effort has been invested in the distillation and docu-
mentation of architectural knowledge in order to make it reusable [[Zim11]].
To some extent this knowledge remains proprietary as a highly valuable asset,
but at the same time there is a broad selection of published books of patterns
[BMR* 96, [SSRB00), [KJ04, BHS07a, BHS07b, Mah06, HWO03|, Fow02]. To this day,
the number of documented architectural patterns is estimated to be over 7500
and is growing [HWBYZ13]].

At this point it, makes sense for us to focus on the definition of architectural
knowledge. After Avgeriou et al. [AKL"07|] we use the following:

“Architectural Knowledge (AK) is defined as the integrated representa-
tion of the software architecture of a software-intensive system (or a
family of systems), the architectural design decisions, and the external
context /environment.”

More specifically, de Boer and others, in [dBFL"07], propose a meta-model of
Architectural Knowledge that neatly embraces elements and actions related to
Architectural Knowledge (see Figure [2.5).

Following the accumulation of architectural knowledge, it became clear that
reusing existing successful designs increases quality and time efficiency and
reduces the cost [GHJIV94] of the design process. Most importantly, by reusing
successful designs, architects can focus on the design aspects within their expertise
and deliver valuable innovations [[Tra95]]. As a result, the research focus in
software architecture shifted towards the analysis of the decision making process
[Brol10].

Initial approaches to the formal representation of decisions come from re-
search in the field of artificial intelligence [[Lee89]] (late ’80s). The importance of
decision capture for the design of mission-critical systems was spotted in [[ROJ90]].
The capturing and processing of design decisions alone appeared to be clearly

2.1 Architecture Design Process

Stakeholder }<>—

Artifact

in
Instantiation using
T

Participation

Attribute
_ to assume on Architectural Activity Role
influence Design
Subclass
—

upon in
A

Architectural
Design Decision

Decision

Y

Concern

based on

Alternative based on

Figure 2.5. CORE Architectural Knowledge model [dBFL*(7]

Decision Topic

14 2.2 Knowledge Management

insufficient without knowing the rationale behind these decisions [Lee97]. De-
velopment in this direction resulted in the Rationale-Based software engineering
method [Bur05, BCMMO8]] which rapidly acquired recognition in the field of
Software Architecture [[CSMO08, [Cap09] JAvdVQ9]]. Furthermore in [Bos04]] Bosch
argued that decisions should be considered as first-class entities in software ar-
chitecture. More recently Jansen and Bosch in [JBO5|] proposed the following
decision-centric [[TMDOQ9]] definition of software architecture:

‘A software system’s architecture is the set of principal design decisions
made about the system.”

Apart from the engineering perspective on the architectural design decisions, an
important consideration of economical benefit was stated by Clements in [[Cle07]].
A broader, more general, broader study on the evaluation of project decisions in
software engineering can be found in Hoover et al. [HRLT09].

2.2 Knowledge Management

In a comprehensive monograph on knowledge management, Dalkir [Dall1]] in-
troduces a number of goals characterizing the knowledge management initiative:

G, Generating new knowledge

G, Accessing knowledge

G; Applying knowledge for the purpose of decision making

G, Embedding knowledge in processes, products and /or services

Gs Representing knowledge in documents, databases and software

Gg Facilitating knowledge growth through culture and incentives

G, Transferring knowledge

Gy Evaluating the value of knowledge and its impact
These goals fit very well in the two-dimensional knowledge management activities
space (knowledge spiral) proposed by Noanaka and Takeuchi [NT95]] (Figure|2.6)).

Within the knowledge management cycle, newly created (G,) tacit knowledge
is codified into explicit knowledge in some kind of formal representation (Gs
and G,). The codified knowledge can be used in the product design process (G
and G,) as well as for the improvement of the design practice itself (G¢). Next,
individual consumption of the explicitly codified knowledge (G,) together with
the assessment of the utility of particular knowledge in the application context
(Gg) leads to a new start of the knowledge cycle. Since the aforementioned goals
are very adequate for software architectural knowledge management, we adopted

15 2.2 Knowledge Management

them to serve as a foundation of the functionality provided by the Software
Architectural Warehouse introduced later in Chapter [6]

For the purpose of further scoping the field of software architectural decisions
management activities, we found it useful to demonstrate how the knowledge
management model devised by Choo ([[Cho06], Figure clearly positions
decision making in the cycle of knowledge management. The cycle starts with the
sense making stage consuming experience coming from the external environment
and resulting in the set of shared meanings. Shared meanings stand for the
codification of knowledge in the process of knowledge creating from explicit
external knowledge and information. The same shared meanings, created earlier
during sense making, are used in combination with new knowledge and capabilities
as a ground for decision making. As decisions influence their design environment,
the experience on which they are based on needs to be re-evaluated, thus starting
the next knowledge cycle.

2.2.1 Decision Making Process

Giving a formal model of the decision making process was a subject of inten-
sive investigation for the management and organizational researchers. Choo in

Dialogue

Socialization Externalization

Field building
>
Linking Explicit Knowledge

G2 G4
G ©
8 G6
Internalization Combination

Learning by doing

Figure 2.6. Nonaka and Takeuchi spiral model of knowledge conversion. [NT95]

16 2.2 Knowledge Management

Streams of
experience

Sense Making

Shared meanings Shared meanings

ecision Making

Knowledge creating J{

New knowledge,
A new capabilities

Goal-directed
adaptive
behavior

External information

and knowledge Next knowledge

cycle

Figure 2.7. Overview of Choo’s knowledge model [Cho06]

Goal Uncertainty

Low High
Low
Rational Political
Procedural
uncertainty
Process Anarchy
High
i

Figure 2.8. Four basic decision making modes identified by Choo in [Cho(6].

[[Cho06]] recognized four modes of decision making and classified them along the
dimensions of goal and procedural uncertainty (Figure [2.8). The anarchic way is
the least favorable mode for making decisions, where goals are ambiguous and
the processes to reach those goals are unclear. The political mode is characterized
by the certainty about the process, but is burdened by conflicting goals and stake-
holder interests. Contrary to that, the process mode of decision making is goal
directed, but due to fuzzy procedures it faces difficulties with choosing between
multiple variants and alternative solutions. The sweet-spot and the most desired
decision making mode is the rational mode, which is goal directed and guided by
well-defined rules and routines combined with an explicit performance analysis.

The first step in the direction of an improved decision making process is a
reduction of procedural uncertainty, which can be obtained by implementing an
elementary, four-stage decision process as pictured in Figure [K1e99]. The first

17 2.2 Knowledge Management

deciding eliciting feasible deciding evaluating
to decide alternatives conclusively solution

Figure 2.9. An elementary, four-step decision making process

stage of deciding to decide consists of the identification of the issues which require
decisions to be made for. This can be done by inspecting goals, concerns and
requirements relevant to the given stage of the design. The second stage of the
decision making process involves the elicitation of the feasible alternatives and the
elimination of those which are unfeasible in the context of a particular issue. At
this stage of the process, the decision status is not yet conclusive. The conclusive
decision state is reached in the process of evaluating the elicited alternatives and
irrevocably choosing the best one. Finally, an alignment of the decision within
the context needs to be checked by evaluating solution characteristics. Decision
making processes are the subject of in-depth studies within disciplines ranging
from administration [|Sim97, Chapter 5] to software design [Bro10l]. In software
architecture, the decision making (micro)process was proposed by Zimmermann
in [Zim09]] as a part of the SOA Decision Modeling framework (SOAD).

The second step for improvement of the decision making process is the reduc-
tion of goal uncertainty through appropriate goal elicitation and management.
Goal setting and management are subjects of investigation for the field of strategic
management [NHCO7[], and thus are beyond the scope of this dissertation.

2.2.2 Wicked Problems

The decision making process presented in Section[2.2.1makes sense in the context
of an individual decision. In practice software architectural decisions form a dense
network of interdependencies and mutual influences [[TGA13[]. One way to tackle
the complexity of a decision making process is to formalize both artifacts and
process. This approach (the so-called “first generation approach”) appears to be
successful at solving the well structured, so-called “tame problems” [Rit72]] which
can be exhaustively formulated and which have a specified, binary function that
can be used for verifying the validity of the solution. In a way, tame problems
can be seen as those which have algorithmic methods of arriving at the solution
with clearly specified stopping conditions [[KSO8]]. Following that, similarly to
computational problems, normally there is a range of well-defined operations
that can be executed to transform (reduce) a tame problem into another tame
problem, which eventually will lead to the solution. Rittel came up with an 8-step
generic procedure to approach tame problems [Rit72]]:

18 2.2 Knowledge Management

understand and define the problem, define the measure of effectiveness,
understand the context of the problem,

analyze the information - identify constraints and inputs,

generate solutions - define the solution space,

assess (evaluate) solutions - estimate their effectiveness,

implement the chosen solution,

test if the solution has expected effectiveness,

8. modify, correct the solution.

NoUuhAwhe=

The 5th step of the aforementioned procedure can be efficiently addressed using a
general morphological analysis [Rit06]] that has proven to be very successful when
applied to well defined, multidimensional problems of choice within finite design
spaces. Unfortunately, this approach is unfeasible in dynamic and uncertain
environments.

In [Rit72, RW73]] Rittel defined the notion of wicked problems, which in con-
trast to tame problems can be characterized by the impossibility of providing
an exhaustive formulation. A complete formulation of a wicked problem can be
obtained only after the problem is solved. Attempts to obtain it upfront are futile.
Contrary to tame problems, alternative solutions to the wicked problem can be
evaluated only in relative terms. Thus, it is impossible to give a guarantee that a
given solution candidate is the best possible one; hence, wicked problems have
no stopping rule. Another characteristic of the wicked problem is the difficulty
concerning the evaluation of the solution alternatives, which arises from the fact
that evaluation criteria are multidimensional and subjective in the context of
particular stakeholders. Finally, wicked problems are mostly one-of-a-kind, proto-
typical instances. Designers, therefore, lack a complete image of the dynamics
of the system under design. Alternatively, if the system itself (partially) reuses
an existing design, it might be the case that the reproduction of the original
environments is either very hard or impossible, thus significantly reducing the
utility of the prior experience.

Characteristics of wicked problems match many problems which (construction)
architects face in landscape planning and urban design. In fact, Liskov in [[LG86]]
and later Cripps in his blog entryﬂ have pointed out that these characteristics
match problems of modern software architecture design of big computer sys-
tems. An identification of wicked problems led to the development of the social
techniques of reaching design consensus [[Coy05[] and tools such as IBIS (Issue
Based Information-System [[Con05, [CB88[]) aimed at supporting the deliberation

http://softwarearchitecturezen.blogspot.com/2010/02/
wicked-problem-is-one-that-for-each.html

http://softwarearchitecturezen.blogspot.com/2010/02/wicked-problem-is-one-that-for-each.html
http://softwarearchitecturezen.blogspot.com/2010/02/wicked-problem-is-one-that-for-each.html

19 2.2 Knowledge Management

process. The experience gathered in the collaborative solving of wicked problems
led to the identification of three elementary solution strategies [Rob00]:

Authoritative - focused on the centralized decision power of a single person.
Due to the fact that it doesn’t require any consensus making effort, it can be
potentially time-effective and thus efficient in heavily time-constrained conditions.
The centralization of authoritative decision making has the downside that the
person making decisions, acting solely on the basis of his own expertise, is prone
to overlook essential decision context changes. For the same reason, the decision
maker is likely to misinterpret the requirements and misunderstand the needs of
the stakeholders influenced by the decision.

Competitive - a strategy promoting diversity of alternative solutions which
are put into competition for the purpose of choosing one that is going to be
implemented. Typically this strategy is used in architectural competitions to
choose the best design. Thanks to the comparative evaluation of multiple solutions,
the competitive strategy is much more likely to fulfill the requirements and the
needs of stakeholders. Unfortunately, it is also burdened with disadvantages. The
biggest one is that it focuses on the zero-sum game, which means that choosing
one solution alternative means a complete rejection of all others, even if they
have some desirable features. Another one is that it is often successful only in
a limited context and results in a (potentially violent) run for local power. If
applied in a broad context, due to the fact that the winning solution provider takes
all, eventually this strategy can very easily turn into the authoritative strategy,
thereby canceling out the benefits of the competition.

Collaborative - follows a principle of win-win problem solving and avoids
solutions in which the winner takes it all. Rather than playing a zero-sum game,
it focuses on distributing pie shares based on winners and losers under an as-
sumption of a variable sum game that seeks to enlarge the pie for the benefit
of all stakeholders. Implementation of the collaborative strategy sets quite high
requirements on the stakeholders’ organization culture. Taking into account that
knowledge required for the decision making is distributed among multiple stake-
holders, it is critical for the process to obtain clearly communicated individual
judgements together with their grounding (rationale). Offering many advantages
over the other two strategies, the collaborative strategy is not free of disadvan-
tages. The biggest one is that every additional stakeholder taking part in the
process increases the transaction cost of the decision making process.

20 2.3 Computer Supported Collaborative Work

2.3 Computer Supported Collaborative Work

The decision making process [Kle99]] and, in particular, the software architectural
decision making process have been the subjects of many studies [[FCKK11[]. The
topic of collaborative design has been less studied, and it is only partially supported
in the ISO 42010 decision meta-model [ISO11l]. Out of the seven architectural
decision modeling tools reviewed in [[SLK09al], only three provide support for
collaboration, but none of them is suitable for a low-latency design workshop
environment. Our work is complementary to existing frameworks and meta-
models, since it targets dynamic decision making activities within a team.

2.3.1 The Problem of Collaborative Design

The factors that limit the efficiency of the decision making process within a design
team are manifold [[HP96]], e.g., the partial overlap of the participants’ expertise,
the complexity of the domain and the wicked nature of the software architectural
design problem [PB8§]].

In our experience running design workshops, we have observed that the deci-
sion making process can be very chaotic, and difficult to control and to organize
without a proper reference framework and tool support. A solid framework for
organizing the decision making process was proposed in [JZKL*09, Chapter 7].

Another problem is related to the volatility of the decisions. Systematic
recording and documentation of the discussion flow is needed to mitigate decision
evaporation. An open challenge for the architectural decision management tools
is to capture useful content as much as possible during the workshop without
hindering the brainstorming or the decision making activities. The goal is to
reduce the cognitive load required to record alternatives and decisions without
needing to resort to dedicated minute takers or scribes.

We see a big potential in groupware support for creating an environment
in which awareness of the design is shared between team members. Due to
the inherently limited and partially overlapping expertise of each design team
member, in order to achieve high decision quality, the efficient reuse of previous
decision experience is essential. In other words, before making design decisions,
it is essential to elicit and decide what is to be decided out of the available design
space. The elicitation of design issues can be done offline as part of the workshop
preparation, but the selection of relevant architecture alternatives sometimes can
only happen during the live brainstorming.

Another major difficulty in efficiently running architectural design workshops
is to keep the focus of the entire design team on the same design issue. In

21 2.3 Computer Supported Collaborative Work

a collocated design workshop, thanks to the high bandwidth of face-to-face
communication, depending on the size of the team, this requires some good
moderation by the lead architect, but still may be time consuming. Due to the
more limited communication bandwidth in distributed workshops, it becomes
more challenging to keep the collective attention of all remote participants in
focus. This is critical when pruning possible alternatives: as the decision making
time grows near, all team members need to be aware of which decision is about
to be made.

Another fundamental problem concerns the nature of the architectural design
solutions. There are many ways a solution can be unsuitable for stakeholders. The
most critical cases are when a solution is either internally inconsistent (decisions
contradict each other) or unacceptable (due to violation of constraints). These
two cases can be relatively easily eliminated when using a systematic decision
making process that includes solution validation activities (see [ZKL*09]). It
is often the case that there are multiple valid, acceptable solutions. In such
situations, the best solution candidate should be chosen by evaluating its value
for the stakeholders. Given that only some of the qualities of the solution are
easy to assess quantitatively, this process can be automated (see [[dGJKK12]]) only
to a certain extent. When the alternative solutions lie on the Pareto frontier, it
becomes necessary to trade-off different quality attributes against one another. It
is particularly challenging to do so without a high level of situational awareness
among the design team.

2.3.2 Positioning in Environment

Baecker et al. in [[BGBG95]] propose a very interesting classification of computer
supported collaboration work in two dimensions — the time and the location of
participants. Collaborative decision making activity fits within these dimensions
as follows:

C; — Collocated, synchronized — The design workshop involves the complete
design team within a single meeting room. Typically the workshop would be
moderated by the head architect, otherwise communication among team members
can be direct and unconstrained.

C, — Dislocated, synchronized — High-grade experts are often too valuable
to be asked to travel for assignments of short duration, hence holding design
workshops is often a necessity. Broadband networking would be typically used to
share audio and video, as well as other media.

C; — Collocated, time-shifted — Due to the gradual (and progressive) nature of
large-scale architecture design, decision making needs to take place in multiple

22 2.3 Computer Supported Collaborative Work

iterations. Continuity and consistency of decisions are essential to achieving high
quality of the final design.

C, — Dislocated, time-shifted — Similar to the previous case (C;), but dis-
tributed.

2.3.3 From Situational Awareness to Good Decisions

High-quality, good decision needs two elementary ingredients — a sufficient
amount of information, and a smart decision maker. The apprehension of the
environment for making decisions is scientifically known as Situational Awareness
(SA). Although supporting the smartness of a decision maker lays beyond the
scope of our research, we believe that there is a vast space for improvement in the
field of Situational Awareness. In particular, complex undertakings require teams
to deliver high-quality decisions that require a high degree of Team Situational
Awareness (TSA). Situational awareness can vary — as proposed by [[End00/] —
across three levels:

e Perception (SA,) — the status, properties, features of relevant elements of
the environment are recognized and monitored,

e Comprehension (SA,) — making sense of, recognizing relations among,
and interpreting the values of the attributes perceived on the previous level
(SAp,

e Projection (SA;) — predictions over the future state of the environment are
made based on knowledge about its current condition (SA;) and expected
dynamics (SA,).

The original application of the concept of situational awareness was in the
applications involving efficient decision making within fast-changing, dynamic
environments such as emergency services or battlefield operations. Under such
conditions, for the sake of efficiency, decision making is often centralized and
authoritative and must happen within strict time limits. Such strategy is often
not suitable for situations in which the expertise required to make decisions is
distributed among multiple stakeholders.

Although the conditions requiring situational awareness on the battlefield
are significantly different from the ones within an architecture design workshop,
we find a certain number of similarities that lead us to propose applying the
concept of team situational awareness to enhance the efficiency and quality of
the collaborative architecture design process. In particular, situational awareness
shared among the whole team can help it to efficiently argue and build consensus
about each decision. A design team sharing a high level of situational awareness
can gather relevant information, interpret it from the different viewpoints of the

23 2.4 Collaborative Design of Software Architecture

involved stakeholders, exchange (well grounded and justified) positions based
on assumptions, expectations and predictions over the quality of the resulting
architecture, and eventually converge on a single consensus decision.

2.4 Collaborative Design of Software Architecture

Since a software architecture is an abstraction used to manage the complexity
of large systems, collaborative design is a method of dividing the design effort
into chunks that can be addressed by individual designers within their areas of
expertise. Computer Supported Collaborative Engineering (CSCE) was mainly
developed in the field of mechanical engineering [[SHLOS8]. Even if there are
significant similarities between established engineering design disciplines and
software architecture design, the latter is still young and fast developing. Specifics
of software architectural design, such as high volatility and intangibility of the
design outcome, set challenging requirements for knowledge sharing. The topic of
supporting architects in architectural knowledge sharing was extensively studied
by Farenhorst et al. [FdB09, [FJFH09]] and Clerc et al. [[CdVL10) [Cle11]], resulting
in a monograph on Software Architectural Knowledge Management [[BDLvV09]].

The decision-making process introduced in Section makes perfect sense
in the context of an individual decision. This approach (the so-called “first
generation” approach) appears to successfully solve the well-structured, so-called
tame problems [Rit72]] that can be exhaustively formulated and have a specified,
binary function which can be used for verifying the validity of the solution.
Contrary to that, a complete formulation of a wicked problem can be obtained
only after the problem is solved.

2.5 Summary

In this chapter we scoped the domain of collaborative software architecture design.
We also sketched the elementary elements of the software architecture design
process. Next, we discussed the quality of software architecture, in particular, the
propagation of quality through the artifacts used by the software design process.
We introduced general aspects of knowledge management relevant for software
architecture design, thus positioning architectural knowledge management in its
context. Finally, we introduced wicked problems and strategies of addressing
them. We wrapped up this background chapter with the discussion of Computer
Supported Collaborative Work (CSCW) and its ties to the collaborative design of

24 2.5 Summary

software architecture.

Chapter 3

Related Work and the State of the Art

In this Chapter we review the state of the art in architectural decision modeling
and making, we introduce the cornerstone decision meta-models, and we sys-
tematically review the design space covering a range of tools supporting decision
and knowledge management. Readers interested in the emerging discipline of
software architecture metrics should refer to [[SCB14]].

3.1 Architecture Views and Decision Modeling

As we introduced in the previous chapter, the complexity of modern computer
systems can be very high. The abstraction offered by software architecture is a
good tool for addressing it. Nevertheless, the diversity and number of software
architecture elements can easily overwhelm both stakeholders and designers.
Architectural viewpoints, which provide a particular perspective on software
architecture elements, are particularly good at exposing specific aspects of the
system under design. For example, Kruchten [Kru95]] proposed four architectural
views (Logical, Process, Development, and Physical) that are interconnected with
a set of usage scenarios (see Figure[3.1). Even if these viewpoints have proven
to be very effective in depicting architecture elements, in order to include the
notion of decisions as first-class entities (see Section [2.1.2), the framework of
4+1 views needed to be extended with an extra decision dimension [[KCDQ09]].
A particular set of specific attributes of architectural decisions was proposed by
Tyree and Akerman [TAO5]] in the form of a decision template. In [[SLK09al]
Shahin et al. survey nine architecture decision meta-models and study a mapping
between Tyree’s decision template attributes and particular decision meta-model
elements. The conclusion that can be drawn from of this survey is that there is
no single, complete mapping between decision meta-models. This fact can also

25

26 3.1 Architecture Views and Decision Modeling

Logical View 4){ Development View
¢ Scenarios ¢
Process View Physical View

Figure 3.1. Kruchten’s 4+1 architectural view model [KCDQ9]

be interpreted as a need for (some degree of) flexibility of a decision meta-model
to the needs of the particular project case.

A decision meta-model worth mentioning because of the significant sample
of a high-quality reusable architectural decision model (RADM), is the SOAD
meta-model (see Figure proposed by Zimmermann et al. [[ZKL*09]].

Here we provide more details on major elements of the ISO 42010 model:

Architecture Decision — is a part of architecture description and is considered
the key to the architecture of the system under design [ISO11]]. It states the
architecture’s direction. The notion of architecture decision is consistent
among the inspected meta-models,

Architecture Rationale — documents arguments, Pros and Cons, that were used
to arrive at the particular design decision,

Concern - ISO 42010 defines concern as interest in a system relevant to one or
more of its stakeholders,

Group - is a cross-cutting designation or label attached to decisions within a
particular design domain or design abstraction level,

depends loop - represents specific, unilateral dependency relation between the
architecture decisions,

AD Element — a work product used to express an architecture,

Stakeholder — an active or passive participant in the design process who has
interest in and/or influence on the design.

3.1 Architecture Views and Decision Modeling

ADTopicGroup ADlssue
L e name : String
Ir?ahse:r'"grin shortName : Integer
) 9 = | scope : String <

. Qtri 1
shortName : String ‘@— contains —>| phase : String
description : String role Role

modifiedBy : Role o
i T prolemStatement : String
modifiedWhen : Timestamp . - P
decisionDrivers : String

recommendation : String
1 * enforcementRecommendation : String
identifiedBy : Role dependsOn
identifiedWhen : Timestamp
modifiedBy : Role
modifiedWhen : Timestamp
acknowledgments : String
ADLevel status : String
toDo : String
1 iprLevel : String
name : String @——
1 1
hasOutcome
solvedBy
ADAlternative = ADOutcome
name : String name: String
description : String status : String
pros : String 0.1 candidateAlternatives : ADAlternative
cons : String : jurisdiction : String
knownUses : String < chosenAlternative assumptions : String
backgroundReading : String consequences : String
modifiedBy : Role validUntil : String
modifiedWhen : Timestamp changedBy : Role
changedWhen : Timestamp

Figure 3.2. SOAD UML Meta-Model [ZKL09]

28 3.1 Architecture Views and Decision Modeling
ISO 42010 Tyree Akerman
SOAD [ZKL+0 CORE [dBFL+07
[Is011] [%] [] [TAO5]
Architecture Architectural Architectural L.
.. Decision
Decision Decision Design Decision
A ti
- Decision Drivers Concern ssump .1on,
Constraints
- AD Alternative Alternative Positions
Architect
re 1 ecture Justification decision loop Argument
Rationale
Probl
Concern robiemm Decision topic Issue
Statement
Group AD Topic - Group
- Status - Status
depends loop dependsOn decision loop Related Decision
- - to reflect Related Artifact
AD Element Artifact Artifact
Resulting Context
) AD Outcome) esulting Context,
Consequence
Stakeholder Role Stakeholder Stakeholder
Iteration Phase - -

Table 3.1. Mapping between elements of the Tyree AD template, CORE, SOAD,
and ISO 42010 Architecture Decision Meta-Models

In Table(3.1{we have summarized the incomplete mapping between the various
architecture decision meta-models (ISO 42010, SOAD, CORE, and Tyree-Akerman
template). The interpretation of the mapping between meta-models needs to be
done with a particular care, due to the fact that it is not isomorphic. This means
that there is no one-to-one mapping between the meta-model elements. For
example, concern from the ISO 42010 standard only partially maps to problem
statement (SOAD), decision topic (CORE), or an Issue (Tyree Ackerman), but
can be used as a generalization of stakeholder requirements (functional and
non-functional).

It can be noticed that the meta-model proposed by the ISO 42010 standard
(see Figure does not offer representation to some of the elements existing
in the other meta-models, such as decision status or decision alternatives (see
example in Figure [3.4). In order to circumvent this limitation, the standard is
open for extensibility with custom viewpoints. Van Heesch et al. [VHAH12al|
proposed a documentation framework that defines three additional viewpoints —
chronological, relationship, and stakeholder involvement viewpoints.

29 3.1 Architecture Views and Decision Modeling

Concern

. ...n i
raises 4 0 1 pertains to

0...n 0...n
0..n [] 0...n
Architecture Decision P Architecture Element]
depends upon l J affects= L
0...n
0...n .
— Rationale
<= justifies
Figure 3.3. Elementary architectural decision meta-model af-
ter ISO 42010 [ISO11]
pertains to
-l Concern:
Architecture Decision ' Security
Transport Security Provider
Secure Sockets Layer (SSL) raises
~ Concern:
>
\ depends upon Latency
Architecture Decision affects . .
Web Services Security Mechanism ATE TSI EEC
HTTPS Back-end server
depends upon A
. . justifies | Rationale:
Architecture Pecision HTTPS is widely adopted and
ranspsTTFL'o 0COL: { relies on proven technology (SSL)

Figure 3.4. An example of architectural decision model after ISO 42010 [ISO11]

30 3.1 Architecture Views and Decision Modeling

0..% 0..1
belongs to Group

[Architecture Decision parent

1 | /|\ 1
has State
role role

1
has { Relationship Type]

Figure 3.5. Meta-model of relationship viewpoint for architecture deci-
sion [vHAHI2al

The custom relationship viewpoint (see Figure[3.5) extends the generic depends
loop with custom-typed relations and it is intended to make decision (change)
impact analysis possible. The particular feature of this view is that it is very
specific about the Relation Type. Additionally this viewpoint enables classification
of the decisions within the hierarchical system of Groups. The relationship view
is a snapshot of the architecture (as a whole) at a particular stage of development
and contains no information about its evolution.

Contrary to the relationship viewpoint, the chronological viewpoint (see Fig-
ure focuses particularly on the architecture’s evolution. It adds the notion of
Iteration, which is meant to be used to organize decisions within the design pro-
cess iterations. The Iteration Endpoint has specific date and type (like Milestone,
Release or Snapshot) and can aggregate multiple Iterations.

The stakeholder involvement viewpoint (see Figure(3.7) is intended to doc-
ument the contribution of particular stakeholders to the decision model. Van
Heesch et al. define a set of actions (such as formulate, propose, discard, validate,
and confirm) that effectively change the State of the decision. According to this
viewpoint, each architecture decision is related to at least one action (formulate).

The aforementioned viewpoints are not completely orthogonal; that is, some
element types recur in more than one viewpoint. This redundancy is intentional
and meant to improve the readability of the views.

31 3.1 Architecture Views and Decision Modeling

rprevious version

Iteration created in
1 1.*

role A role B

5 0..* 0..* 1
Iteration
Endpoint Relationship State

Figure 3.6. Meta-model of chronological viewpoint for architecture deci-

sion [vHAHI12a]

1 1.*

0..* 1.*
0..*

performed by

Iteration

Endpoint Stakeholder

Figure 3.7. Meta-model of stakeholder involvement viewpoint for architecture

decision [vHAHI12a

32 3.2 Architectural Knowledge Management and Decision Support Tools

3.2 Architectural Knowledge Management and Decision
Support Tools

In this section, we review selected architecture decision support and generic
collaboration tools from the perspective of collaborative work. The design space
we present is structured with design issues and design alternatives that are
addressed by the architecture decisions as depicted in Figure The description
of each design alternative is accompanied by a summary of benefits and challenges
together an illustrative example (see [ANP12]).

addresses =
Design Issue
0..n 1...n L
0...n 4= rajses

0...n
Concern Architecture solves 1
1..n 4 pertains Decision enables 1

0..n 0...n

0...n [
Design Alternative
addresses = U

implies =»
excludes =

Figure 3.8. The Architecture decision viewpoint exposing relations between
design space elements: design issues and alternatives

We divide the analysis into three parts, with the first focusing on the collabo-
ration features, the second on the attributes of the adopted decision meta-model,
and finally, the third inspecting the technical aspects.

3.3 Collaborative Design Paradigms

We have identified different collaborative design paradigms that are defined by
the corresponding architectural decisions on the model location (centralized
vs. distributed), by the update propagation mechanism (manual vs. automatic)
and by the tool support for an explicit meta-model for capturing architectural

33 3.3 Collaborative Design Paradigms

Meta-
Model Synchro-
Paradigm © ,e).rnc _ro Model Examples
Location nization
type
Wiki Centralized Manual Implicit SEI-ADwiki
ADDSS, ADKWIK,
ADVISE, DA,
Shared Repository | Centralized Manual Explicit Compendium,
EAGLE, KA, SDA,
PAKME, SEURAT
Collaborative . . .
. Centralized Automatic Implicit EB GD
Editor
Blackboard Centralized Automatic Explicit ODR, SAW
Archi AREL
Shared File Distributed Explicit e 1u;nA, ’

Table 3.2. Summary of decisions leading to each Collaborative Design Paradigm
level

decisions. Before we compare the various paradigms in Section (3.3.4}, we present
each of these issues and alternatives individually.

3.3.1 Design Issue: Model Location

The decision model is a digital representation of the deliberations happening
during a design workshop. The collaborative editing of the model requires si-
multaneous access to it by multiple participants. This can be supported by two
deployment alternatives for the model: centralized and distributed.

Design Alternative: Centralized

In the centralized topology, the consistent data model is kept on one node
(e.g., a database server or a version control system repository), and multiple
clients present a more or less synchronized view over the content.

Benefits: The single point of synchronization makes it possible to provide a single
stream of updates by serializing all changes applied by each client. It is also
clear where to find an authoritative copy of the model and from where to
retrieve the latest version.

Challenges: Centralized deployments do not scale well with a large number of
clients due to all traffic being processed by one server. The centralized
server can also prove to be a single point of failure that can effectively break

34 3.3 Collaborative Design Paradigms

the system (not only because all information may be lost but because a
failed server would hinder the actual collaboration).

Design Alternative: Distributed

The distribution of the decision model means that every peer keeps its own
replica of the decision model and there is no single, master node that holds most
up-to-date revision. Peers can freely synchronize the model between themselves.

Benefits: The distributed topology is robust against the failure of any single node.
Design work can continue even if the central server is not available. Since
design decisions are stored locally, the privacy of the designers is respected.

Challenges: The lack of a central server makes it likely that conflicts will be intro-
duced into the model, as changes are first applied locally and independently
by each peer, which will merge them only later with collaborators.

3.3.2 Design Issue: Synchronization

Collaborative work on decisions requires the model to be synchronized between
all the views that are presented to each stakeholder, who may be accessing the
same model over multiple devices or channels. The main challenge of achieving
model synchronization involves propagating and integrating updates that can
come from multiple sources, and thus solving possible inconsistencies due to
conflicting updates.

Design Alternative: Manual

The manual alternative means that users need to explicitly trigger the tool to
perform the synchronization. Users may save local changes and propagate them
elsewhere, or decide to fetch remote changes and integrate them with their local
information. In case conflicts are detected, the tool delegates to the users the
responsibility for resolving them.

Benefits: Manually triggered updates give the user full control over the content
that is shared with others. This can be particularly important if connectivity
is limited. Manual propagation also helps to retain the semantic atomicity
of changes [[HLOS]].

35 3.3 Collaborative Design Paradigms

Challenges: One problem with manual updates is that the synchronization fea-
ture can become very intrusive and distract from the main task at hand
(i.e., making architectural decisions). The other difficulty comes from the
observation that manually triggered updates tend to be coarse-grained and
thus more likely to collide with the changesets from other clients. Conflict
resolution for big changesets is often a very tiresome task that requires
manual intervention.

Design Alternative: Automatic

Automatic synchronization implies that the tool does not require users to
intervene in changeset propagation; instead it propagates to other stakeholders
local changes and integrates changes of other stakeholders automatically. Typically
this behavior generates a large number of fine-grained change notifications that
need to be aggregated and applied to bring the model up-to-date.

Benefits: Automatic change propagation can be very helpful in dynamic, rapidly
changing situations such as brainstorming sessions because of the fact that
the design team can focus on the task instead of being occupied with keeping
their peers up to date.

Challenges: Constrained connectivity with high latency can make frequent up-
date propagation very difficult because it may be necessary to buffer updates
in larger changesets that can be transferred more efficiently. Specific tech-
niques (e.g., operational transformation) can be applied for automatic
conflict resolution. In any case, conflicts tend to happen less frequently due
to the small granularity of changes and their real-time propagation.

3.3.3 Design Issue: Meta-Model Type

The architecture decisions elicited during the design workshop are not always
naturally formatted according to a specific decision meta-model [SLKO9b]. The
tool supporting architecture decision making can either be decision meta-model
agnostic or operate within the structure of a particular meta-model.

Design Alternative: Implicit Meta-Model
The tools operating with an implicit meta-model (e.g., plain text editors, word

processors, visual diagramming tools) do not enforce any particular structure
on the recorded content, leaving it to the editors to ensure that the captured

36 3.3 Collaborative Design Paradigms

content fits with the required structure. These tools can be useful in informal
brainstorming discussions, when few decisions that need to be taken and decisions
are not related.

Benefits: The unconstrained form of the decision log can be beneficial for record-
ing side-notes and commentary that typically would not fit into a formal
decision meta-model. Such side-notes often record ideas and information
that can be later refined to fit into the elements of the decision model (e.g.,
capturing the rationale of individual stakeholder positions).

Challenges: Since no structural constraints are enforced, it becomes difficult
to ensure the structural integrity of large decision models. In particular,
consistency verification and inference about related decisions would need
to be computed manually and thus would require a lot of effort for large
and complex dependency graphs.

Design Alternative: Explicit Meta-Model

Capturing and operating decisions within a specific meta-model constrains
the form of the captured decisions.

Benefits: Giving an explicit structure to the decision model enables a tool to
automatically process its content, e.g., for automated verification, quality
control, and what-if analysis. Additionally, metrics about a large number of
decisions can be automatically computed, aggregated and compared.

Challenges: The main problem with the strict enforcement of the decision meta-
model is that it would significantly slow down brainstorming, in a particular
when the design team is not very experienced at using a particular decision
meta-model, or when the complexity of the tool’s user interface hinders
the rapid capturing of content. Another problem is that a specific decision
meta-model can be unsuitable for capturing important, domain-specific
aspects of the design process.

3.3.4 Design Issue: Collaborative Design Paradigm

Table summarizes how the design issues we have illustrated so far concur in
defining the collaborative design paradigm supported by a tool.

37 3.3 Collaborative Design Paradigms

Design Alternative: Shared File

Collaboration based on the exchange of decision models persisted in files is
one of the easiest alternatives to adopt, since it completely separates the concern
of modeling decisions (which is done using an editing tool that operates on local
files) from the concern of sharing information about the decisions (which can be
done with different file sharing approaches). Persistence in files is the simplest
way to store decision models. The data encoding can vary between plain text
and binary encoding, but the main characteristic of file-based collaboration is
the choice of the file sharing mechanism, which can vary from a centralized file
server (e.g., NFS or SMB) to a cloud-based folder synchronization service (e.g.,
Dropboxﬂ or BitTorrent Syncﬂ). These impose the constraint that there is only
one active editor of file at a time. More refined mechanisms for conflict detection
and merging are offered by version control systems such as Subversionﬁ or Gilﬂ
These, however, may not always be able to merge conflicting updates for decision
models stored in binary files.

Benefits: An advantage of the fact that each stakeholder can own his own copy
of a file is that there is no need for continuous connectivity for read-only
operations.

Challenges: The major problem with file-based decision model persistence is the
exchange of updates among stakeholders. In a situation in which two or
more clients modified the decision model simultaneously, the file-sharing
mechanism would not be able to help with merging resulting conflicts.
Version control systems can help to detect and manage conflicts. However,
merge operator applied to the plain-text file representation is unaware of
the model semantics.

Design Alternative: Wiki

Wiki systems [[LCO1]] are typically used to manage generic knowledge reposi-
tories, which can be contributed to and shared by many stakeholders. The main
characteristic of the wiki-based collaboration is that it remains model-agnostic,
since it typically provides a simple formatting language to describe the syntax of
Web pages and automatically infer the presence of hyperlinks.

Thttps://www.dropbox.com/
2https://www.getsync.com/
3http://subversion.apache.org/
4http://git-scm.com/

https://www.dropbox.com/
https://www.getsync.com/
http://subversion.apache.org/
http://git-scm.com/

38 3.3 Collaborative Design Paradigms

Benefits: The main advantage of using a wiki-based system to support a collab-
orative decision making tool lies in the bulk of the functionality that can
be reused. In particular, we refer to content micro-formatting, revisioning
history, access control, and persistence.

Challenges: Wikis can mitigate problems that are due to the lack of support for
an explicit meta-model by means of templates, whereby users may choose
among different structures for new pages. However, no guarantee can
be made that users will not modify the predefined structure given by the
template. Wikis also offer various forms of locking at the level of individual
pages to avoid introducing conflicts in the content; that is, while a user is
editing a page, other users may be prevented from doing so on the same

page.

Design Alternative: Shared Repository

The shared repository paradigm builds upon the wiki alternative, with the
difference that the repository is aware of a meta-model that has been tailored to
capture architectural decisions. In this category ,we include content management
systems, semantic Wikis, and form-based user interfaces that are customized to
a specific decision meta-model. Shared repositories also feature a centralized
deployment of the model and manual synchronization.

Benefits: Collaboration over shared repositories offers functionality that is specif-
ically designed to support the whole lifecycle of architectural decisions, it
can simplify the interpretation of the decision model and provide guidance
inferred from the content of the decision model itself.

Challenges: The main limitation of shared repositories stems from the manual
synchronization approach. In dynamic situations, where multiple stake-
holders are changing the decision model rapidly and concurrently, a shared
repository gets in the way. In such environments, the user interface views
of the decision model often become out of date, and users need to dedi-
cate their attention to refreshing them. To deal with this issue, some tools
offer an automatic refresh feature, which — when implemented using pe-
riodic polling — may limit the scalability of the system without necessarily
providing a robust solution to deal with conflicts.

39 3.3 Collaborative Design Paradigms

Design Alternative: Collaborative Editor

Collaborative editors eliminate the limitations of wikis and shared repositories
by supporting real-time synchronization of the content. Basic collaborative editors
do not make any assumptions about the content meta-model and leave it up to the
user to follow some conventions for capturing the knowledge, which is instantly
shared with all other stakeholders.

Benefits: Time plays a very significant role in collaborative decision making.
Thanks to the proactive delivery of the model updates with low-latency, it
is possible to keep all stakeholders up to date. This feature can potentially
improve the efficiency of the deliberation process.

Challenges: In situations when there is high latency between the server and
the clients, it is likely that conflicts will still occur. Some approaches have
been proposed to resolve such conflicts automatically. By introducing some
techniques to indicate the presences of and the focus of the attention of
users, it is possible to prevent conflicts, since users become aware of what
the others are doing with the content [HGS™13]].

Design Alternative: Blackboard

The blackboard-based collaboration paradigm combines the benefits of the real-
time collaboration of collaborative editors and the advantages of operating
with a rich representation of the data, following an explicit meta-model. This
means that stakeholders can rapidly go through a design discussion and hopefully
converge on a consensus, while the tool takes care of recording the outcome
according to the explicit structure of the decision model.

Benefits: Rapid feedback, team situational awareness, and structural integrity
are the main benefits delivered by the blackboard collaboration paradigm.

Challenges: The concern for blackboard systems is that the rapid exchange of the
changesets implies that large model changes are split into a large amount
of small updates. Concurrent model editing can make it impossible to
execute a large model change fully due to emerging interrelations such
as dependencies or exclusions, thus leaves the user puzzled by a model
entanglement that is difficult to fix.

40 3.4 Liveness

. Conflict .
Synchroniza- Conflict
) Preven-) Example
tion) Resolution
tion

Liveness

Archium,
ADKWiK,
ADDSS, EA,
FAGLE,
AREL, DA,
SDA, SEI-
ADWiKki,
SEURAT
Com-
pendium
Medium Automatic No Manual ODR
EPR GD,
SAW

None Manual

Low Automatic Locks

High Automatic No Automatic

Table 3.3. Summary of decisions leading to each Liveness level

3.4 Liveness

We propose to adopt the concept of liveness introduced by Tanimoto in [Tan90] to
describe the level of responsiveness of the decision model to changes introduced
by multiple stakeholders. In addition to the previously discussed Synchronization
issue (Section [3.3.2)), for which a manual alternative implies a non-existent
liveness, we further refine the level of liveness based on how the tool supports
Conflict Prevention and Conflict Resolution, as detailed in the following Sections.

3.4.1 Design Issue: Conflict Prevention

Concurrent read-write access to a decision model is an inherent necessity for
enabling collaborative decision making. As long as concurrent read-only access
does not present any difficulty, the concurrent reading and writing can cause
conflicts. Locking mechanisms help to prevent more than one user from modifying
the model (or parts of it) at the same time. The locking mechanism can be
activated either explicitly by the user, or implicitly by the tool.

41 3.4 Liveness

Design Alternative: None

Without a locking mechanism, concurrent write access to the decision model
typically relies on the merging and conflict resolution mechanisms to handle cases
in which more than a single user modifies the model at the same time.

Benefits: The core benefits of not using a locking mechanism is that it eliminates
the complexity of protocols [TauO6] that need to deal with corner cases,
such as stale locks, or client starvation. Removing locks also simplifies the
user interface, since users do not have to be aware of the lock status of
different model items, nor need to be granted access to the locks.

Challenges: Not using an explicit locking mechanism can be troublesome if
changes introduced to the model are very interdependent. In such cases,
the result of the changes might be either inconsistent or incomplete, thus
inducing large rollback overhead.

Design Alternative: Locks

An explicit locking mechanism acts in two ways: first, it prevents concurrent
access to particular elements of the decision model, and second it grants a user
the exclusive access to the model and informs others about this fact.

Benefits: Having the ability to lock the decision model may help to force a
diverging design discussion to converge, since only one user is empowered
to perform updates to the model, i.e., to settle controversial decisions.
Thus, being certain of having exclusive access to the model helps when the
atomicity and consistency of the change need to be enforced.

Challenges: Locks, if applied inappropriately, can significantly hamper the through-
put of concurrent work on the decision model. In particular, when large
subsets of design issues, or even the whole model, are locked by a single user,
others cannot actively progress with their contributions, but can only watch
the progress of the other user, which may hamper an active brainstorming
session during a design workshop. In such case, another communication
channel might be needed to provide the input.

3.4.2 Design Issue: Conflict Resolution

In situations in which multiple users edit an architecture decision model concur-
rently, the changesets need to be merged in a way that preserves model consistency.
We have observed two alternative approaches to solving this problem:

42 3.4 Liveness

Design Alternative: Manual

With manual conflict resolution, the user is notified about the occurrence of
the conflict and is explicitly asked to decide how to resolve it.

Benefits: The main benefit of this approach is that the user remains in full control
of the outcome, so there is no chance of implicit model corruption that
would escape the users’ attention.

Challenges: Frequent updates leading to a large number of merge alternatives
can overwhelm users. Also, the conflict notifications can be a very signifi-
cant distraction, and manually solving conflicts introduces a delay in the
information flow.

Design Alternative: Automatic

The user is not involved in the conflict resolution process. Typically a rule-
based arbitrage algorithm is used to deterministically merge the changesets [[EG89]].
The more fine-grained the changesets are, the easier it is to apply the arbitrage
algorithm consistently over the colliding changesets.

Benefits: The main advantage of automatic conflict resolution is its seamless
operation when used with simple, linear data models, such as plain text.

Challenges: In situations in which changesets are large, or they are applied to
non-linear data models (such as graphs), the arbitration results may no
longer fit with the users’ expectations. In turn, since conflicts are merged
quickly without user intervention, there is a chance that for the model to
become corrupted without the users being aware of it.

3.4.3 Design Issue: Liveness

In the context of the three design issues that we introduced in the previous
sections, we propose to revisit the concept of liveness introduced by Tanimoto
in [Tan90]] and adopt it within collaborative architecture decision making as
follows. Based on the combination of decisions (choices) across the alternatives
related to the aforementioned issues, here we devise four distinctive levels of
liveness.

43 3.4 Liveness

Design Alternative: None

If a tool does not deliver any real-time collaborative decision making support,
then one cannot speak about its liveness level. In other words, the absence
of liveness is characterized by the need to manually synchronize the decision
model.

Benefits: Manual synchronization significantly reduces the complexity of the tool
design and thus the corresponding implementation effort as well, which
may reuse existing information sharing technologies.

Challenges: If a design is to be made in a collaborative way, and the tool does not
provide any automated mechanism for automatically sharing architectural
knowledge and decisions, the stakeholders need to resort to alternative
communication channels and generic information sharing tools, such as
configuration management and version control systems (Subversion, GIT),
file-sharing (Dropbox, BTSync) and video-conferencing, remote presence
tools (e.g., Skype).

Design Alternative: Low

The low level of liveness characterizes tools that provide Automatic model
synchronization combined with a pessimistic conflict prevention mechanism based
on locks.

Benefits: Locking parts or even the whole model for exclusive access is a very
simple and effective method of avoiding changeset collisions. The low
liveness support is definitely suitable for stepwise refinement within a
controlled and slow-paced workshop environment.

Challenges: Incautious use of locking can very easily lead to stale locks and thus
significantly hamper the decision making process. In order to prevent that
from happening, the decision making process needs to be carried out in a
systematic way.

Design Alternative: Medium

The medium level of liveness differs from the previous one by not relying
on the locking mechanism for conflict prevention. Instead, a conflict detection
and mitigation mechanism is implemented. In particular, the conflict merge
mechanism differentiates between the changesets that can be safely merged, and
those that require users’ intervention.

44 3.5 Tools

Benefits: The advantage of the medium level of liveness over the low level shows
up in the situations in which multiple users edit the model simultaneously.
The ultimate consistency of the model is assured by the user curating the
model in cases where a collision is detected.

Challenges: Again, manual collision resolution can prove to be very inefficient in
cases where multiple users intensively work on the same part of the model.

Design Alternative: High

The high level of liveness is delivered by tools that perform an automatic
model synchronization and handle changeset merging in a manner that does not
involve users, even in case of conflicts.

Benefits: The biggest benefit of a high degree of liveness is that it provides a very
streamlined experience for users. This is particularly important in tightly
time-constrained discussions and very dynamic situations.

Challenges: Carefree conflict resolution, without human oversight, might result
in a blowback when the changesets get merged in a way that is consistent
according to the merging rules but not anticipated by the team. Without
explicit warnings built into the tool user interface, the conflict can remain
unnoticed and thus corrupt the model.

3.5 Tools

In this section, we provide a very brief description of the tools that we surveyed in
the process of building the design space that we have introduced earlier. Analyzing
the application domain we have distinguished four categories of tools, which we
arrange with increasing levels of specificity:

Knowledge - generic tools that can be applied in broad range of applications,
typically relying on an implicit meta-model,

Decisions - tools focused on the decision support domain that are not customized
to the domain of software architecture, and that operate on a minimal, but
expandable explicit decision model,

Architectural Knowledge — knowledge management tools, tailored to the do-
main of software architecture, intended to manage a broad range of knowl-
edge artifacts,

Architecture Decisions — a subset of Architectural Knowledge management
tools that focus specifically on Architecture Decisions.

45 3.5 Tools

EtherPad (Domain: Knowledge)

EtherPad (EP) [[GIZ08]] is a collaborative, real-time editor (RTCE) enabling
multiple authors to work on a single, unstructured text document. It is based on
the Operational Transformations (OT) engine and the EasySync communication
library. As an editor, it offers elementary text formatting features, comparable to
those found in the Rich Text Format (RTF) specification. The EtherPad does not
offer any argumentation, or process integration support features. The content
contributed by the individual users is color-coded to ease identification. When
applied as a tool to support a decision making process, there exists neither an
automated way to enforce the application of some particular decision model, nor
a mechanism to ensure its consistency.

Google Docs (Domain: Knowledge)

Google Docs (GD) [[Goo13]] is a cloud-based tool suite providing a set of generic
office applications (Document, Spreadsheet, Presentation, and Drawing). It offers
near-real-time collaboration, with rich-structure documents. The integration of
the individual user contributions is automatic, and there is no explicit traceability
of authorship for edited content, although it can be done implicitly by identifying
changeset authors. A document meta-information can be shared between users
using document annotations. Similarly to the EtherPad, Google Docs can be
used to record architecture decisions in free form, but the tool does not provide
any explicit decision making and modeling features. Differently from EtherPad,
Google Docs does offer some limited degree of offline operation support.

Compendium (Domain: Decisions)

The Compendium [[SSS*01]] is a social science tool developed at the Open
University. It implements the Issue-Based Information System concept introduced
by Conklin and Bergman in [[CB88]]. It does not provide any software architecture
related facilities. Decision model persistence is done either in the organization-
centralized database or locally on the computer running the Compendium. There
exists an experimental, live-collaboration extension that uses the jabber protocol
to provide asynchronous decision model element sharing between users who are
working concurrently, but there is no automated support either for validation or
for conflict resolution within the model.

SEI-ADWiki (Domain: Architectural Knowledge)

Bachmann et al. [BMO05]] documented their experience of replacing docu-
mentation edited with a conventional rich-text editor (Microsoft Word) with a
collaborative wiki (MediaWiki). The SEI-ADWiki initiative does not adhere to
any specific architectural knowledge (or decision) meta-model, even though it
extends the basic wiki editor with more structured, form-based editing views.

46 3.5 Tools

SEURAT (Domain: Architectural Knowledge)

Software Engineering Using RATionale (SEURAT) [BurQ5/] is an annotation-
based rationale management system aimed at supporting software maintenance.
It is built as an Eclipse plug-in extension. Structurally, it consists of the argument
editor and analyzer, rationale repository, inference engine, and argument ontology
storage. Within the RATspeak AK model it offers management of entities such as
Requirements, Goals, Alternatives, Claims, and (design) Artifacts.

EAGLE (Domain: Architectural Knowledge)

EAGLE [FLvV07b, FLvV074] is a Microsoft-SharePoint-based architectural-
knowledge-sharing portal built within the GRIFFIN project at the VU University
Amsterdam and the University of Groningen. EAGLE operates within a domain
model (CORE) built on the basis of an extensive investigation of architecture
design processes and interviews with practicing architects.

PAKME (Domain: Architectural Knowledge)

Process-based Architecture Knowledge Management Environment (PAKME) is
a situational application by Babar et al. [BGJOS5]. It is based on the open-source
groupware platform (HyperGate), which was customized to fit the requirements
for architecture design. The underlying platform provides it with typical group-
ware facilities such as user management and access control, but it does not provide
concurrent access protection or model consistency validation. The decision ratio-
nale is captured individually for each architecture decision, and there exists no
support for capturing multi-user argumentation.

AREL (Domain: Architectural Knowledge)

Architecture Rationale and Elements Linkage (AREL) [[TJHO7, Tan07] is a
UML-based model to capture and document design rationale. It builds upon the
generic modeling tool Enterprise Architect and Bayesian network analysis tool
(Netic. It provides decision support for qualitative (QLR) and quantitative
(QAR) decision making, as well as decision support for architectural element
traceability. It provides neither explicit collaboration nor argumentation features,
as it relies on file-based architecture model persistence. It does support decision
conflict resolution and model validation.

Knowledge Architect (Domain: Architectural Knowledge)

Knowledge Architect (KA) [LJAQ9Y, LJATO] is a tool suite designed to provide
holistic support for architectural knowledge management. It comprises the cen-
tralized knowledge hub that is accessed by the components responsible for the

Shttp://www.norsys.com/netica.html

http://www.norsys.com/netica.html

47 3.5 Tools

traceability management, automated checking (validation and conflict mitiga-
tion), and knowledge translation. A range of plug-in extensions was implemented
to integrate the core knowledge repository with generic office suite applications
(MS Word, Excel). It offers model flexibility thanks to the ontology-based decision
model specification.

ADDSS (Domain: Architectural Knowledge)

The architecture design decision support system (ADDSS [[CNPDO06, [CDN10])
is a web-based tool aiming at architectural knowledge management. It supports
capturing and delivering architectural decisions, as well as functional and non-
functional requirements and architecture documentation. It operates on a custom,
yet flexible architectural decision knowledge representation and offers partial
support for an iterative decision making process. It offers multiple viewpoints
and perspectives on decision models.

Archium (Domain: Architecture Decisions)

Archium [JvdVAHOQ7] is a research tool prototype developed at the University
of Groningen to demonstrate practical applications of the theory of Software
architecture. It served its purpose within the Grid for information about archi-
tectural knowledge (GRIFFIN). The core part of the Archium tool-chain is an
architecture description language (ADL) compiler that can generate ArchJava
and Java code. The Archium decision models are automatically validated and
checked for decision consistency.

Architectural Decision Knowledge Wiki (Domain: Architecture Decisions)

AD,,,;; is a situational wiki application presented by Schuster et al. in [[SZP07]].
It is built on top of the IBM proprietary QEDWiki system. It uses the SOAD
framework-specific decision meta-model and offers support for the complete deci-
sion management life-cycle. The decision rationale (justification) is recorded as
an attribute of the ADoutcome entity. There is no explicit support for the decision
argumentation, but there exists a QEDWiki generic message board functionality,
specific for every wiki entity. The QEDWiki locking mechanism prevents from con-
current write-access to the decision model elements, but there is no mechanism
to validate the consistency of the decision model. The tool does not provide any
push mechanism to notify involved stakeholders about concurrent changes in the
decision model.

Open Decision Repository (Domain: Architecture Decisions)

Open Decision Repository [AAE"14] is a tool initiated by the Software Engi-
neering and Architecture Group at the University of Groningen, which was further

48 3.5 Tools

developed within the Google Summer of Code project. It is implemented as a
rich web application with the back-end provided by the J2EE technology stack.
It supports architectural decision modeling within the ISO42010 meta-model
with four additional viewpoints proposed by van Heesch in [VHAH12a]]. ODR
provides neither a locking mechanism, nor automatic changeset conflict resolution
mechanism.

Solution Decision Advisor (Domain: Architecture Decisions)

Solution Decision Advisor (SDA) [MZ11]] is an Eclipse RCP application that
implements a (logically) layered architecture system built to manage architectural
knowledge entities based on the custom decision-points meta-model. Users
operate the system by using the Decision Point Knowledge Editor and the Decision
Making Client implemented within the Eclipse Rich Client Platform, and the
Eclipse Graphical Modeling Framework. SDA is designed as a multi-layered
application with extensibility points planned within each layer. It offers both
decision meta-model and decision making process flexibility. It also offers facilities
for model consistency verification and conflict resolution.

ADVISE (Domain: Architecture Decisions)

The Architectural Design Decision Support Framework (ADVISE) [LTZ13]] is
an Eclipse-based Tool suite developed by the Software Architecture Group at the
University of Vienna. Thanks to the adoption of OSGI-based extensibility, it offers
a number of modular features such an Architectural Knowledge Transformations
Toolkit, Architectural Decisions Modeling, and Fuzzy Decision Support. The main
focus of the toolkit is knowledge and decision traceability and inference. It does
not offer any explicit support for collaborative design and decision making.

Decision Architect (Domain: Architecture Decisions)

Enterprise Architect (EA)E] is a commercial suite developed by SparxSystems.
It is a versatile and expandable architecture modeling tool, broadly adopted in
the industry. Manteuffel et al. [MTK"14] presented an extension that imple-
ments documentation framework for architecture decisions proposed by van
Heesch [vHAH12al]. The Decision Architect (DA) [[KG14]] has been developed at
the University of Groningen in cooperation with ABB. It supports architecture
decision documentation using five specialized documentation views proposed
in [VHAH12bl]. In terms of collaboration it relies on the infrastructure provided
by the Enterprise Architect framework, that is either file-based or database backed
blackboard model exchange.

Shttp://www.sparxsystems.com/products/ea/11/index.html

http://www.sparxsystems.com/products/ea/11/index.html

49 3.6 Potential Gap

3.6 Potential Gap

After investigating the design space covering Collaboration Paradigm and Liveness,
we realized that none of the surveyed tools supports a combination of blackboard-
style collaboration and a high level of liveness. The need to address this gap in
the state of the art laid a foundation for the design of the Software Architecture
Warehouse (SAW).

Software Architecture Warehouse (Domain: Architecture Decisions)

Software Architecture Warehouse (SAW) [[NP13]] is a web-based tool support-
ing collaborative architecture decision making. It aims at promoting a high level
of team situational awareness by delivering multiple, customized views of the
decision model. SAW offers live updates, decision model flexibility, and modular
extensibility.

3.7 Summary

In this chapter, we have surveyed the design spaces of the architecture decision
meta-models and the collaborative aspects of the tools supporting architecture
decisions modeling and management. Within the set of seven design issues,
we have elicited two core issues addressing Collaborative Design Paradigm and
Liveness. In total, we have inspected 19 alternatives and documented their
advantages (pros) and disadvantages (cons). The presented decision space covers
the state of the art and lead to identification of the goal to be filled in by the
original contributions of this thesis.

In next chapter, we scope the field of our research, we analyze typical software
architecture design scenarios and we identify core concerns for the stakeholders.
Finally, we state research problems and define research questions that lead to our
research thesis.

20

3.7 Summary

Chapter 4

Collaborative Software Architecture
Decisions

In this chapter, building on the foundation of the background research and the
state of the art presented earlier, we are going to guide the reader through the
major practical concerns of some practitioners from the field. Later in this chapter,
we define the Research Problems with corresponding Research Questions, and
finally we state our research thesis.

4.1 Typical Scenarios

A software architecture design process typically can be framed into one of three
scenarios, namely, Architecture Synthesis, Architecture Evaluation, and a mixture
of the two. Here we provide brief descriptions of some typical project cases
comprising such scenarios.

4.1.1 Architecture Synthesis

An in-house software architect working within the research and development de-
partment of a high-tech company is invited to work on an innovative, green-field
project of a new product. The product requirements list is underspecified, and
stakeholders’ opinions are volatile. Nevertheless the team, through construction
of many prototypes, discovers numerous patterns, methods and techniques for
addressing stakeholders’ concerns. The architect is concerned about the fact that
the experience gathered during the construction and evaluation of the prototypes
might either remain limited to a narrow group of prototyping experts or evaporate
completely. In order to avoid that happening during the process of the product

o1

52 4.1 Typical Scenarios

design, he or she carefully captures design issues and alternatives recognized
during the design process thereby filling up the design space with content. As
prototypical designs vary, each of them constitutes a (partially complete) alterna-
tive solution representing the set of design decisions. Together with the maturing
of the product, the design space is filled with design alternatives offering diverse
qualities for the final design. Design issues that require more research to explore
new alternatives are related to the unknown alternative.

Due to the fact that there are multiple (non-technical) stakeholders involved
in the design process, reaching a consensus in decision making within the context
of particular design issues is a non-trivial task.

In cooperation with analysts, stakeholders are expressing business require-
ments by using qualitative and quantitative attributes attached to specific design
alternatives, decisions, and decision points. Because of geographical distribution
and low availability of stakeholders, many decisions need to be taken offline in a
step-wise manner.

4.1.2 Architecture Evaluation

A medium-sized company has exhausted the capacities of its computerized order
management system and thus has decided to invest in a new system suitable to its
needs and scalable to adapt to future growth. A group of analysts has prepared
concise documentation of the requirements and handed it over to an external
team of architects. Based on the requirements specification, the architects have
produced an intermediate architecture design candidate together with decision
and rationale documentation. An independent external auditor is hired to assess
the qualities and the progress of the architectural design. The alignment of the
design with the requirements is analyzed with ATAM [[KKCOQ] (or similar archi-
tecture evaluation methods). In order to estimate the design progress, the project
manager wants to find out how many design issues are fully decided, how many
were partially decided and finally, how many have not yet been not addressed.
The architect is aware of the fact that design issues are very diverse in terms of
complexity and influence on the design. In order to verify that the design is on
the right track, he or she wants to be sure that issues with high impact and/or
high complexity are addressed first and foremost.

53 4.2 Scoping the Research Problem

4.1.3 Synthesis and Evaluation

An in-house architect of a highly specialized manufacturing company is asked to
join a team brought together for the purpose of designing an innovative product.
The design situation is a typical brown-field project case. The company has many
years of experience in the field, but the architect has been with the company only
for the past three years. Earlier designs were made by a team of two tenured
architects, one of whom retired, the other of whom passed away. Over the years,
the company culture encouraged explicit documentation of the design decisions
taken. The product that is to be delivered consists of multiple sub-systems that
were previously offered as separate products. The architect wants to reuse the
experience gathered by his predecessors so that he will not repeat the mistakes
and benefit from the experience of his predecessors. The first step is a preliminary
identification of the design issues important for his design and then a pruning of
the irrelevant ones. Having done this, he inspects past decision records in order
to identify decisions that recurred in successful designs.

4.2 Scoping the Research Problem

The experience gathered through our past practice in software architecture design
and collected from the community of active practitioners allowed us to recognize
the following concerns about the design process:

Co, FRAGMENTATION OF EXPERTISE AND/OR DECISION POWER

Due to the complexity and heterogeneity of the topics addressed by architec-
tural decisions, the expertise and decision power required to make good archi-
tecture decisions is often distributed among multiple experts. The architecture
design workshop would typically gather the experts physically in a single room
to facilitate the most efficient - direct communication. In cases where physical
presence was not an option, the experts would telecommute with audio/video
conferencing equipment. The constrained bandwidth of communication can make
the problem of expertise fragmentation even more pronounced.

Co, INEFFICIENT CONCILIATION

By its nature, the brainstorming process can have a very non-linear pace.
Sharp focusing and agility definitely help in the process. Unfortunately, orga-
nizational inertia and latency of communication can significantly hamper the
process of reaching agreement about a decision (conciliation). In particular, in the
brainstorming sessions including remote peers, keeping discussion focused and
attaining constructive argumentation can be a very difficult task to accomplish.

54 4.2 Scoping the Research Problem

Co; CHAOTIC BRAINSTORMING PROCESS

The project design space is a set of diverse architecture decision artifacts,
such as design issues, design alternatives, positions, relations, and others. A
well-modeled decision space is a great aid for the traceability and transparency
of the decision process. In practice, building a well-structured decision model
requires effort. This effort can be significantly reduced by providing efficient
modeling guidance.

4.2.1 Team Situational Awareness and Architecture Design

As we introduced in Section high-quality, collaborative architecture deci-
sions require three conditions to be fulfilled. First, the decision makers need to be
well informed. Second, they need to be smart in analyzing available information.
Finally a good collaborative decision needs to be consensual.

Providing stakeholders with the right information about the context of the
software architecture design is covered by disciplines such as requirements analy-
sis [vL.O8] and architecture modeling and, therefore, lays beyond the scope of our
research. Similarly, there exist plenty of computational methods aimed at assisting
humans in decision making [[PIPWJ08]]. In our work, we make the assumption
that the decision makers are sufficiently informed to make the decision in question
and have enough skills to take the decision. Based on this assumption, we have
focused our efforts on investigating the collaborative aspect of the architecture
decision making process, and have distilled the concerns listed in the previous
section into the following research problems:

4.2.2 Collaborative Architecture Design Decision Consensus (RP;)

Collaboration [[Gru94] has been recognized as a crucial element for effective engi-
neering design [FWC93| [SHLO8]] and planning [Rit72] for a long time. In [[ParQ9]]
Parnas positions design documentation as a communication vehicle and empha-
sizes the importance of appropriate organization in order to provide knowledge
accessibility. In the context of architecture decision making, collaboration among
design team members plays an essential role in delivering high-quality solutions
matching stakeholders’ requirements and fitting within project constraints. To
this end, we devise the following research question:

RQ; How to support collaborative software architecture decision making?

By supporting collaboration through improved communication among dis-
tributed members of the design team, we want to improve the quality of the deci-

5%) 4.2 Scoping the Research Problem

sions and thus the quality of the design process and design outcome. Architects
are naturally at the center of collaborative decision making due to their central
position among stakeholders, developers, and project management [[Zim09, Chap-
ters 2 and 3]. A positive correlation between system structure (integrity) and
the social organization of the design team has been pointed out by Conway in
[Con68l]; hence, effective collaboration in decision making is essential for design
integrity. Support for collaborative decision making aims at helping to transform
a design “stream of consciousness” into a high-quality, reusable design body of
architectural knowledge [Lag09]. We acknowledge the fact that the factors imped-
ing design collaboration are multi-dimensional. Spatial distribution sets different
demands for supporting collocated and distributed teams. Similarly, intensive,
low-latency, highly interactive brainstorming has very different characteristics
from a steady collaboration over a long period of time. The challenge that we
see is that replacing face-to-face communication with technology needs to strike
a very delicate balance between the overhead of the tool and the simplicity of
natural, direct communication.

4.2.3 Quality of the Collaborative Architecture Decisions (RP)

The necessity of having explicitly documented architectural knowledge is broadly
recognized by software designers [Zdu09]. Solely the fact of having explicit
architectural knowledge does not automatically imply its utility for the design
process. Following the thought of Tom DeMarco - "You can’t control what you can’t
measure" [[DeM86]] - we claim that it is impossible to make good collaborative
decisions [JBO5/] without understanding the characteristics that comprise the
decision quality.

Taking into account the trend that puts architecture decisions in the center
of the software architectural design [[TMDQ9], a question about their quality
naturally comes to mind. By learning about design decisions quality, one gets
very important insight into the process that led to the creation of the design (see
discussion on the quality of software architecture in Section [2.1.1]).

As we have pointed out in Section the software architecture design,
comprising decision making, has properties of a wicked problem. This means that
there is no analytical process that would lead to the ultimately correct solution.
Therefore, we focus on the qualities of the decision making process that contribute
to quality software architecture decisions (see Section [2.3.3).

RQ, How to identify, and quantify properties of a good, collaborative design

56 4.3 Research Thesis

Theoretical Practical Evaluation

RQ1 Arggment_atlon SAW Format_lve]
viewpoint evaluation
Metrics | | _ | | Empirical

RQ2 Definitions e e evaluation]

Figure 4.1. The meta-model of this dissertation

decision making process?

The estimation of the quality of the decision making process affects both archi-
tectural synthesis and evaluation. During the architectural synthesis [HKN™07]],
the design team motivated by the desire to deliver the best design quality is
going to strive for the best quality of the input (i.e., the reusable architectural
knowledge) on which to base their design. In architectural evaluation [[KKCO0O0],
post-mortem analysis of the qualities of the knowledge used in the design process
opens a new perspective for the evaluation of the quality of the architecture itself.
Measuring the qualities of the architecture decisions can also be employed for
tracking the progress and dynamics of the design process, as well as used as a
detailed source of information for the evaluation of the design output qualities.

4.3 Research Thesis

Based on the research problems and research questions stated in the previous
sections, we state the following thesis of our research:

Support for low-latency, structured architecture decision argumentation
improves the quality of the collaborative decision making process.

In order to address this thesis we propose a research meta-framework (see
Figure 4.1) that comprises three following aspects:

Theoretical — where we devise models, definitions and formal theory addressing
a Research Question,

o7 4.4 Summary

Practical - in which we provide tools and methods implementing the aforemen-
tioned theory,

Evaluation — where we report on the results of applying theory and practice in
the experimental environment.

In order to address Research Question 1 (RQ,), we devised a decision argu-
mentation viewpoint extension to the ISO 42010 standard (see Section[5.I). In
order to employ the argumentation viewpoint in practice, we have implemented
the Software Architecture Warehouse, which we describe in Chapter [6|and discuss
its formative evaluation in Section

In the context of Research Question 2 (RQ,), on a theoretical level, we devised
a range of metrics to describe the structure and dynamics of the collaborative
design decisions within the framework of the argumentation viewpoint introduced
in Section The practical aspect is an implementation of the metrics provided
by the SAW-analyzer described in Chapter[7.2.3] Finally, Section [8.3|reports on
the results of measuring design decision argumentation during the architecture
design sessions.

4.4 Summary

In this chapter, we briefly introduced three typical scenarios concerning software
architecture design process - Architecture Synthesis, Architecture Analysis, and a
mixture of the two. Based on this scenarios, we identified three practical concerns
and devised two research problems; one related to the support of the collaborative
decision making and another to the estimation of qualitative and quantitative
properties of collaborative decision making process. Finally, we stated the research
thesis and defined an approach for addressing research questions, based on three
pillars - Theoretical, Practical, and Evaluation.

In the following Chapter, we develop theoretical foundation for the collab-
orative architecture decision modeling — the decision argumentation viewpoint
followed by its practical implementation — the Software Architecture Warehouse.

o8

4.4 Summary

Chapter 5

Architecture Decision Argumentation
Viewpoint

In this chapter, we provide the theoretical framework that lays the foundation
of our applied contribution described in Chapter|[6] In particular, we provide an
argumentation viewpoint extension for the architecture decision model. Next,
building upon this viewpoint, we deliberate over the decision argumentation
lifecycle. Finally, we devise a set of software architecture metrics focused on
estimating the dynamics of the architecture decision making process.

5.1 Decision Model and Argumentation Viewpoint

The starting point of our considerations is the decision meta-model proposed
in the standard ISO 42010 [ISO11] (see Figure[5.1). We propose to use the
Architectural Decision entity (see Figure to establish a relation between a
design issue (representing the problem domain) and multiple design alternatives
(from the solution domain). This is similar to what Kruchten proposes in [KLvVO06]]
with a relation type named “is an alternative to” which is meant to relate decisions
“addressing the same issue”. Similarly to [JBO5I], we propose to promote the
Design Issue as a first-class entity. An advantage of representing design issues
and design alternatives explicitly is that the identification and reuse of design
decisions is promoted [NPZ10]].

Conforming to the recommendation about viewpoint definition from the ISO
42010, specification Annex B, the Decision Argumentation Viewpoint that we
propose addresses the following concerns:

99

60 5.1 Decision Model and Argumentation Viewpoint

Concern

0..n | 4 pertains to

raises 1
0...n 0...n

on |]
Architecture Decision Architecture Element]

depends upon l J affects= |

0...n 0
- n Rationale
<= justifies

Figure 5.1. Elementary architectural decision meta-model af-

ter ISO 42010 [ISOTT]

Choice Completeness — on a coarser level, the quality of the design depends not
only on individual decisions, but on the completeness of the decision model.
A high degree of completeness is desirable in mature design models.

Decision Integrity — as introduced earlier, most architecture decisions are taken
collaboratively. The integrity of decisions is essential for high-quality of
outcomes. An explicit representation of the individual positions of the
decision makers is essential to ensure integrity.

The non-concerns for the decision argumentation viewpoint include aspects
covered by the four viewpoints (Decision Detail, Decision Relationship, Stake-
holder Involvement, Decision Chronological) proposed in [vHAH12a[] and Deci-
sion Forces as proposed in [VHAH12bl].

The core constructs of the Decision Argumentation Viewpoint are:

Design Issue — A reusable aspect of the system design (from the problem domain)
that can be addressed with one or more design alternative to produce an
architectural decision model.

Design Alternative — An action, method, or pattern that can be used to address
particular design issues. In some cases, each design alternatives can be
reused within the context of multiple design decisions.

An explicit representation of design issues and alternatives offers a unique way
to map reusable knowledge from the design spaces onto the project specific deci-
sion spaces. The practical difference between Decision Argumentation Viewpoint
and other decision meta-models that do not distinguish between design issues
and design decisions is that with this distinction it is possible, within a project,

61 5.1 Decision Model and Argumentation Viewpoint

addresses =

Design Issue
0..n l...n ;

0...n &= raises —— 0..n

Concern Architecture solves 1
Decision enables 1

1l...n <= pertains

| —

0...n 0...n

0...n (

addresses = L

Design Alternative

implies w»
excludes =

Figure 5.2. An architecture decision viewpoint exposing linkage with design
space elements: design issues and alternatives

to address a single (reusable) design issue with multiple decisions that affect
different architecture elements and relate to different concerns (see Figure |5.4).

All issues and alternatives should be identified with a unique name. Additional
attributes shall be adjusted to a particular design domain. A practice-hardened set
of attributes for design issues (Background, Status, Drivers, Recommendation) and
alternatives (Known uses, Background, Pros, Cons) was proposed by Zimmermann
in [[ZKLF09].

Building upon this extended decision viewpoint we devise a new decision
model entity (see Figure [5.3)), which we define as:

Position — A subjective take of a design team member on a design alternative
applied in the context of a particular design issue. For example, the position
can be positive, negative, or neutral. The rationale for the position can be
captured with a natural language description. This can be complemented
by a weight associated with the uncertainty or confidence level of the
position. Additionally the position can be marked with a revoke flag that, in
combination with the timestamp, makes it possible to keep a full record of
past argumentation dynamics.

There are a number of relations that can exist among the argumentation
viewpoint core elements (see Figure[5.3). The design alternatives relate to design
issues with the solves relation. The fact that a given alternative solves a design
issue means that it constitutes a valid outcome for the decision making process in

62 5.1 Decision Model and Argumentation Viewpoint

the context of the particular design issue. Another important relation enables a
design issue if a particular design alternative was chosen. Similarly, the implies
relation between two alternatives indicates that the designated alternative needs
to be chosen if the first one is. The design alternatives are, by default (implicitly)
mutually non-exclusive. Therefore, we devise the excludes relation to model
a situation in which two alternatives cannot be chosen at the same time. The
user’s position on the decision can relate to the elements of the other architecture
decision viewpoints with the following relations:

recommends - an optional relation to the action from the stakeholder involve-
ment viewpoint [VHAH12al],

states — a relation to one or more stakeholders from the ISO 42010 stan-
dard [ISO11]],

addresses — an optional relation to the decision force from the decision forces
viewpoint [VHAH12b],

addresses — an optional relation to the concern from the ISO 42010 standard.

addressesm»,
) 0...n = recommends 0...n —1 Design Issue
Action

0...n

0...n
1...n states = O...n[0...n ;
Stakeholder Position Archlt.e.cture solves ¥
Decision
0 enables 4
...n

0...n = addresses 0...n 0...n 0...n
Decision Force 0...n ; ; 0...n
Design Alternative
addresses =

addresses § raises §

0...n
0...n ud

Concern § pertains to excludes m

1..n implies w»

Figure 5.3. The argumentation viewpoint meta-model of the architectural deci-

sion with Position related to other decision model elements; Action, Stakeholder
taken from [VHAHI2al, Decision Force from [vHAHI12D|

0...n

There are no constraints on the number of positions related to a particular
design decision. A single user/stakeholder can contribute multiple positions as
long as all except one are labeled with the revoked flag. In Figure|5.4{we provide
a template for the view based on the argumentation viewpoint.

In the simplest case, an undecided or open architectural decision would be
represented just by design issue with no alternatives or positions associated with it.

63 5.1 Decision Model and Argumentation Viewpoint

Concern

- addresses

<« raises

<« pertains to

Architecture | < addresses))
Decision Design Alternative

; <« addresses
Agzg;?g:e 4[Design Alternative

« states
Stakeholder
« states
Stakeholder
Stakeholder

Design Issue

— addresses

—J

Position

<« raises
Concern
<« pertains to

< recommends

<« states

Figure 5.4. A template for the view created with the argumentation viewpoint

Normally, the agenda of a design workshop includes a set of open design issues to
be discussed. During the workshop, the design team elicits, generates or captures
one or more design alternatives that are related to the design decision under
discussion. At this point, positions are used to state the subjective evaluation of
each stakeholder or each design workshop participant. Additionally, positions can
be justified by relating them to the decision force or to an action (see [vHAH12b])
that a particular stakeholder recommends to be taken. This provides added
value by helping to refine and express the rationale justifying the position. The
uncertainty of a position can be explicitly expressed by the stakeholder so that its
weight can be taken into account while bringing the decision process to an end.
The result is a closed architectural decision which binds the design issue to the
chosen alternative.

In Figure[5.5|we present an example of a design decision from the design space
of service-oriented architectures. Three design alternatives have been proposed
to address the design issue of selecting a Web services security mechanism. Six
stakeholders’ positions have been recorded. Colors and symbols reflect the position
types: green/(+) for positive and red/(-) for negative respectively.

5.1.1 The Lifecycle of Positions within Alternatives

At the beginning, each architectural decision starts with no recorded stakehold-
ers’ positions (Figure [5.6). The aligned state is reached when all the positions
associated with one alternative refer to the same position type. For example, in
Figure all positions related to HTTPS are positive. This can be interpreted as

64 5.1 Decision Model and Argumentation Viewpoint

Design Issue Architecture Design Stakeholder
9 Decisions Alternatives Positions
Web Services
Security Mechanism IS _

Figure 5.5. An example design decision from the service-oriented architecture
design space together with a number of positions

representing the state of consensus among all stakeholders. The colliding set of
positions exists when positions refer to more than one different position type. In
the example, both positive and negative positions are associated with WS-Security.

In this situation, when stakeholders cannot agree on the action to be taken, the
architect leading the workshop can solve the conflict by overriding the conflicting
positions expressed by the team members. Thus, after manually naming one
action as being the outcome of the discussion, it will proceed to seal the alternative,
marking the end of the discussion. The state in which either there are no positions
recorded or positions are colliding will be referred to as inconclusive; conversely,
aligned or sealed positions will be referred to as decided.

Inconclusive Decided

Positions
/// \

Colliding Sealed
Positions

Figure 5.6. The state diagram of the lifecycle of a design alternative. The state
of the alternative is aggregated from the actions of its positions

65 5.1 Decision Model and Argumentation Viewpoint

5.1.2 The Lifecycle of a Design Decision

The aggregated state of architectural decisions made over the design alternatives
within the context of a particular design issue can be conveniently used to monitor
the progress of the decision making process (see Figure[5.7)).

Design decisions about a given design issue start their lifecycle with no alterna-
tives recorded. As the design progresses, stakeholders elicit (or reuse) one or more
relevant design alternatives, leaving the design decision in the state with no deci-
sions, since no single alternative has yet been selected. Later, stakeholders record
their positions and make decisions. In situations in which at least one alternative
is in an inconclusive state, one can speak about incomplete choice. In cases where
all design alternatives are decided, we recognize three types of complete choice.
To distinguish them we need to check not only whether there is an agreement
about the positions on the alternatives, but also about whether the agreement
is about a positive (i.e., acceptance, validation, or approval — see [VHAH12al])
or negative (i.e., rejection) decision. Rejected alternatives are discarded, and
based on how many alternatives remain, we distinguish: 1) a conclusive choice
happens when there is exactly one remaining alternative; 2) an inconclusive choice
happens where there are multiple acceptable alternatives; and 3) a warring choice
represents a case where no alternative is left on the table.

In the example shown in Figure [5.8] we see a design decision with four
alternatives. The first two (BEEB TCP) have been rejected while the last two (MQ,
HTTPS) have been validated. Therefore the state of the decision is inconclusive
since there is more than one alternative left. Assuming that only one alternative
is required to settle the issue, another iteration of the discussion will be required
to refine the choice among the two remaining alternatives, for example, based on
additional constraints given by other design issues, concerns or decision forces.

V

Conclusive < Inconclusive N Warring
Choice Choice Choice

Complete Choice

Figure 5.7. The state diagram of the lifecycle of a design decision. The state of
the decision is aggregated from the state of its alternatives

66 5.2 Summary

Design Decided

Design Issue Architecture Decision Alternatives Positions

BEEP

E

TCP

[Message Bus Protocol]7

M

]

HTTPS

:

Figure 5.8. An example design issue about transport protocol selection with
four design alternatives (protocols) and a complete, inconclusive choice between
the alternatives

5.2 Summary

In this chapter, we identified two main concerns regarding collaborative archi-
tecture decision making and, further, we have defined a decision argumentation
viewpoint to address them. Next, we elicited reusable decision assets such as
design issues and design alternatives. Within the framework of the decision
argumentation viewpoint, we defined state machines for decision consensus and
choice state. Finally, we supported our considerations with illustrative examples.
In the next chapter, we introduce the Software Architecture Warehouse — a web
based tool designed to support collaborative architecture decision making. The
SAW builds upon the theoretical foundation laid in this chapter.

Chapter 6

Software Architecture Warehouse

The Software Architecture Warehouse (SAW) is a tool prototype that we have
designed with the warehouse concept in mind. We have extrapolated the ware-
house concept into the discipline of architectural knowledge management. In a
way similar to that of a data warehouse, the goal of the SAW is to accumulate
architectural knowledge from existing software design projects in order to provide
benefit for future projects (see Figure [6.1). In the larger picture, the Software Ar-
chitecture Warehouse provides a platform to persist, analyze and provide reports
on live characteristics of architecture decision spaces (see Figure [6.2)).

In following sections of this chapter, we introduce the concept of shared design
space awareness and explain how it influenced design of the Software Architecture
Warehouse. We elaborate about the usage context and typical usage scenario
with specific decision-making activities. Next we cover the most important SAW
features and proceed with architecture decisions followed by the documentation
of selected aspects of the design.

Project

Software
Architecture
Warehouse

Information

Project

Project

Benefit / Improvement

Figure 6.1. Logical information flow through the Software Architecture Ware-
house

67

68 6.1 Shared Design Space Awareness

Input
Outcome

Software Achitecture Warehouse
Persistence Analysis Reporting

Alternatives

Relations A
Guidance

1L

Decisions
Metrics

Benefit / improvement

Figure 6.2. The software Architecture Warehouse in the context of its inputs
and outputs

6.1 Shared Design Space Awareness

The SAW is implemented as a tool to help the entire software architecture design
team achieve a high level of situational awareness about architectural decisions
and the corresponding design space being traversed during a design workshop. In
order to provide designers with an elementary (perception) level of shared aware-
ness (SA,), we have adopted the live design document metaphor. Any change
to the design elements and relations among them are immediately propagated
(with low-latency) to all the design team members participating in the workshop.
Due to the connected nature of the architectural decision representation, the
live-document paradigm extends beyond content updates within particular views.
To this end, SAW propagates design space changesets to all views. For example
changes made to a design alternative are instantly reflected in the project details
and project summary views (see Figure[6.5).

Additionally, in order to ease interpretation of the decision state and thus
bring users to a higher level of situational awareness (comprehension - SA,),
we have implemented visual aids indicating the state of particular design space
elements. For example, the decision status of the design issues and alternatives is
color-coded so that stakeholders, at a first glance can get an overview of the level
of consensus (see Figure[6.8). Also in the case of positions, new contributions can
be entered in parallel, and updates are immediately propagated to all participants.

Targeting the projection level of situational awareness (SA;), participants
may base their positions on the knowledge associated with each design issue
alternative (e.g., decision drivers, concerns). Likewise, they may navigate through

69 6.2 Usage Context

the design space following arbitrary kinds of relationships (influence) between
issues and/or alternatives. This way, the impact of decisions can be analyzed
from a global perspective.

6.2 Usage Context

In the setting of workshop-based design processes, the Software Architecture
Warehouse targets software architecture design teams and supports different user
profiles and social configurations:

By architects preparing a design workshop. Individually, the architects browse
the design space and elicit relevant design issues. In so doing, the architect can dis-
cover interesting issues organized in a multidimensional, tag-based classification,
perform free-text searches, and follow relations to navigate among closely related
issues. After the design workshop is over, the architect completes capturing the
outcome of the workshop in SAW, which helps him/her to validate the decision
models checking its argumentation consistency and completeness.

During the design workshop a collocated team brainstorms about the ar-
chitecture under discussion using multiple communication channels, such as
personal discussion, and whiteboard sketches. The goal of the SAW is to support
the discussion without getting in the way. In particular, the SAW helps with
the moderation of a free-form discussion by focusing the shared attention and
understanding of the participants on discussion of specific design issues. The
SAW also explicitly records decisions and helps to build consensus when opinions
diverge.

A distributed team with telecommuting members has naturally limited com-
munication bandwidth; hence, it is important to use an efficient and precise
collaboration tool that is tailored to support collaborative design. Following the
philosophy of WYSIWIS (What You See Is What I See [Wol93]]), the SAW effi-
ciently supports decision-context sharing among team members and complements
other communication tools (such as instant messaging or videoconferencing).

6.3 Application Scenario

A typical application of the Software Architecture Warehouse can be demonstrated
in the following case. An in-house architect is given the responsibility of designing
a new system that should combine the experiences of the past projects carried
out within his or her organization. Initially, he or she sketches a preliminary

70 6.3 Application Scenario

Issue
Elicitation
(Fig. 6.4)

Issue
Details
(Fig. 6.6)

Project
Overview
(Fig. 6.5)

Project
» Summary
(Fig. 6.7)

Figure 6.3. A navigation path through the UI views of the SAW, that architects
can follow during the design workshop

design that fulfills the constraints imposed by the requirements. In the process,
he or she identifies a number of design issues that can be addressed by employing
well-known design patterns as well as design issues that have been previously
encountered. Together with the design, he or she builds up a collection of open
issues to be discussed with the development team at the next design workshop.
Documented architectural knowledge (design and decisions [KLvV06]]) is to be
used as a starting point for the design workshop discussion. During the design
workshop, the architect presents the initial design proposal, while the design
team challenges her design and brings forth alternative solutions.

The workshop discussion is centered on design issues, lifecycle of which
comprises the following activities:

Capture - issues are captured by giving them a name that appears as appropriate
at the particular moment of the discussion. Captured issues do not have to
be decided immediately, but they can already be associated with a small
number of possible architecture alternatives.

Elicit — issues are reused by selecting them out of the warehouse and bringing
them into the context of the current project.

Brainstorm - the team contributes additional details about the issue (such as
background, decision drivers, and recommendations) and gains a shared
understanding of what the corresponding design problem is about. In this
phase, the set of possible alternatives grows as the discussion diverges.

Decide - each team member individually registers his or her position on whether
alternatives should be rejected. Team members are immediately notified
about the others’ positions so that the team discussion can converge.

71 6.4 SAW Features

Feature Data Warehouse (DW) SAW

Collection (S);flsLtg;rel ’{gagﬂss)c tion Processing Collaborative, rich-, web-client
] Extraction Translation and

Staging Loading (ETL) RoR web-server

Analysis Data Marts Meta-model in the web-client

Reporting | External System Rich-, web-client

Table 6.1. Mapping between features of a data warehouse and the SAW

Rationalize - each position needs to be backed by some rationale.

Curate - during the live discussion of the design workshop, the context of each
design issue is implicit. The explicit classification and specification of the
context of each design issue is essential for preventing the evaporation of
valuable knowledge. This activity is carried out soon after the workshop is
over.

In practice, during the design workshop, each activity overlaps in time and we
do not assume a linear flow (see Figure[6.3)). It is up to the architect to prioritize
and steer the discussion towards the most critical issues. After the workshop,
the architect revisits the outcome of the discussion by separating the issues that
have been closed (which may need to be curated and rationalized) from the ones
that need further discussion (which may need to be further researched, e.g., to
generate additional alternatives or to investigate and compare the alternatives
among which the team could not reach a consensus).

6.4 SAW Features

A data warehouse is a specialized database system designed for the purpose of
data analysis and reporting [InmO2]. Apart for data persistence (staging), the
main purpose of the data warehouse is an analysis (mining) of the information
that can be discovered only by leveraging the very large scale of the raw data
received as input from online transaction processing systems.

Our approach covers the three aspects of warehouse functionality (staging,
analysis, and reporting). In Table we provide a mapping between typical
OLAP data warehouse stack and specific modules of the Software Architecture
Warehouse (see also Figure [6.10)).

72 6.4 SAW Features

In the following sections, we introduce features of the Software Architec-
ture Warehouse that make it stand out from the other collaborative architecture
decision management tools we have listed in Section

6.4.1 Project-Based Design and Reusable Design Issues

The meta-model supported by the SAW distinguishes between the problem and
solution domains by representing design issues (in the problem domain) solved
by one or more possible design alternatives (in the solution domain). The meta-
model also separates reusable knowledge (the design space, which is composed
of reusable design issues and alternatives) from context-specific information (the
project space). The tool supports multiple projects, which can include references
to relevant issues and alternatives augmented by the project-specific positions of
individual designers.

6.4.2 Decision Elicitation

An important step during the preparation for a design workshop consists of
deciding what is to be decided. Browsing through the decision repository gives
the architect an opportunity to elicit design issues to be reused (see Figure [6.4).
The SAW supports the issue elicitation process with a free-text search, filtering
based on multi-dimensional tagging and tag-cloud browsing. Every elicited design
issue is made immediately available to all designers participating in the project.
Elicitation can also happen implicitly as architects are about to enter new design
issues since the SAW will attempt to locate existing issues based on the tentative
name of the issue about to be captured.

800 demo.saw.sonyx.net e
| > @ + 76 dgmo.saw.sonyx.ngl
Active project: Smart Grid Logged as: marcin@sonyx.net

Modes: Projects Navigate Smart Grid
Status: Ready (0,0,0)

" lssuelist
Clear Filter

Here you can browse through the list of all available design issues and pick ones to be reused in the project. You can filter list of available issues by clicking on tags or providing free—form text filter.

Total items found: 135

Filter:
Issue: Ul view state management method
Clear Filter
Type: IBM-1D
Type:_?hases ‘ 0
ag: Solution outline
Issue: View to model data binding method Reuse Tag: Macro design

Tag: Micro design
Type: Project
Type: Role
Issue: Asynchronous server-to-client events delivery method Reuse 1:5: ggfﬂc‘gﬂg‘gg&r
Tagq: Process modeler
Tag: Integration architect
Tag: Application architect
Issue: HTML templating mechanism (both server and client-side) Reuse Type'-giclg- E“’(e“ platform specialist
Tag: Project
Tag: Process
Tag: Operation
Tag: Channel
Tag: Method
Tag: Service
Type: SubjectArea
Tag: Technology-level refinement
Tag: Governance
Tag: Platform mapping
Tag: Tooling
Tag: Deployment
Tag: Programming
Issue: Language dialect enforced/supported/required by the framework Reuse Type: TopicGroup

Issue: Model-view * pattern Reuse

Issue: MV* framework Reuse

Issue: Madularization support Reuse

12:15

Figure 6.4. Decision Elicitation: Reusable design issues (on the left) can be included in the current project by clicking
on the Reuse button. The set of issues can be filtered by a free text search and tag-based classification (right)

€L

saIniyes] MVS 79

800 staging.saw.sonyx.net "

l@ staging.saw.sonyx.net

L = = - — e S e S s e

Projects Active project: Web Services Logged as: marcin.nowak@sonyx.net
Status: Ready (0,0,0)

Status: No decisions were made yet NN EGEE) New Issue

Service Description
Alternatives:

[ii] WADL No positions m
ﬁ] Textual Documentation Mo positions .

[ii] XML Schema No positions e
[ii] W5DL No positions

Type to search or add new Afternative ...

Issue: Status: No decisions were made yet BN EnE)
et [GoarFrer
Clear Filter

Alternatives:

[ii] Native No positions
[l HTTPR No positions
[ii] W5-Reliability No positions
ﬁ] W5-ReliableMessaging Mo positions

[ii] Do-it-yourself No positions

Type to search or add new Alternative ...

Issue: Status: Decided Add Alternative

Web Services Security Mechanism
Alternatives:

[ii] plain-text Aligned: Negative
ﬁ] HTTPS = HTTP + 55L Aligned: Positive
'ﬁ] W5-Security Aligned: Negative

Type to search or add new Alternative ...

s e b et B L e i e L i L et e B L S B R e e e e e e s e]

Figure 6.5. A comprehensive project overview presenting a number of design issues in the context of the project.
Selected design issues are expanded with a list of design alternatives that are highlighted with a color-coded decision

summary

2

somyed] MVS 79

75 6.4 SAW Features

6.4.3 Collaborative Brainstorming

Often the initial set of elicited design decisions is not sufficient to completely cover
the architectural design. During the design workshop brainstorming sessions,
participants capture and refine new design issues and alternatives. The SAW
supports a low-latency delivery of updates so that designers can synchronize
the discussion context and their contributions. The benefits of rapidly capturing
design issues and alternatives are twofold:

1. Designers can easily make a contribution to the discussion by entering new
alternatives in the tool without forcing an interruption of the discussion
stream;

2. The evaporation of captured items is prevented so that architects can later
come back and consider important issues that were likely to be overlooked
if raised while the discussion was focused on a different topic.

6.4.4 Decision Making

The SAW records the positions of each team member on a particular design
alternative in the context of the corresponding design issue. Every position
can and should be supported by a brief statement describing the corresponding
rationale. The position can be one of pre-defined types:

Positive — when the designer expresses that he or she considers a particular
alternative to be viable in the context of given design issue,

Negative — when the alternative is not acceptable,

Open - to label alternatives which were considered during the main discussion,
but their decision status is still neutral, as neither positive or negative can
be applied.

Each position can be revoked with an anti-position, which reverts its status
but also records the change of position in the discussion log (see Figure [8.3).
Concerning the position types, the SAW meta-model is flexible and additional
decision types can be easily introduced by tailoring the tool configuration to the
needs of specific projects or design teams. For example if design alternatives
have a quantifiable attribute that is relevant for the decision making, the decision
meta-model can be tailored to accommodate it.

76 6.4 SAW Features

Choice state of the design issue can be monitored in the project overview
(see Figure|6.5)), which aggregates the individual consensus states of the alterna-
tives related to it. From the same view, it is possible to export different reports
containing a complete snapshot of the design space.

6.4.5 Position Conflict Management

During workshops involving multiple designers, conflicting positions are difficult
to avoid in practice. The SAW not only provides designers with immediate
updates on the status of each decision but also embraces the reality of position
conflicts within its meta-model. This helps to support the early identification
of conflicts and enables their resolution through consensus building so that the
rework overhead can be minimized.

An aggregated overview of all team members’ positions is provided in the
project overview (Figure([8.2), which shows the number of positive, negative and
open positions. A gray background indicates alternatives for which conflicts, i.e.,
the presence of positions of different types, have been detected. The positions and
the corresponding rationale provided by each team member can also be inspected
and edited in the Issue Detail View (Figure[6.9).

6.4.6 Focus Tracking and Convergence

Conducting remote workshops on a design space containing many issues presents
the need to quickly focus the discussion on specific design issues. The SAW helps
the team to gain a shared understanding of the focus of the discussion with a
non-intrusive, mouse-tracking mechanism. Since all participants get an indication
of whether other team members are pointing at the same item, this mechanism
also prevents conflicting text edits on the same knowledge item.

Additionally we have equipped SAW with a mechanism for explicitly drawing
designers’ focus to a particular item. After a focus call the item is broadcaster, the
item in question gets highlighted in the views that display it (see Figure [6.6)). If
the current view does not display the called item, the user can easily navigate to
the right context by clicking on the focus call event in the notification pane.

6.4.7 Progress Monitoring

Given the non-linear nature of design discussions, it is important not to lose
track of the progress of a design workshop. The SAW provides the Summary
View (Figure which allows for classification and sorting of issues based on
their decision status and quick separation of issues that have been decided (a

77 6.4 SAW Features

8eoo demo.saw.sonyx.net/#/project/undefined/dialog/main.projects.projectList e
M @J @J ll‘o demo.saw.sonyx.net ¢ ;J &J

Navigate Active project: Smart Grid Logged as: marcin@sonyx.net

Modes:
Status: Ready (0,0,0)

Projects

Design Issue details: Exa—1 A >3 m| New Altemnative

Name Ul view state management method

User interaction with system can change its state in two ways:
by editing the data,

Background by changing view state of the data.
Changing state of the views requires some kind of mechanism to maintain transitions. Clear Filter
Drivers complexity of the view state should be a primary driver
Status emergence of new HTML5 features might create new alternatives

Recommendation simplicity of URL based routing is appealing, but might fall short of expectations for complex, composite Uls

Status: Some decisions are missing

) Alternative (1 Decisions, 1 in other projects) Il S Y :c o T
Name URL (hash routing marcin@sonyx.net
requested focus on
Decision Rationale Author Timestamp Alternative
ﬂ Positive mohsen.anvaari@gmail.com 10:19 2013-10-03 mgﬂgg@;‘f’gﬁ‘;"&:
Alternative
marcin@sonyx.net
requested focus on
Alternative
i i - ~ 7 : marcin@sonyx.net
@ Alternative (0 Decisions, 1 in other projects) Sl Positions relquestcfd nyne
Positive Alternative
Name event-based - 5 marcin@sonyx.net
KnownUses complex, composite Uls SR requested focus on
Open Alternative
Background message (event) bus based communication is a popular paradigm for the rich Uls
Pros scalability Edit Rationale
C view state complexity can grow very high, thus it might be very difficult to serialize it
ons into URL

Incoming relations:
Outgoing relations:

'Lﬂ Solves (/ssue) Ul view state management method

’ (Issue)
E Solves How to trigger internal actions

Figure 6.6. An Issue Detail view with one alternative highlighted by the focus
call and number of focus calls visible in the notification pane on the right

single alternative has been chosen), from issues that are still open (for various
reasons). In particular, the SAW employs selected decision metrics (as introduced
in Section to detect incomplete issues (where some alternatives have
not been accepted or rejected), conflicting issues (which contain at least one
alternative that contains both negative and positive positions), and inconclusive
issues (which have multiple alternatives with aligned positive positions and need
to be further refined).

Typically architecture design workshops are time constrained. We have de-
cided to equip SAW user interface with a large clock widget visible in the lower
right corner of the screen, to help users to stay within the agreed time limit.

8eo0oe demo.saw.sonyx.net/#/project/undefined/dialog/main.projects.projectList "3

(O M2l © demo.saw.sonyx.nev/# /project/524c62f70712a51882000001 /dialog/main.capture jssuelist

Navigate Active project: user behavior analysis Logged as: marcin@sonyx.net
g Status: Ready (0,0,0)

Modes: Capture

Projects

data source
[l Open
M Positive
Name Status Negative
Decisions not conclusive (open
data source alternatives)
how close should be the coupling with RoR Decisions not conclusive (open
back-end alternatives)
shall metrics be parametrized or parameter free? No decisions were made yet
Ul view state management method No decisions were made yet
HTML templating mechanism (both server and No decisions were made yat

client-side)
No alternatives

00:41

Figure 6.7. The Project Summary View with an overview of the design issues within the context of a project. The
decision status is summarized (and color-coded) for each alternative and aggregated at the issue level.

8L

somyed] MVS 79

staging.saw.sonyx.net

l@ staging.saw.sonyx.net

Modes: Projects Active project: Web Services Logged as: John Smith
Status: Ready (0,0,0)

Design Issue details: New Alternative

Name Web Services Security Mechanism
Background (empty)
Drivers Vendor support, encryption strength

Status open for new developments

Recommendation simplicity and flexibility

Status: Alternatives have colliding decisions

) Alternative (2 Decisions, 0 in other projects) =% G Positions
Name plain-text
Decision Rationale Author Timestamp Negative
[i] Negative lack of encryption is unacceptable marcin.nowak@sonyx.net 20:13 2013-04-15 Open
Ti] Positive fast and simple John Smith 14:48 2013-04-16
) Alternative (1 Decisions, 0 in other projects) =% G Positions
Name HTTPS = HTTP + S5L Positive
Decision Rationale Author Timestamp Negative
[l Positive simple and standardized marcin.nowak@sonyx.net 20:13 2013-04-15 Open
€) Alternative (2 Decisions, 0 in other projects) L 3l S Y| Positions
Name WS-Security Positive
Decision Rationale Author Timestamp
'ﬁ| Negative burdened with compatibility problems marcin.nowak@sonyx.net 20:14 2013-04-15 Open
i Megative implementation problems John Smith 20:18 2013-04-15

Figure 6.8. A view presenting a design issue with three alternatives, two of which have aligned positions (second and
third), the other (first) of which has colliding positions. Positions on the alternatives are presented together with a

user-specified rationale and are color-highlighted based on the decision type and status.

6.

saIniyes] MVS 79

8 00O staging.saw.sonyx.net

_ @ M staging.saw.sonyx.net

Modes: Projects

Design Issue details:
Name ServiceCompositionLanguage

The discussion accompanying SE Radio episode 85 touches upon the topic: http:/ fwww.se-radio.net/podcast/2008-
Background 02 /episode-85-web-services-olaf-zimmermann "Web Services Platform Architecture" by S. Weerawarana et al provides
an in-depth introduction to the relevant standards.

Importance of standardization and tool support, as well as expressivity of the workflow language and required education
Drivers are some of the key decision drivers. Here, we assume that the Service Composition Paradigm, decided on the
conceptual level, is workflow.

Status to be reviewed semi-anually

B ruU:i=:

EESXd W

_ BPEL is the recommended, state-of-the-art choice for true, long-running workflow scenarios; proprietary languages in
Recommendation software package can be used if such packages are already in use. Java development is a solid fallback. Service
composition is a key element of the SOA value proposition; flexibility is a key requirement. The decision scope might be
process, subprocess or service - one-size—fits-all desired, but not always possible.

Status: No decisions were made yet

L =L e W] Positions

@ Alternative (0 Decisions, 3 in other projects)

Name Other workflow language, middleware or software package (e.g. FDL, jOpera, SAP) Positive
KnownUses Many existing workflow references Negative
Background Product information

Pros (empty)

Cons (empty)

Incoming relations:

(reverse)
Jiil Tagging (Pre) Typically, vendor-specific languages can make use of vendor-specific runtime features

(reverse) (Con) Proprietary languages cannot be used by other engines. Proprietary languages have
Jiil Tagging proprietary development tooling. Proprietary languages lacks support for standardized forms of
compensation, event handling, and fault Handling.

(reverse)
Jiil Tagging (Project) IBM adWiki SOA sample
by

Outgeing relations:
Jii] Solves (lssue) ServiceCompositionLanguage

Active project: Web Services Logged as: marcin.nowak@sonyx.net

Status: Ready (0,0,0)

New Alternative

S -
Alternative

" lssuelist

« Proprietary languages
cannot be used by
other engines.
Proprietary languages
have proprietary
development tooling.
Proprietary languages
lacks support for
standardized forms of
compensation, event
handling, and fault
Handling.

« Does not exploit
workflow pattern

+ Does not exploit
benefits of workflow
pattern

« Proprietary
technology

« Rather steep learning
curve, graphical
programming not
mainstream

= Typically, vendor-
specific languages
can make use of
vendor-specific
runtime features

« Mature, typically same
as Level 3 choice, so
less education efforts

Figure 6.9. The Issue Detail View presenting full information about design alternatives in the context of the particular

design issue. Fach alternative holds information about its known uses, background, pros and cons.

08

sonyea] MVS 79

81 6.5 Architecture Design Decisions

6.5 Architecture Design Decisions

In this section, we document the principal design decisions that influenced our
design of the Software Architecture Warehouse. In order to approach this task
systematically, we reuse the design issues that we introduced in Chapter [3] (Sec-

tions and [3.4).

6.5.1 Design Issue: Model Location

The choice of the decision model location is driven by multiple factors. In the
context of the SAW, we have elicited the following criteria:

Latency — low latency and thus high interactivity is essential for the effective
collaboration of stakeholders. High latency, and thus low responsiveness,
can very easily negate the utility of the collaborative decision support tool,

Ease of entry — as distributed design teams often work in non-trivial network
conditions, it is essential to minimize the effort required to get started,

Reliability — the time that stakeholders invest in the process of decision making
is very valuable; hence, reliability is essential for gaining the benefit of
using a decision support system,

Feasibility of implementation - realistically, resources that were available to
us for the implementation of the Software Architecture Warehouse were
limited. Hence, it was important to reuse as much as possible from the
solutions available within the state of practice and focus on the novel and
essential aspects of the system.

Design Alternative: Distributed Decision: Open

The latency of access to the distributed decision model is lower for read-
only access, as each of the clients stores its own copy of the model. In terms
of set-up complexity, the distributed alternative is disadvantaged, because it
requires either some kind of peer discovery mechanism or else tedious manual
configuration of peers. The complexity of the mechanism required to provide
reliable synchronization of the distributed model is also substantial.

Design Alternative: Centralized Decision: Positive

In terms of latency, the centralized model location is advantageous in a read-
write scenario, because model changesets are distributed through the single node;
hence, latency does not accumulate over consecutive hops. Setting the application

82 6.5 Architecture Design Decisions

up is also by far simpler, as the clients just need to be provided with the address
of the central server. Reliability can be assured just by providing communication
with the central node, regardless of topology of the clients. A big advantage of
centralized deployment is that there exist many application frameworks that can
be efficiently reused.

6.5.2 Design Issue: Synchronization

The synchronization of changesets among the clients is essential to keep all
stakeholders up-to-date. When making decisions about the synchronization
model we find the two following criteria important:

Latency - In the dynamic environment of the architecture design workshop, it is
important that changesets are distributed as rapidly as possible so that the
stakeholders have an opportunity to provide rapid feedback.

Consistency — The change of a decision model often proceeds gradually leaving,
it in a tentatively inconsistent state. Tentative inconsistency can easily be
misinterpreted and lead to confusion.

Design Alternative: Manual Decision: Negative

Manual triggering gives the user full control over the synchronization of the
changeset exchange. This is can be advantageous in situations in which temporal
consistency of the decision models needs to be maintained at all times. In practice
though, manual synchronization is rather intrusive and easily gets in the way of
the deliberation process.

Design Alternative: Automatic Decision: Positive

An automatic synchronization of decision model changesets means that users
can focus on deliberation instead of being distracted by the tool’s operations.
Giving up user control over when the decision model is synchronized can lead to
tentative decision model inconsistencies and thus to some confusion, but assuming
low communication latency and a fast rate of change, it should not threaten the
eventual consistency of the decision model.

83 6.5 Architecture Design Decisions

6.5.3 Design Issue: Meta-Model Type

While considering type of the decision meta-model to be adopted, two important
criteria come into consideration:

Ease of expression —Brainstorming, by definition, does not have a well-structured
form. In practice, the least constrained the exchange of thoughts is, the
better it is for the deliberation.

Consistency of outcome - Volatile deliberation can very easily result in chaotic
and inconsistent results. Enforcing a lightweight meta-model provides a
framework that can help to improve the consistency of the resulting decision
model.

Design Alternative: Implicit Decision: Negative

An implicit meta-model relies on the users to formulate their input accordingly.
It can potentially boost productivity in the short term, but in the long term has
potential to result in inconsistent outcomes that are a very tedious to interpret
and fix. In particular, such output is difficult to process automatically.

Design Alternative: Explicit Decision: Positive

An explicitly used meta-model in the tool, to some degree, constrains freedom
of expression. Keeping in mind that the goal of deliberation is a consistent decision
model, the constrained expression is easily offset by the fact that there is no effort
required later for the sanitization of the model. Additionally, an explicit meta-
model is important particularly for inexperienced decision makers, who benefit
from guidance in the formulation of their contribution to the model.

As a result of choices that we made in the cases of the last three decisions, we
have identified the blackboard style as the collaboration paradigm supported by
the Software Architecture Warehouse.

6.5.4 Design Issue: Conflict Prevention

There are two criteria that we take into consideration when deciding upon the
conflict prevention mechanism:

Penalty for corruption — when considering whether to prevent conflicts, one
needs to ask about the cost of changeset conflict for deliberation. In partic-
ular, when conflict is not prevented, model corruption can occur.

84 6.5 Architecture Design Decisions

Cost prevention - prevention of concurrent access requires additional actions to
be taken by the stakeholders. The overhead caused by conflict prevention
can be disruptive to the deliberation process.

Design Alternative: Locks Decision: Negative

An explicit locking mechanism is a heavyweight method of preventing two
users from editing single decision model item at the same time. As the editing of a
single particular design item can take quite some time, locking can disrupt the fast
dynamics of decision making, particularly in the fast-paced and volatile conditions
of the architecture design workshop. As time is a particularly valuable resource
for the stakeholders in the decision process, the relative cost of preventing editing
conflicts is quite high.

Design Alternative: None Decision: Positive

No locking implies that users can concurrently modify a decision model. This
potentially leads to some degree of model corruption, but with an assumption
low-latency and a high rate of change, we believe that this disadvantage is easily
offset by the overall efficiency boost.

6.5.5 Design Issue: Conflict Resolution

In the case of unconstrained, simultaneous write access to the decision model, the
occurrence of conflict is inevitable. When making choices among strategies for
handling changeset conflict resolution, we have considered the following criteria:

Cost of intervention - The conflict resolution mechanism is in place to improve
the efficiency of deliberation. The less intrusive the mechanism is, the better
it is for the process dynamics.

Quality of the solution — The resolution of changeset conflict can be ambiguous.
The quality of the result is important, because if it is not good enough, then
intrusive intervention is required.

Design Alternative: Manual Decision: Negative

The upside of manual conflict resolution is that, the stakeholders involved in
it can assess and approve the quality of the outcome. At the same time, manual
conflict resolution is very costly in terms of the involvement of the stakeholders.

85 6.6 Selected Design Aspects

Design Alternative: Automatic Decision: Positive

The fact that automatic conflict resolution does not involve stakeholders
and thus is not intrusive for deliberation, is very advantageous. The quality of
automated conflict resolution might be questionable, but in environments with
low-latency of communication, the stakeholders have an opportunity to fix badly
resolved conflict assuring eventual consistency.

As a result of choices made for Synchronization, Conflict Prevention, and
Conflict Resolution, the design of the Software Architecture Warehouse has a
high level of Liveness (see Section|[3.4).

6.6 Selected Design Aspects

In this section we have gathered design aspects that reach beyond the design space
of Collaborative Architecture Decision Making Tools (see Section[3.2). The content
of this section is not exhaustively covering design of the Software Architecture
Warehouse, but selectively focus on the aspects that we found interesting or
innovative. The reason for this is that, despite numerous iterations in design and
implementation, SAW is still a prototypical tool. Therefore, its design is burdened
with a significant amount of technical debt, which documented in detail would
obfuscate the view and confuse the reader.

6.6.1 Client-Server Split

Traditional Web applications rely on the thin-client paradigm. Over time, many
server-side Web-frameworks were conceived to cope with the growing complexity
of Web applications (RoR, Django, etc.). Traditional Web applications leave all
MVC layers to be handled by the server side, leaving only view rendering for
the Web browser. This approach has the advantage of containing all application
code within a single location; however, it is not suitable for supporting the live
document metaphor. Since every user interaction with the system triggers a call
to a rather heavy server-side stack, the result is rather a limited scalability and bad
user-perceived responsiveness. In the process of architecting and implementing
the SAW, we have soon realized that the level of interactivity required to realize the
desired liveness of the user experience could not be implemented with the use of
traditional server-side frameworks. To this end, we have implemented server-side
SAW as a thin layer wrapping a NoSQL database (MongoDBﬂ). The interactive

MongoDB NoSQL, document oriented database — http://www.mongodb.org/

http://www.mongodb.org/

86 6.6 Selected Design Aspects

user-interface is implemented following the MVVM pattern in JavaScript with
Backbone?| and Marionettef| (see Figure [6.10).

Rationale: The traditional client-server split for web applications was not able
to deliver user experience required to provide live collaboration support.

[Backbone & Marionette dynamic HTML GUI]
[Decision meta-model]
[Entitiy cache]
Web-Client
4[HTTP transport for JS and JSON
Web-Server
[Multi-process RoR web-server]
[Key-value (no-SQL) store]

Figure 6.10. Layering structure that exposes the client-server split of the
Software Architecture Warehouse

6.6.2 Rich Web-Application

In order to support high levels of liveness that imply a high responsiveness of the
user interface, the user interface of the Software Architecture Warehouse has been
implemented as a highly modular, expandable JavaScript based web-application.
At the moment of writing, the following modules have been implemented:

Main - covers the core functionality of the user interface and serves as a toolbox
of general purpose widgets for other modules; we elaborate on it in more
detail in the next section,

Capture - focuses on design capture and reuse of design issues and alternatives
with support for tag-based classification and filtering,

Decide - provides features for users to cast their individual positions on alterna-
tives and covers consensus and choice-state logic,

Projects — implements design and decision space management features, such as
import, export, and reporting.

2Backbone javascript application framework — http://backbonejs.org/
3Marionette extension to Backbone application framework — http://marionettejs.com/

http://backbonejs.org/
http://marionettejs.com/

87 6.6 Selected Design Aspects

The Main module (see Figure|6.11)) comprises the following units:

Data - covers decision meta-meta-model level entities such as Item, Relation,
and Collection classes. It is also reosponsible for the entity cache,

Router - is responsible for parsing the hash-based navigation part of the URI
and passing it over to the respective modules,

Context —implements a collection of objects made available to all widgets within
the module. The main context is shared among the modules,

Meta-model — maintains the mapping between the meta-meta- and meta-model
of the decision. It is reloaded from the repository each time the application
starts,

Tags — represents a classification tags’ tree,

Position types — a collection of decision type instances specific to the decision
meta-model, i.e. Positive, Negative, and Open,

Artifacts —maps to the meta-model entities that comprise the body of the decision
model, i.e., Issue and Alternative.

Main module

Context

Meta—model@nectivity State][History] [Model][Collection]

[Position Types] [Filter Widget] [Ribbon]

Pie Chart
Tag Selector
Item Selector

Tagging Widget

Notifications

[Issue] [Alternative]

idgets

Artifacts

EEmS

Figure 6.11. Decomposition of the main module of the SAW user interface

88 6.6 Selected Design Aspects

The decision module can be decomposed into the units presented in Fig-
ure Apart from the core components common to all the modules (Context,
Router), it comprises the following:

Issue list —a main panel widget providing a wire-frame for the view listing design
issues. Typically the design issues cover the design space of an individual
project,

Issue list Item — models individual design issues within the Issue list widget,

Issue details — implements a main panel widget comprising a list of design
alternatives related to the design issue,

Alternative compact — models properties of a single design alternative within
the Issue details view,

Alternative details — handles individual design alternatives with its incoming
and outgoing relations.

[Decision Module]

Context Router

Issue List ltem

Alternative Compact

Alternative Details

Issue Details

Figure 6.12. Decomposition of the decision module of the SAW user interface

Rationale: Adoption of modular, rich-client web application architecture enables
clear separation of concerns between the modules and makes it possible to deliver
a low-latency live experience of distributed collaborative work.

6.6.3 Graph-based Decision Space Meta-Meta-Model

Observing the variety of available architecture decision management tools, we
noticed that typically they are bound to a single decision meta-model (see Chap-
ter [3). We perceived it as a limitation and decided to address it by increasing

89 6.6 Selected Design Aspects

the level of abstraction for modeling decision spaces. Accordingly we distinguish
three levels of decision model abstractions:

Decision model - represents concrete decision space elements including design
issues, design alternatives, positions, projects, etc.

Decision meta-model — describes architecture model items and the relations
among them. Typically it reflects one of the contemporary architecture
decision models (see Section [3.1)) and optionally extends it to fit the needs
of a particular application domain.

Decision meta-meta-model - a top-level of abstraction that operates on a graph
structure using nodes and edges to represent meta-model and model entities.

Rationale: The application of this three-level abstraction structure enables the
SAW to offer a high degree of flexibility to a decision meta-model without com-
promising any of its features essential for providing a high degree of Situational
Awareness (see Section . This is possible because internally the SAW makes
very minimal assumptions about the decision meta-model.

6.6.4 Node Graph Observer and Notification System

In order to deliver high user awareness of the shared design space, a suitable data
replication mechanism is needed. We have implemented a lightweight notification
mechanism that distributes identifiers of altered graph nodes so that clients can
reload node data if needed. In cases when graph structure changes, by creating
or removing edges between nodes, a notification of this event is propagated to
the nodes influenced by the change (see Figure [6.13)). The notification system
is very general and has also been used to implement the view pointer broadcast
feature.

Rationale: Live collaboration o graph data structure requires an efficient mecha-
nism for handling change notifications. We have decided to adopt an observer
pattern because it lazily loads data about nodes that are within the interest of
particular observer.

6.6.5 Smart Client-Side Graph Caching

One of the implications of implementing the model and (most of) application logic
on the client-side is that interface between the client and the server is fairly fine-
grained. In the SAW, the majority of the API calls concerns either fetching node

90 6.6 Selected Design Aspects

Decision

Legend 1

:

Tagging

Design Item

Relation

Ta .
9 Alternative

Figure 6.13. Event propagation over the shared graph model. Views can
subscribe to observe changes within a certain distance of their model elements

information or information about incoming and outgoing relations. In practice, in
the short term, only small part of the design space is influenced by the alterations,
so a substantial number of node and edge fetch calls can be cached efficiently. A
web-browser is equipped with a cache mechanism designed to efficiently cache
content of the web-resources. In the case of the SAW, the browser-cache serves
its purpose, but only after executing a server call that returned HTTP status
304-Not modiﬁedﬂ In situations with a very large number of fine-grained calls,
the server-side can be easily overloaded. To this end, we have implemented a
persistent, HTMLS5 local storage based, client-side caching mechanism. The cache
uses the notification subsystem to invalidate altered cache entries. Each design
space alteration (and the notification related to it) is uniquely identified with a
monotonic timestamp so that clients reconnecting to the server can fetch a list of
the nodes and edges altered since the last session.

Rationale: We have decided to introduce client-side caching for the decision
model because it improved application start times and significantly reduced server
load during the peak times, such as the beginning of the design workshop.

6.6.6 Deployment

The Software Architecture Warehouse deployment package has been prepared
as a portable virtual machine image (Oracle VirtualBo. For the purpose of

4http://www.w3.org/Protocols/rfc2616/rfc2616-seclO.html
Shttps://www.virtualbox.org/

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.virtualbox.org/

91 6.7 Summary

the evaluation it was instantiated on an ordinary Dell Optiplex 780 desktop
machine with an Intel Core2 Quad (3GHz) processor and 8 GB of system memory,
running Microsoft Windows 7. The particular choice of operating system for the
virtual machine host was made to demonstrate the feasibility of deployment in
the typical corporate environment. The virtualized image runs an up-to-date
release of Ubuntu Linux (10.04) with a minimum of 512 MBytes of memory
(2GB+ recommended) and bridged networking access. The connectivity with the
rich-web browser client requires access to the standard HTTP port (80), as well
as an additional link port 8080 providing push-message bus access.

The set-up serving both a publicly available demo-instance and instances used
internally for the in-class evaluation was running multiple, parallel instances of
the VM-image on the aforementioned hardware (see Figure . In order to
overcome firewall-imposed connectivity limitations, a HTTP-reverse proxy was
used to provide accessibility from the public network.

Rationale: We have decided for the virtual-machine based deployment because
it significantly eased multi-server deployment as well as enabled easy portability
in ad-hoc deployment scenarios.

Internet Intranet
Web browser RoR + node.js
- A ~—
s N node.js based ()
Web browser multiplexing RoR + node.js
- / reverse proxy b g
Web browser RoR + node.js

Figure 6.14. A deployment view of the Software Architecture Warehouse in a
network

6.7 Summary

In this chapter, we provided a concise walkthrough of the features and the archi-
tectural design of the Software Architecture Warehouse. We delivered a number of
high- and low-level views of the system modularization. We have also presented
a number of unique features such as graph-based decision meta-modeling and

92 6.7 Summary

graph-node observer notification, that make SAW stand out of the competition by
providing high degree of liveness combined with a blackboard-style collaboration.

In the next chapter, we introduce an off-line analysis tool designed to provide
insight into the dynamics of the architecture design workshops and analyze the
structure of the recorded decision spaces.

Chapter 7

The Analyzer

In this chapter, we pick up the research questions that we have scoped and defined
in Chapter[d] Addressing them requires a definition of qualitative and quantitative
measures of properties of the architecture position making process. To this end, we
investigate how the argumentation viewpoint, that we have proposed in Chapter[5|
can be used. We apply the Goal Question Metric (GQM) methodology by Basili et
al. [BCR94] to investigate the collaborative architecture position making process.

7.1 Goals

One of the virtues of architecture positions is their consistency. In order to evaluate
it, one would need to see how aligned the positions of multiple stakeholders are.
In the happy case, all positions would have their positions aligned. Decisions
with colliding alternatives would indicate that the design process is still underway.
Decisions with no positions would reveal white spots in the design that would
require further effort.

The goal, therefore, is to assess the level of consensus of a position model
involving multiple position makers. We are interested in studying both the current
(static) level of consensus as well as its dynamics, in order to observe how the
current level has been reached over time.

This is a pre-requisite to achieving a high level of team situational awareness,
since without agreement among all participants on what is being perceived, on
how to understand it, and most importantly on what the expected consequences
of a position are, the likelihood of making a position collaboratively will be very
low.

93

94 7.1 Goals

7.1.1 Questions

We state the three following questions that refer to the goal stated in the previous
section; with particular emphasis and focus on assessing the consensual qualities
of architectural positions.

Question 1: How aligned are the positions?

As introduced in the previous section, one of the virtues of architecture posi-
tions is their consistency. Due to the wicked nature of the software architecture
design problem, it is not feasible to make a comprehensive assessment of position
model completeness and consistency. Nevertheless, we find it perfectly feasible to
assess completeness and consistency in terms of the degree of alignment within
the argumentation viewpoint of the position model.

Question 2: How volatile is the consensus on the positions?

Building upon the previous question, it would be interesting to see how a
proportion of the position states have been changing within a particular timespan
of a design workshop or even over the course of the whole duration of the project.

Question 3: How democratic are the positions?

There exists a variety of collaborative position making strategies [[Kva0Q].
These range from an authoritarian, centralized, single-handed process, through
collaborative positions based on consensus building, finish with the so-called
“design by committee”, where each stakeholder is required to participate (see
Section [2.2.2). Each of these strategies has particular expectations about the
number of stakeholders and their degree of participation as they contribute their
positions in the context of a particular design position.

7.1.2 Metrics

In [NP11/] we introduced a range of metrics that broadly addressed the structure
and dynamics of the software architecture position models. Here we recall two of
the metrics we drafted earlier (structural) and introduce new ones (content and
argumentation) focused on the consensus assessment goal and building upon the
previously introduced argumentation viewpoint. A summary of the metrics that
we present in this Section can be found in Table

For clarity, we have adopted the following template to introduce the metric
definitions:

95 7.1 Goals

ID - an identifier that we are going to use throughout this paper to refer to a
given metric;

Name - the informal definition of the metric’s purpose and semantics,

Parameters - if the calculation of the metric can be parameterized, then we list
the parameters to be supplied;

Domain - lists the types of position items that a given metric can be applied to
(e.g., Decisions, Issues or Alternatives);

Scale - specifies the nature of the metric result, as proposed in [|Ste46] (e.g.,
Ratio vs. Ordinal);

Range - defines the possible values of the metric;

The metrics that we propose in the following sections are divided into cat-
egories reflecting their nature. We distinguish structural, and content related
metrics.

Structural Metrics

We selected two of the structural metrics introduced in [NP11]], which give an
indication of both the number of positions that will need to be taken within a
design workshop (or in general, a given project) and the effort required to reach a
complete choice. In Figure[7.1we present an example of a design space with three
(partially overlapping) projects with a number of design issues and alternatives.
The Table[7.1]contains values calculated for metrics 1 and 2 over this design space.

Metric 1 — Issue count
Domain: Project, Scale: Ratio, Range: [O,N]

A position space typically consists of numerous design issues. Some of the
issues can be reused in multiple projects. This metric represents the number of
design issues within a particular project.

Metric 2 — Alternative count
Domain: Project, Issue, Scale: Ratio, Range: [O,N]

A design issue can be addressed by choosing from among multiple design
alternatives. This metric counts the number of such alternatives within the context
of a particular design issue. Its value (if greater than 1) can be used to estimate
the effort required to make a complete choice over the issue. Other interesting
observations can be achieved by aggregating the results of this metric for a set of
design issues, for example, those contained within a project.

96 7.1 Goals

Project 1

Project 2

Project 3

Decision 2

Decision 9

Decision 3 Decision 10

Decision 11

Decision 4

Figure 7.1. An example of design space comprising three projects. Modeled
according to the position argumentation viewpoint

Scope | Metric 1 - Issue count | Metric 2 - Alternative count
Project 1 4
Project 2 3
Project 3 2

Issue 1 -

Issue 2 -

Issue 3 -

Issue 4 -

Issue 5 -

Issue 6 -

O

R WIN[N|W| =] Ul O

Table 7.1. Values for metrics 1 and 2 calculated for sample design space
presented in Figure [7.]

97 7.1 Goals

Content Metrics

Content-related metrics focus on aspects related to the core of the position items,
i.e., their attributes (like name, authorship meta-data, and timestamps), and their
dynamics (the assumption is that all changes to the position model are logged).

Metric 3 — Relative number of contributors
Domain: Project, Issue, Alternative, Scale: Ratio, Range: %

Assuming that each position item is labeled by the user who has created it,
it is interesting to observe how many users have contributed new items within
the context of the project, issue, or alternative respectively. In order to mitigate
the effect of diverse design team sizes, we propose to analyze the number of
contributors relative to the total number of design team members.

Metric 4 — Relative number of position makers
Domain: Issue, Decision, Scale: Ratio, Range: %

Like Metric 3, this metric counts the number of design team members involved
in expressing positions on a particular position. Again, as in Metric 3, this metric
calculates the number of position makers relative to the total number of design
team members.

Metric 5 — Activity timespan

Domain: Project, Issue, Alternative, Position, Scale: Ratio, Range: [O,N]
Decision items are created, updated and, in some cases, eventually deleted

from the design space. Their lifecycle involves a series of events that correspond

to state modifications by some of the architects. As the activity timespan of an

item we define the duration between the first event (typically the creation of the

item) and the last recorded event corresponding to the item.

Metric 6 — Time since last change
Domain: Issue, Alternative, Position, Scale: Ratio, Range: [O,N]

This metric calculates the time elapsed since the last recorded event related
to the particular position item. The time reference would be either the current
time, for the live measurements, or the end of the time-frame for a time-boxed
experiment.

98 7.1 Goals

2075 creation User_1
2075 state no alternatives
2081 update User_1 6

2082 update User_1 7

2089 update User_-1 14

2089 blured User_1 10

2111 state no positions

2111 relation created from: Decision_18 to: Issue 9 (no) User_1
2111 position (no) Userl no positions

2135 relation created from: Deicision_19 to: Issue 9 (no) User_1
2135 position (no) Userl no positions

2135 state incomplete

2139 position Positive Userl aligned Decision_19

2317 position Negative User2 aligned Decision_18

2317 state complete

Figure 7.2. An example of an anonymized event log recorded for a design issue

Metric Absolute value Relative value
3. Relative number of contributors 3 3/9=33%
4. Relative number of position makers 2 2/9=22%

5. Activity timespan 2317-2075=242 [s] -

6. Time since the last change 5400-2317=3083 [s] -

Table 7.2. Values for metrics 3 and 6 calculated for a sample design issue
presented in Figure

In Figure we present an anonymized listing of events recorded with the
Software Architecture Warehouse for a design issue. Each row represents an
individual event. The first column specifies an event time-stamp expressed in a
number of seconds elapsed since the start of the design workshop. It is followed
by the type of a recorded event and the name of a user that generated it. In
Table [7.2] we have collected values calculated for content metrics (3-6). Due to
the nature of relative metrics (3 and 4), in order to interpret the results, it is
important to know that in the case of the particular design workshop there was
nine participants. For metric 6, it is important to know that in this particular case,
the duration of the design workshop was 90 minutes, which is equivalent to 5400
seconds.

99 7.1 Goals

Decision 9

Decision 10

Decision 11

Figure 7.3. An example of a position space with two design issues, six alterna-
tives, and six positions

Argumentation Metrics

The following metrics relate to the argumentation viewpoint (see Figure in
Section |5.1J).

Metric 7 — Position type count
Parameter: position type, Domain: Decision, Scale: Ratio, Range: [O,N]

The position meta-model specifies the types of positions that users state about
an architecture position. In the particular meta-model that we adopted, we dis-
tinguish: positive (accept), negative (reject), and open (neutral) positions. This
metric takes a particular position type as a parameter and returns the number of
positions of this type that were contributed to the position.

Metric 8 — Consensus state

Domain: Decision, Scale: Ordinal, Range: {no positions, aligned, colliding, sealed}
The positions contributed to the position can be aligned in a variety of ways.

As introduced earlier in Section |5.1.1}, we distinguish the following elementary

consensus (alignment) states:

no positions — when the number of positions is equal to zero,

aligned - all positions in the context of the position are of the same type,

colliding - positions of more than one type exist

100 7.1 Goals

sealed - a single position was chosen to settle the argument and seal the position,

preventing the addition of further positions.
A position with aligned or sealed positions is said to be decided for a particular

position type (for example decided positive).
This metric aggregates over all position types to compute the current consensus
state of a particular position based on the previously defined rules.

Metric 9 — Decision consensus state count
Parameter: consensus state, Domain: Issue, Scale: Ratio, Range: [O,N]

Building upon Metric 8, this metric counts the number of positions with posi-
tions aligned in the given consensus state. The metric is applicable to a design
issue, but it may also reveal interesting features when its values are aggregated
over the broader, project-level scope.

Metric 10 — Choice state
Domain: Issue, Scale: Issue, Range: {no alternatives, no positions, incomplete,
conclusive, inconclusive, warring }

A design issue under consideration, depending on the design alternatives ad-
dressing it and their consensus state (compare with Metric 8 and see Section[5.1.1)),
can take one of the following choice states:

no alternatives — there are no alternatives addressing the given issue,

no positions - there are alternatives addressing the issue, but all corresponding
positions are without positions,

incomplete - there are positions addressing positions about the design issue, but
there is at least one position in which positions are not aligned,

conclusive — all positions are in the aligned consensus state, precisely one is
decided positive, and all others are decided negative,

inconclusive - there is more than one position decided as positive or open,

warring - all positions are aligned with the negative position type.

The last three choice states are together referred to as complete choices. This
metric aggregates the values of Metric 9 over all positions/alternatives associated
with a given issue.

In Figure [7.3|we present a sample design space with four design issues, six
design alternatives, and seven positions. For positions from this design space, we
have calculated values of metrics 7 (Position type count) and 8 (Consensus state),
and summarized them in Table Further we have calculated values for metric
9 (Decision consensus state count) and 10 (Choice state), and collected them in

Table

101 7.1 Goals

Metric 7. Position type count 8. Consensus state

Scope Positive | Negative | Open
Decision 1 0 0 0 no positions
Decision 5 1 0 0 no positions
Decision 6 0 1 0 aligned
Decision 9 2 0 0 aligned
Decision 10 0 0 1 aligned
Decision 11 0 1 1 colliding

Table 7.3. Values for metrics 7 and 8 calculated for a sample decision space
presented in Figure

Metric | 9. Decision consensus state count | 10. Choice state

Scope | no positions | aligned | colliding

Issue 1 1 0 0 no positions
Issue 3 0 2 0 conclusive
Issue 5 0 2 1 inconclusive
Issue 7 0 0 0 no alternatives

Table 7.4. Values for metrics 9 and 10 calculated for a sample decision space
presented in Figure

Metric 11 — Relative consensus state timespan
Parameter: consensus state, Domain: Decision, Scale: Ratio, Range: %

Within its lifecycle, the design position traverses some of the consensus states
specified in the context of the Metric 8. For the purpose of investigating the
dynamics of the position process, it is interesting in particular to observe the
timing of the transitions between these states. This metric accepts a consensus
state as a parameter and calculates the amount of time a particular position has
spent in this state. The calculated value is returned as a relation to the overall
timespan of a particular design position (Metric 5).

Metric 12 — Relative choice state timespan
Parameter: consensus state, Domain: Issue, Scale: Ratio, Range: %

The design issue lifecycle consists of choice states defined in the context of
Metric 10. This metric, given a particular choice state as a parameter, and analo-
gously to Metric 12, calculates the relative amount of time that the design issue
has spent in it.

102 7.1 Goals

Metric 13 — Time since last position
Domain: Issue, Decision, Scale: Ratio, Range: [0,T]

This metric calculates the absolute amount of time (in seconds) elapsed since
the last position (see Section [5.1)) was stated in the context of a particular design
position.

Metric 14 — Consensus state transition count
Domain: Decision, Scale: Ratio, Range: [O,N]

The consensus state on a given design position traverses multiple states (de-
fined for Metric 8). This metric calculates the number of state transitions. The
reason for an increase in the number of consensus state transitions could be, for
example, that newly added and/or revoked positions would make the state flip
between aligned and colliding.

Metric 15 — Choice state transition count
Domain: Issue, Scale: Ratio, Range: [O,N]

Like Metric 14, this metric calculates the number of state transitions of the
choice state (as defined in the context of Metric 10) for a given design issue.

Metric Scope

Issue 10

Issue 11

3. Relative number of contributors

67% (6/9)

22% (2/9)

4. Relative number of position makers

55% (5/9)

22% (2/9)

12. Relative choice state timespan

- no alternatives:

3% (102s)

9% (476s)

- no positions: 1% (30s) 0% (11s)

- incomplete 94% (2821s) | 17% (876s)

- complete 2% (465s) 73% (3741s)
15. Choice state transition count 5 6

Table 7.5. Values for metrics 3, 4, 12, and 15 calculated for a sample set of

design issues in Figure and Figure

103

7.1 Goals

1379 creation User4

1379 state no alternatives

1481 position (no) User5 no positions

1481 relation created from: Decision_15 to: Issue_10 (no)
1481 state no positions

1484 update User5 105
1490 update User5 111
1490 update User5 111

1511 relation created from: Decision_16 to: Issue_10 (no)
1511 state incomplete

1511 position (no) User5 no positions

1522 position Negative User5 aligned Decision_15

1524 relation created from: Decision_17 to: Issue_10 (no)
1524 position (no) User5 no positions

1562 position Negative User5 aligned Decision_15

1598 update User5 219
1606 update User5 227
1606 position Positive User6 aligned Decision_16
1606 update User5 227
1607 update User5 228
1608 update User5 229

1611 position Positive User5 aligned Decision_16

1631 position Positive User5 aligned Decision_16

1646 state complete

1646 position Positive User5 aligned Decision_17

1662 position Negative User6 aligned Decision_15

1692 position (no) User4 no positions

1692 state incomplete

1702 relation created from: Decision_18 to: Issue_10 (no)
1713 position Positive User6 aligned Decision_17

1747 position (no) User4 no positions

1748 relation created from: Decision_19 to: Issue_10 (no)
1820 position Negative User5 colliding Decision_17
2069 position Negative User7 aligned Decision_15

2099 position Negative User7 aligned Decision_15

2158 position Positive User7 aligned Decision_16

User5

User5

User5

User4

User4

Figure 7.4. An anonymized event log recorded for a design issue 20

1483 creation User_8
1483 state no alternatives
1491 update User_8 8

1634 update User_8 151

1959 relation created from: Decision_20 to: Issue_11 (no)
1959 position (no) User_8 no positions

1959 state no positions

1970 state incomplete

1970 relation created from: Decision_21 to: Issue_11 (no)
1970 position (no) User_8 no positions

2739 position Negative User_9 aligned Decision_20

2843 state complete

2843 position Open User_8 aligned Decision_21

3096 position AntiOpen User_8 no positions

3096 state incomplete

3099 position Positive User_8 aligned Decision_21

3099 state complete

User_8

User_8

Figure 7.5. An anonymized event log recorded for a design issue 21

In Figure and Figure

we provide two examples of anonymized event

logs collected for two different design issues (11 and 12). Every row in Figures
starts with a time-stamp expressing a number of seconds elapsed since the be-
ginning of the design workshop. Following fields are specific to the event type.

In Table
issues.

we collected values Metrics 3, 4, 12 and 15, calculated these design

104 7.1 Goals
1058 creation User_1

1058 relation created from: Alternaitve 20 to: Issue_12 (no) User_1
1058 position (no) User_1 no positions

1060 focused User_1

1071 update User_-1 13

1072 update User_1 14

1075 update User_-1 17

1076 update User_1 18

1106 update User_1 48

1112 blured User_1 52

1144 position Negative User_2 aligned Decision_30

1204 position Positive User_1 colliding Decision_30

1396 position AntiNegative User_2 aligned

3511
3511
3511
3514
3515
3521
3521
3646
3713
3820

Figure 7.6. An anonymized event log recorded for a design decision 30

User_1

Figure 7.7. An anonymized event log recorded for a design decision 31

creation User_1

relation created from: Alternative 21 to: Issue_13 (no)

position (no) User_1 no positions

update User_1 3

update User_-1 4

update User_-1 10

update User_1 10

position Positive User_1 aligned Decision_31

position Positive User_2 aligned Decision_31

position Negative User_3 colliding Decision_31
Metric Scope

Decision 30

Decision 31

11. Relative consensus time:

- no positions:

2% (86s)

5% (135s)

- aligned

94% (4251s)

6% (174s)

- colliding

4% (192s)

89% (2558s)

13. Time since last position

59% (3191s)

47% (2558s)

14. Consensus state transition count

3

2

Table 7.6. Values for metrics 11, 13 and 14 calculated for two sample positions

based on event logs presented in Figure and Figure

In Figure [7.6and Figure we provide anonymized event logs recorded for
design decisions 30 and 31. As in the case of design issues, every row in Figures
starts with a time-stamp and is followed with event specific fields. In Table|7.6
we summarize values of metrics 11, 13 and 14 calculated for these decisions.

105 7.1 Goals

7.1.3 Interpretation Model

In this section we, show how to answer the three questions stated in Section|7.1.1
with the help of the metrics defined in Section In our interpretation
model, we distinguish two types of input: first order, which directly influences
the answer, and second order, which impacts the precision and the uncertainty of
the interpretation.

Question 1: How aligned are the positions?

In order to assess the alignment of the positions in the context of a position,
one needs to see what the types of the positions are. The elementary number
of the positions of a particular type can be measured with the use of Metric
7 (Position type count), but the interpretation of those numbers is done with
the use of Metric 8 (Consensus state). In the happy case, all positions would
have their positions aligned on a single position type. Decisions with colliding
alternatives would indicate that the design process is still underway. Decisions
without positions would be potentially white spots in the design that would
require further attention. Therefore, in terms of alignment preference the aligned
consensus state is the most desirable, whereas the colliding consensus state is the
least desirable.

Analogously, in the context of a design issue, for the sake of position model
completeness, the most desirable choice states are complete, in particular, the
conclusive choice, followed by the inconclusive and warring choices. The incomplete
and no positions choices are strong indicators of the lack of completeness of a
position model, which is a pre-requisite for assessing its alignment/consensus.

The second-order effects on position alignment assessments come from the
sample size being evaluated. For example, in the context of a design issue, a
conclusive choice can be achieved with only one alternative, but this outcome is
relatively weak compared to the situations in which multiple alternatives were
taken into consideration, and only one was eventually accepted (see Metric 2).
Similarly, in the context of a particular position, the aligned consensus state can be
achieved with as little as one position. Therefore, we find it relevant to take into
account the total number of positions (see Metric 7), and even more importantly,
the relative number of unique position contributors (see Metric 3). Clearly, at
least two positions (by different contributors) are necessary before one can start
evaluating their alignment.

Id | Name Parameter Domain Type Scale | Range | Questions
1 | Number of issues - Project structural Ratio N 3

2 | Number of alternatives - Issue structural Ratio N 3

3 | Relative number of contributors (creating items) - Issue, Alternative, Decision content Ratio % 1,2
4 | Relative number of editors (doing updates) - Issue, Alternative, Decision content Ratio % 2,3
5 | Time since last change - Issue, Alternative, Decision content Ratio T 2
6 | Activity time - Issue, Alternative, Decision content Ratio N 2,3
7 | Position count position type | Issue, Alternative, Decision | argumentation | Ratio N 1,2,3
8 | Decision count with particular consensus state consensus state Issue argumentation | Ratio N 1

9 | Consensus state of particular decision - Decision argumentation | Ordinal {} 1
10 | Choice state of particular issue - Issue argumentation | Ordinal {} 1
11 | Time spent in particular consensus state consensus state Decision argumentation | Ratio % 2
12 | Time spent in particular choice state choice state Issue argumentation | Ratio % 2
13 | Time since last position was stated - Issue, Alternative, Decision | argumentation | Ratio T 2
14 | Number of transitions of the consensus state - Decision argumentation | Ratio N 2
15 | Number of transitions of the choice state - Issue argumentation | Ratio N 2

Table 7.7. Summary of the metrics related to the three questions concerning the consensus goal

90T

S[ROD T°L

107 7.1 Goals

Question 2: How volatile is the consensus on the positions?

In the ideal case, the positions would gradually and monotonically move
from the no positions state into the aligned consensus state. In practice, position
dynamics can be much more volatile, which implies both a high number of state
transitions and some time spent arguing to find a way of leaving the undesired
colliding state (see Metrics 14 and 11). Ideally, the preferred position dynamics
would consist of most of the time being spent in the aligned state.

Analogously in the context of a design issue, the desirable choice state traversal
would go directly from the initial no alternatives state, through no positions, and
briefly through incomplete, before finally reaching the conclusive choice state. Any
additional choice transitions and time spent in undesirable choice states would
represent an increase in the overall position volatility (see Metrics 12 and 15
respectively).

Another factor contributing to position volatility is the age of the particular
position item. We find it useful to measure two age components of an item, that
is, the activity time (Metric 5) and the time elapsed since the last change (Metric
6). Based on the assumption that past volatility has influence over future position
item dynamics, we would argue that a short activity time and/or a short span
of time since the last change, by extrapolation are likely to coincide with more
activity around the item. Conversely, if a particular item did not show any activity
for a long time, we would expect it to remain stagnant.

Analogously to Question 1, the second-order influence on the volatility of a
position item comes from the size of the sample under investigation. Particular
positions are more likely to exhibit volatility if the total number of positions and
contributors is low (Metrics 3, 4, and 7).

We can speculate that a high level of volatility is a strong indicator of an
immature, controversial and ad-hoc design.

Question 3: How democratic are the positions?

As a rule of thumb, we can say that in the happy case stakeholder involvement
would match the chosen position making-strategy. In particular, for the collabora-
tive position making strategy, we would expect a high participation rate (Metric
3) and a relatively large number of design issues with a complete choice state.
In cases in which the position making is still in progress, a number of inconclu-
sive and warring choice states would be expected (Metric 10). The competitive
strategy can be characterized by a relatively high number of conclusive position
choices (Metric 10) and by a participation rate that is limited to a few or a single
position maker (Metrics 3 and 4). The authoritative position making strategy
has similar traits, but additionally we would expect a number of positions in the

108 7.2 Analysis Workflow

Feature Data Warehouse (DW) Analyzer
) OnLine Transaction Processing .
Collection System (OLTP) SAW web-client and -server
] Extraction Translation and
Staging Loading (ETL) Analyzer stage 1
Analysis Data Marts Analyzer stage 2
Reporting | External System External (LaTeX+pgfplots)

Table 7.8. Mapping data warehouse and Analyzer features

sealed consensus state.

As in the case of the previous questions, there are a number of second-order
influences. In particular, a small number of stakeholders, or a single position
maker in the extreme case, would make it impossible to speak about any kind of
collaborative position making strategy. Also, having a small number of considered
design issues, a possibly having only a single alternative to choose from, can pose
a significant threat to the significance of the answer.

7.2 Analysis Workflow

The analysis of the architecture design workshop dynamics, pictured in Figure|7.8|
starts with data acquisition, proceeds with two analysis stages, and finishes with
a graphical representation of the outcome (see Table and compare with
Table[6.1)). As execution of the analysis process takes a significant amount of time,
for the sake of development and debugging efficiency, the core of the analysis
has been split into two, decoupled stages. After completion of the first stage of
analysis, the intermediate data ((micro-)Metric Matrix CSV files) is saved, so that
it can be used in multiple runs of the second stage. The second stage of analysis
produces a number of CSV files (one per metric) that are parsed by PGFplotf] to
embed charts into the LaTeX documents.

In the following sections, we provide a thorough walkthrough of the data
analysis workflow.

7.2.1 Data Acquisition

In order to answer the questions stated in the previous Sections, we focused
our observations on the architecture workshops supported with the Software

'http://pgfplots.sourceforge.net/

http://pgfplots.sourceforge.net/

109 7.2 Analysis Workflow

Item-centric Decision Space Micro-metric Metric o
event log Model item model evaluation Visualization
reconstruction

HTTP Log
Ul Event Log Event Log items matrix

)

[SAW meta-model database J
[EtherPad Timeline]—)[Event Log]—'_> items matrix

Event Recognition MetricMatrix.csv
Debugging Logs files

Figure 7.8. Six step design workshop analysis workflow with text-based data
(blue), in-memory representation (yellow) and other data sources (green).

Raw data

M

M LaTeX
- =
PGFplots

M
A

Y

Metric values
CSV files

Architecture Warehouse, using a collaborative, free-form text editor (EtherPad,
see Section [3.5) as a baseline. Therefore, the data used for the analysis had two
distinctive origins.

The Software Architecture Warehouse records the process of architecture
position making from three sources:

HTTP requests — Software Architecture Warehouse being a web application
communicates with its server back-end over the HTTP protocol. The server
is configured to log each request including credentials and an optional
payload.

Client UI events — The rich-client application front-end of the SAW is event-
driven. The high-level events encapsulating information about the actions
triggered by the user are scrupulously passed over to the server. The event
description typically encapsulates information about the user action context
such as active user, project, visible design issue, etc.

Client DOM capture - Inspired by the web user behavior tracking functionality
provided by the SMTQEI suite, we have equipped the SAW with a mechanism
that not only tracks the mouse pointer position within the web-application

2https://code.google.com/p/smt2/

https://code.google.com/p/smt2/

110 7.2 Analysis Workflow

but performs a periodic snap-shot of the complete DOM model of the web-
application and delivers it to the central logging systemﬂ

The architecture position making process supported by the EtherPad required
a different instrumentation approach. In order to analyze the dynamics of the
process, we used so-called timeline slider functionality, which allowed us to
identify the precise time of creation and/or editing of particular design issues,
alternatives, and positions. The authorship of the position model items was
identified thanks to the fact that EtherPad color-codes content provided by the
individual users. The transformation of the EtherPad position process transcript
into the stream of events, as well as the assignment of unique identifiers to the
recorded position items, was done manually.

7.2.2 Event Identification

The data collected by the instrumentation of the architecture workshop is not
suitable for use directly with the system of metrics that we proposed. In order to
achieve the right abstraction level, we processed the raw log data into a log of
events that concern particular position model items. The event logs were collected
for each architecture design workshop individually. Each registered event was
described according to the following attributes:

Time-stamp - at first, the full date and time of the event occurrence is registered.
In the pre-processing stage, the absolute time-stamps are turned into times
relative to the beginning of the design workshop.

Item Type - determines the type of the position item, as declared in the position
meta-model

Item ID —uniquely identifies the position model item. In the case of data collected
from the SAW, the IDs are assigned automatically; in the case of the EtherPad;
this is done manually.

Action - one of the CRUD actions, or position meta-model specific actions such
as Relate, or Decide

User - a unique identifier of the user involved in the action

Content - extra information about the event, such as item type for the Create
action or position type for the Decide action

3Implemented extensions are available under: https://github.com/ian7/smt3

https://github.com/ian7/smt3

111 7.2 Analysis Workflow

Time-stamp Item Type Item ID Action User Content Parameter
09:01:57 Issue 102 create Fabio
09:02:09 Issue 102 update Fabio Single DB for all?
09:02:13 Alternative 4 create Fabio
09:02:13 Alternative 4 relate Fabio Issue 102
09:02:13 Issue 103 create Cesare
09:02:14 Issue 103 update Cesare Distributed DB?
09:02:40 Alternative 4 update Fabio a DB to store the catalogue data and one for the user and their orderds
09:03:13 Alternative 5 create Rasel
09:03:14 Alternative 5 relate Rasel Issue 102
09:03:14 Alternative 5 update Rasel no
09:03:20 Alternative 5 decide Rasel o can be good to separate sensitive data (customer credit card number not

in same database ad catalog/order)
a DB to store the catalogue data and one for the user (address, e-mail,...)

09:03:26 Alternative 4 update Fabio and their orderds

Table 7.9. An example set of raw events recorded during the design workshop
(Run 3) assisted by the use of the EtherPad (see Table [A.1)

Parameter - payload for the Update action, position rationale for the Decide
action, or identifier for the tip of the Relate action, etc.

In Table 7.9, we provide an extract of the raw event log recorded at the
beginning of the design workshop supported by the use of the EtherPad. In the
extract, we can recognize creation and editing of two design issues (IDs: 102 and
103) and two design alternatives (IDs: 4 and 5) related to the first issue. There is
also one (Open) position provided by the user.

7.2.3 Decision Model Structure Recognition

In the next step of the analysis process, we determined the elementary position
model structure, by identifying events related to the individual items and trac-
ing the relations between them. The position model structure is essential for
recovering position item context, such as the reference between the position
and issue-to-alternative relation, etc. Within the position model structure, the
choice-state of individual positions were analyzed first, so that the aggregated
choice state could be inferred in the context of the design issue. The recovery of
the position model structure is essential and cannot be replaced with the snapshot
of the final state of the position model. This is due to the fact that the model
does not grow monotonically and thus intermediate states of the model can be
significantly different from the final outcome.

At this point, the analyzer collects all events identified in the previous stage
to instantiate their object representation. Each event object instance has access
to the previous events registered for a particular position model item, making
it possible to identify and track each temporal state within the life-cycle of the
position item. In Figure we provide a textual representation of an example of
the event list identified for a design issue. Each entry starts with a time-stamp

112 7.2 Analysis Workflow

3502 creation marcin@sonyx.net

3502 state no alternatives

3506 update marcin@sonyx.net 4

3534 relation created from: 51778257da300c56d5000007 to: 51778237da300c57f1000004 (no) marcin@sonyx.net
3534 state no positions

3534 position (no) marcin@sonyx.net no positions

3552 state incomplete

3552 position (no) marcin@sonyx.net no positions

3552 relation created from: 51778269da300c56a7000002 to: 51778237da300c57f1000004 (no) marcin@sonyx.net
5224 position Positive User2 aligned 51778257da300c56c4000002

5326 position Negative User2 aligned 51778269da300c57f1000005

5326 state complete

Figure 7.9. An example of an event log recorded for a design issue with two
alternatives and two positions

relative to the beginning of a design workshop and continues with a logging
message tailored to the specific event type. In the event listing, it can be noticed
how the choice state of the design issue changes, as alternatives and positions are
added, from no alternatives, through no positions and incomplete finishing
with complete.

7.2.4 Micro-Metrics

The metrics that we have defined in Section|7.1.2| operate at a relatively high
level, therefore they cannot be calculated directly from the data (events) recorded
during the architecture design workshops. In order to fill this gap, we devised a
set of micro-metrics suitable for estimating properties of each individual position
model element and mapping back to the Metrics (see Table [7.10). We have
implemented micro-metrics ranging from type-agnostic, such as the measurement
of the item life-span, to type-specific, such as project, issue, and alternative related
activity. The micro-metrics are evaluated individually and persisted in the CSV
file specific to the item type. In Table [A.3| we present captured alternatives with
the respective micro-metric values calculated.

In the following sub-sections we are going to document a number of micro-
metrics using the following notation:

Micro-Metric Name {Optional Parameter} [returned value type] -
brief description and references.

7.2.5 Ttem lIdentification Micro-Metrics

Project [text] — An identifier of the position space to which a given element
belongs (see Project micro-metrics in Section [7.2.5))

113 7.2 Analysis Workflow

design workshop duration (typically 90 minutes)

time since last position
last update
t. since last change
Y . Y L.
I I I I | !
Tstart ltem Last Last Last Tend
creation update position event

activity time

lifespan

Figure 7.10. A schematic lifecycle of the architecture design workshop with
events specific to the item dynamics micro-metrics marked on the timeline

ID [text] — A unique identifier for the position space element, as recognized
during Event Identification (see Section|7.2.2)

Destroyed [0,1] — Due to the fact that position space is undergoing very dynamic
transformations during the position making process, some of its elements
are going to be destroyed in the process. This micro-metric returns one if
the given element no longer exists in the final position space, zero otherwise

Item Dynamics Micro-Metrics

The following metrics examine the time-dynamics of position items. It needs to
be mentioned that some of the item events, such as Last update, Last position,
and Last event, are depicted separately in the Figure but in practice can
occur in at the same time, for example, when an update or position happens to
be the last event related to the position item.

Update Count [0..N] — number of individual updates to the item description

Last Update [seconds] — number of seconds elapsed between the beginning of
the design workshop and the last update event related to a given item

Activity time [seconds] - a timespan in seconds between the first event (cre-
ation) and the last event for given item

114

7.2 Analysis Workflow

M1

M2

M3

M4

M5

M6

M7

M8

o
=

M12

Project ID
ID
Destroyed
Update Count
Last Update
Activity Time
Lifespan
Last Change
Contributors
Time since last position
Position Count
Positive
Positive Revoked
Negative
Negative Revoked
Open
Open Revoked
Final State
Final Decision
Editors
Deciders
Time in No Positions
Time in Aligned
Time in Colliding
Consensus State Changes
Alternatives Count
Alternatives in No Positions
Alternatives in Colliding
Alternatives in Aligned
Alternatives in Sealed
Final Choice
Choice State Changes
Time in No Alternatives
Time in No Positions
Time in Incomplete
Time in Complete
Project ID
Issues Created
Alternatives Created
Issues Edited
Alternatives Edited
Positive Positions Created
Negative Positions Created
Open Positions Created
Decisions Revoked

MM X

o

>

»

Moo

Mo X X

> || M10
M11
> (| M13

>
>

> || M14

> || M15

ol

Table 7.10. Summary of coupling between micro-metrics (first column) and
metrics (M1-M15). See Section and Section for extensive description

of metrics and micro-metrics

115 7.2 Analysis Workflow

Lifespan [seconds] —measures the time elapsed between the first recorded event
related to a given item and the end of the design workshop

LastChange [seconds] — measures the time elapsed since the last recorded event
of the item and the end of the design workshop

Editors [0..N] — the number of unique users that edited the description of a
particular item

Contributors [0..N] - the number of unique users that did any action that altered
the state, by editing or relating to given item

Time since last position [seconds] - the time elapsed between the last position
related to a given item and the end of the design workshop. Returns -1 in
cases where there are no positions

Argumentation Micro-Metrics

The following micro-metrics concern an architectural position that relates to one
design Issue and one design Alternative, with multiple Positions related to it.
Table provides an example of argumentation micro-metric values calculated
for a selected range of design positions that we acquired during the evaluation.

Position Count [0..N] - the total number of positions ever recorded for the
decision. This includes position revoke events

Compacted Position Count [0..N] - the number of non-revoked positions at the
end of a workshop. Hereafter referred as to final

{Positive,Negative,Open} [0..N] — the number of non-revoked positions of the
respective type (Positive, Negative, Open)

{Positive,Negative,Open} Revoked [0..N] - the number of revoked positions
of the respective type (Positive, Negative, Open)

Final State [consensus state] - final state of consensus on the position. It imple-
ments the definition of Metric 8 (Consensus State) defined in Section|7.1.2

Final Decision [{Positive, Negative, Open}] - if the Final State of positions is
aligned, then this micro-metric returns the type of the aligned positions,
otherwise the value is undefined

116 7.2 Analysis Workflow

Deciders [0..N] — counts the number of unique users that have contributed
positions to a given position

Time in {No Positions, Aligned, Colliding} [seconds] - through its lifecycle, a
position traverses a number of consensus states as defined in Section|5.1.1
This micro-metric calculates the amount of time (in seconds) that a particu-
lar position has spent in given consensus state

Consensus State Changes [0..N] - this micro-metric counts the number of tran-
sitions between the consensus states of particular positions (see Section|5.1.1]

Issue Micro-Metrics

The following micro-metrics concern a number of Decisions and Alternatives
related to a particular design Issue, together with relevant Positions. In Table[A.2]
we provide an extract from the data that we acquired during the evaluation.

Alternatives Count [0..N] - counts the number of design alternatives related to
a given design issue,

Alternatives in {No Positions, Colliding, Aligned, Sealed} [0..N] - counts the
number of alternatives with positions in a particular consensus state (see
Section |7.1.2)) in the context of a design issue,

Final Choice [choice state] - returns the final choice state of a design issue, as
per the definition of the issue’s lifecycle (see Section[5.1.1)),

Choice State Changes [0..N] — similar to the Consensus state changes for a
design position, this micro-metric calculates the number of choice state
transitions within the lifecycle of a design issue (see Section [5.1.1)),

Time in {No Alternatives, No Positions, Incomplete, Complete} [seconds] —anal-
ogous to the micro-metric measuring the time that a position spent in a
particular consensus state (see Section[7.2.5), this micro-metric returns the
time (in seconds) that a design issue has spent in a given choice state,

Deciders [0..N] - counts the total number of unique position makers who have
contributed their positions to positions related to a given design issue

117 7.3 Summary

Project Micro-Metrics

In this section, we introduce micro-metrics that concern whole position spaces.
The snapshot of the dataset that we acquired during our evaluation is presented in
the Appendix. The position spaces recorded in parallel with the EP and the SAW
carry distinctive IDs but belong to a single run. In order to make this mapping
explicit, we have augmented the Table with two extra columns identifying
the Exercise Run and the Source of the data (see Section[8.2). In cases in which
imperfect workshop conditions made it impossible to record the exercise run in
a way that provided comparable data for EP and SAW, the position space was
excluded from the analysis (not used row in Table .

ProjectID [text] — a unique identifier for a position space

{Issues, Alternatives} Created [0..N] — counts the design issues/alternatives
within a position space

{Issues, Alternatives} Edited [0..N] — counts the design issues/alternatives in
a design space that have been edited at least once

{Positive, Negative, Open} Positions Created [0..N] - counts the total number
of positions collected within a particular position space

Decisions Revoked [0..N] - counts the total number of revoked positions in a
position space

7.3 Summary

In this chapter, we described the design of the software that we implemented
for the purpose of analyzing empirical data collected during the architecture
design workshops. Using the Goal Question Metric approach, we identified
collaborative position making goals, we then defined questions addressing them,
and we specified metrics that can be used to quantify the observation. Finally, we
provided details about the implementation of the aforementioned metrics in the
analyzer.

In the next chapter, we gather core research ingredients that we have intro-
duced in the previous three chapters. We examine the application of the analytical
framework presented in this chapter on positions modeled with use of argumen-
tation viewpoint implemented in the Software Architecture Warehouse, and we
compare the results with the positions recorded using a free-form collaborative
text editor (EtherPad).

118 7.3 Summary

Chapter 8

Evaluation

In this chapter, we present the results of the formative and empirical evaluation of
the Software Architecture Warehouse and the Collaborative Architecture Decision
Metrics suite. We perform the evaluation on the data recorded during the in-class
design workshops. Finally, we conclude with an interpretation of these results
and an investigation of the main threats to their validity.

8.1 Formative Evaluation

The purpose of performing a formative evaluation was to orient and guide our
research at its early stage. Our main interest in this phase was to address the prob-
lem of collaborative architecture design decision consensus (see Section [4.2.2)).
This lead us to our first research question, that is: how to support collaborative
software architecture decision making? During our investigation, we came across
the concept of situational awareness (see Section. We have devoted three
formative evaluation cycles over the course of two years to research how Soft-
ware Architecture Warehouse can be used to increase team situational awareness
during architecture design workshops. Different releases of the SAW have been
used in more than 50 collocated design workshops, with groups of 5-10 students
attending each session. In some cases, the same participants have repeatedly
used the tool and provided us with feedback about its progress, performance, and
usability. The participants played the roles of software architects (including that
of lead architect), software developers and other stakeholders, such as customers
or end-users of the systems being designed. The SAW has also been used in
distributed design workshops over conference calls and in hybrid workshops
with some collocated participants and others connecting remotely. The feedback
received has helped us to refine the support for team situational awareness and
improve the tool usability and scalability.

119

120 8.1 Formative Evaluation

We have observed that the usage patterns and load may vary greatly in intensity
over a design workshop session (which average 90 minutes in length), making the
real-time performance requirement very challenging to achieve without sufficient
resources on the server-side and over an unreliable network. We have tested the
performance of the system, and there is no noticeable delay of event propagation
with up to 20 participants who are collaboratively editing a design space made
up of up to 100 issues (with five alternatives each). The tool is also ready for a
cloud-based deployment, and each tier can be separately distributed for additional
performance.

Concerning the impact on the cognitive load of the lead architect, we have
found out that only users who have accumulated some experience with the tool’s
user interface can be effective at capturing the discussion while leading it. In
other cases, we had to resort to recruiting minute takers (or scribes) who would
act as a proxy between the lead architect at the whiteboard and the design
decisions tracked by the tool and displayed with the beamer. In general, since
all participants have the possibility of contributing their input to the shared
knowledge repository, over multiple sessions we observed that it was no longer
necessary to employ a single dedicated scribe, as this role was spontaneously
shared among all participants after they became aware of the presence of the
additional communication channel.

One of the most significant observations that we have made was that adopt-
ing the SAW as an extra communication channel set a very high demands for
performance of its web user interface, in particular for the responsiveness (see
Section [3.4). The first prototypes of the SAW that were based on the typical
MVC-based web application style were not keeping up with the fast dynamics
of the design workshops. The situation was particularly dire for the views that
aggregated information about multiple decision items undergoing rapid change
(see Figure [8.1)).

The feature of broadcasting pointers (see Section |6.4.6) over the design space
was suggested by one user in order to make it efficient to navigate to a specific
design view. The user would copy and paste the URI of the page displaying the
relevant information and share it with the rest of the participants with an instant
messenger. After observing this behavior we decided to implement explicit support
for this feature by taking advantage of the existing notification infrastructure.
This way we were able to guarantee that it is very efficient to ensure that all
participants are seeing the same view at the same time.

Concerning the tracking of positions within the argumentation view, we ex-
perimented with two levels of detail. The initial lightweight solution was a
simple positive or negative vote on each alternative (see Figure[8.2). At a more

121 8.1 Formative Evaluation

ean0o http://demo.saw.sonyx.net/projects/4fb10084924ff86092000001 /items
| « | » ||+ [@ hitp://demo.saw.sonyx.net/projects/4fb10084924f86092000001 /i1 & | (Qr Coogle |

Projects » Exercise 4 Items Summary leso (marcin.now

Design issues in the context of the project:
Issue: Ticketing type Delete

Issue: Ticket encoding Delete
Issue: Social Sensor communication channel (user to authority) Delete
Alternative: Twitter Channel @ ELED) CEEE

Alternative: Web-Interface o EE) e

Alternative: Pub/Sub smart phone app & | Positive(0) Revoke(1) Open(0)
Alternative: (edit to add)
Issue: Decision Maker/Traffic Analyzer Reports Delete

Alternative; COMPuted when new data Positive(4) B Negative(0) Open(0)
comes in (reactive component)

Cached (to avoid recomputing =

it too often)

Computed on demand =)
(passive component)

Alternative; UPdated pericdically (pro- © eSS
active CompDnEI’It)

Alternative: (edit to add)

Issue: Real-time sensitivity Expand Delete
Issue: Decision Maker component
Collapse Delete

Alternative: Positive(1) Revoke(1) Open(0)

Alternative: Positive(0) Revoke(1) Open(0) o/

Automated (time/position =)

Alternative: |, & Positive(0) | IEEIGLCIED Open(0)
Alternative: Semi-automated (S Positive(4) | Negative(0)
Alternative: Manual © Positive(0) | | Negative(0)

Alternative: (edit to add)

Issue: Programming Language

Issue: Platform
Issue: Security (communication channels encryption)

Issue: Security (web-based Ul) <
P

Figure 8.1. A view of the list of design issues in the project in the early prototype
of the Software Architecture Warehouse

122 8.2 Empirical Evaluation

fine-grained level, users were also able to enter the rationale for their positions.
This required additional time and effort and was met with some resistance. In
particular, not all users can immediately and independently provide a rationale
for their positions and prefer to wait for others to express their viewpoints and
piggy back their position on the previous ones. Finally, we added the ability to
revoke positions since people needed to be able to change their minds as the
consensus building process was taking place (see Figure [8.3).

Another feature added based on explicit user feedback was the ability to
seal the state of decisions to explicitly mark the conclusion of the discussion
over certain issues (see Figure[8.3)). This was used to track the progress of the
workshops. This way the tool can provide a separate list of open issues that
need to be decided upon; this list keeps shrinking during the closed phase of the
discussion, thereby providing all participants with a sense of accomplishment
while the list of sealed and decided issues grows.

We have also observed that the SAW added an extra communication channel
to the discussion in such a way that workshop participants could contribute to
the design space without interrupting the ongoing discussion. Similarly, some
participants who were intimidated by the lead architect, felt empowered to make
their contributions through SAW, silently and in the background. Once discovered
by the rest of the team, these contributions have often proven to be highly relevant
for the quality of the final design.

8.2 Empirical Evaluation

The empirical data was collected during the exercises accompanying the Software
Architecture and Design class at the University of Lugano during the Spring
Semester of 2013. The experiments were conducted over nine design workshops,
each lasting for 90 minutes. The participants received a design exercise description
(about one page long) a day before an exercise was to take place so that they had
enough time to familiarize themselves with the domain and the requirements.
Usually, an exercise description was not exhaustive enough to proceed with
detailed design, so there was some time invested in the clarifications, which
required making decisions about the interpretation of the requirements. The goal
of the exercises was to produce a sketch of a software architecture while keeping
track of the architectural decisions involved.

123 8.2 Empirical Evaluation

& ™ http://demo.saw.sonyx.net/projects /4fb1... /4fb3557c09f95 13bbe00000a/alternatives

| 4| » | [+ |@ hup:/rdemo.saw.sonyx.net/projects/4fb10084924ff86092000001 /i & | (Qr Google)
Items Summary lesources {bob) ﬁ*
|
[Index | Alternatives '
—— |
Issue: Decision Maker/Traffic Analyzer Reports |
|
|
Alternative =) |
Name: Computed when new data comes in (reactive component) '
|
KnownUses: Event driven systems |
Background: Paul Tarvydas and Norm Sanford. 2007. Software architecture |
using fine-grained event-driven reactive components. In |
Proceedings of the 2007 inaugural international conference |
on Distributed event-based systems (DEBS "07). ACM '
P |
Pros: Easy to implement handling rules Decisions: |
Cons: In case triggering frequency comes to be too high, system S —— |
might stop being responsive. Negative(0) |
) |
Positive (empty) ernst 2012-05-16 07:53:40 Open(0) :
Positive it is sleek Sam 2012-05-16 07:24:23 |
Positive practice-proven pautasso@twitter 2012-05-16 07:24:57 |
Positive modern LucaVignola 2012-05-16 07:49:21 |
|
e |
Implies (0) W Contradicts (0) R Influences (0) |
|
(type to add new onel |
|
|
Alternative =) .
Name: Cached (to avoid recomputing it too often)
KnownUses: Multi-layered systems often contain caching elements to
improve performance
Background: John L. Hennessy; David A. Patterson (16 September 2011). Decisions:
Computer Architecture: A Quantitative Approach. Elsevier .
. ;) . Positive(1)
Pros: Statistical analysis can predict cache effectiveness
Cons: In specific cases can be very resource-hungry SER
Open(0)
Positive practice-proven pautasso@twitter 2012-05-16 07:24:56
Megative too risky bob 2012-06-01 18:41:39
Implies (D) @ Contradicts (0) § Influences (D)
Alternative =)
Name: Computed on demand (passive component) £
v
v

Figure 8.2. The SAW prototype presenting the Issue Detail View with full
information about design alternatives in the context of a particular design issue.
Decisions on the alternatives are presented together with user-specified rationale
and are color-highlighted based on the consensus state.

124 8.2 Empirical Evaluation

[:NaNs) demo.saw.sonyx.net/#/project/521f342507 1aa54b4300000b/dialog/main.capture.issueDetails/issueld/50c5ff5 1924 ff84e6b000001 o
(a4 > |[D] 2] | + |3 demo.saw.sonyx.net ¢ | Reader][O

Modes: Navigate Active project: Smart Grid Logged as: marcin@sonyx.net

Projects
Status: Ready (0,0,0)

Design Issue details:

“New Altemative

Status
Sealed

Name Ul view state management method

User interaction with system can change its state in two ways:

by editing the data,
Background by changing view state of the data.

Changing state of the views requires some kind of mechanism to maintain transitions.
Drivers complexity of the view state should be a primary driver
Status emergence of new HTMLS features might create new alternatives

Recommendation simplicity of URL based routing is appealing, but might fall short of expectations for complex, compaosite Uls

Status: Some decisions are missing

o Alternative (2 Decisions, 2 in other projects) {:) Tﬂ ‘> xa @ P
Name URL (hash routing) Positive
Negative
Decision Rationale Author Timestamp
ﬁ Positive mohsen.anvaari@gmail.com 10:19 2013-10-03 Open
20 Negatiug mat compariblg with ald b mar nat 13:38 2014.07.30 Edit
- Rationale
@ Alternative (0 Decisions, 2 in other projects) SESLEW Positions
Name event-based :
KnownUses complex, composite Uls atlvs
Background message (event) bus based communication is a popular paradigm for the rich Uls
Pros scalability
Cons view state complexity can grow very high, thus it might be very difficult to

serialize it into URL

Figure 8.3. The contemporary version of SAW presenting the Issue Detail View
with a sealed design alternative related to two design positions. One of the
positions was revoked by the user (overstrike)

8.2.1 Participants

The number of participants in our experimental workshops was 18. We decided to
create two independent groups in order to increase the participants’ involvement
in the design workshops. The exercises were scheduled so that two groups would
perform the (same) exercise in parallel in two physically separated rooms. Each
design group included a head architect who held responsibility for the design and
for consulting the rest of group. In the situation when system requirements require
clarifications, one of the assistants would step in as an oracle (or customer). The
role of the head architect would rotate among the design team every week so
that everyone gained the experience of leading the design exercise. Prior to
beginning the exercises, the participants went through the theoretical part of
the Software Architecture lecture and acquired necessary training in architecture
and decision modeling. Their skills were evaluated during a written mid-term
examination. The results of the mid-term were used to select head architects for
the parallel groups in a way such that their knowledge and level of understanding
would be comparable, thus enabling a side-by-side comparison of the two groups’
performance.

125 8.3 Results

8.2.2 Baseline and Observation

The goal of the experiments is to evaluate the utility of structured architecture
decision management for the process of collaborative software architecture design.
In order to provide a valid baseline for our experimentation, we decided to use a
generic collaborative text editor - the EtherPadEL hereafter referred to as EP (for
details see Section [3.5)). We decided to use it because it provides a low-latency
collaboration experience, it has proven useful in small teams. While it does not
set any constraints on the free form of the captured textual content, it clearly
marks the authorship of every text editing operation.

8.2.3 Data Collection

Given that two experimental groups were given different software tools to work
with, different methods of data acquisition were required. In the case of the
EtherPad group, the group dynamics were recorded thanks to the time-line feature,
which allows users to roll back and forth every change of the content. The
authorship of particular text snippets can be easily recognized thanks to the
color-coding of the users’ comments.

The performance of the group using the Software Architecture Warehouse was
recorded in three ways. First, most importantly, the SAW produced an architecture
decision space persisted as a graph inside the document-based database. A
significant limitation of this record is that it does contain only the final state of
the decision space. Of course, all the decision space items have their creation and
modification time-stamps recorded, but there is very little that can be said about
the dynamics of the change. For that reason, in the final analysis, the decision
space graph was used mostly as the source for the decision meta-model. In order
to alleviate this limitation, the server-backend access log was used as a second
data source. Most importantly, it contains a chronological log of all requests that
can be used to reproduce and analyze the complete dynamics of the decision
space throughout the exercise. For the details, we refer the reader to Section

8.3 Results

In this section, we present an application of the metrics defined in Section|7.1.2
to the decision dataset we have collected. Each metric is presented with a brief
interpretation of the outcome.

! An open-source online editor providing collaborative editing in real-time http://etherpad,
org/

http://etherpad.org/
http://etherpad.org/

126 8.3 Results

15 —
feep [@saw

—_
o

Issue count

92}
T
I

Run 1 Run 2 Run 3 Run 4 Run 5
(9,4) (2,5) (13,6) (3,4) (4,5)

Figure 8.4. Number of issues counted in the consecutive design workshop runs.
In parentheses, we provide the issue count for the EP and the SAW respectively
(M1)

Metric 1 — Issue count
Domain: Project, Scale: Ratio, Range: [O,N]

A decision space typically consists of numerous design issues. Some of the
issues can be reused in multiple projects. This metric represents the number of
design issues within a particular project.

In Figure we present the number of issues collected in five runs of the
experiment. The average number of issues per project is slightly higher for the
EP (6.2) than for the SAW (4.8), but it also has a higher standard deviation (4.17
and 0.75 respectively).

The population of the design issues collected within the design workshops
appears to be about right or even slightly high, considering the imposed time
limit of 90 minutes.

127 8.3 Results

15 :
Becp HEsaw

Alternative count

Run 1 Run 2 Run 3 Run 4 Run 5
(9,6) (5,11) (27,12) (7,9) (8,11)

Figure 8.5. Number of alternatives counted in the consecutive design workshop
runs. In parentheses, we provide the issue count for the EP and the SAW
respectively (M2)

Metric 2 — Alternative count
Domain: Issue, Scale: Ratio, Range: [O,N]

A design issue can be addressed by choosing from among multiple design
alternatives. This metric counts the number of such alternatives within the context
of a particular design issue. Its value (if greater than 1) can be used to estimate
the effort required to make a complete choice about the issue. Other interesting
observations can be achieved by aggregating the results of this metric over a set
of design issues, for example, those contained within a project.

Analogously to the previous metric, in Figure we present the distribution
of the number of design alternatives collected within the experiment runs. The
average number of alternatives is very similar for the EP and the SAW (11.2 and
9.8). Similarly to Metric 1, the EP is characterized by much higher standard
deviation (8.9 for the SAW and 2.3 for the EP).

Figure presents the distribution of the number of design alternatives per
design issue within the population of design issues. It is noticeable that for
the EP most design issues have only two alternatives, whereas for the SAW the
same number of issues have two and three alternatives. The average number of
alternatives per issue for the EP and the SAW is very similar (1.66 vs. 1.82) as
well as their standard deviation (0.81 and 1.28).

The distribution of the number of alternatives per design issue with their peaks
between two and three is within reasonable expectations.

128 8.3 Results

fe EpP
E)’ 40% Oosaw ||
5
o
(V)
&
L e | BN | R
s
=
-] |
0 1 2 3 4 5
(7,1) (5,3) (9,11) (8,7) (1,0) (1,2)

Number of alternatives per issue (frequency EB SAW)

Figure 8.6. Histogram of the number of alternatives per design issue. Bars
are scaled proportionally to the total number of issues (EP:31, SAW:24). The
absolute population size of the categories is provided in parentheses (M2)

Metric 3 — Relative number of contributors
Domain: Issue, Alternative, Scale: Ratio, Range: %

Assuming that each decision item is labeled by the user who has created it,
it is interesting to observe how many users have contributed new items within
the context of the project, issue, or alternative respectively. In order to mitigate
the effect of a diverse design team size, we propose to analyze the number of
contributors relative to the total number of design team members.

Metric 3 is defined as the number of contributors (see Section|7.2.4)) relative
to the size of the design team. Here, for the sake of clarity, we are going to be
operating on the absolute numberﬂ The histogram presented in Figure (8.7|shows
that the majority of design issues and alternatives involved only a single user.
Categories with more than seven contributors are empty and not included in the
chart.

In Figure [8.8]it can be seen that the consensus state is related to the number
of contributors in a way such that alternatives with more than two contributors
always have positions, and even more interestingly, that the proportion between
colliding and aligned alternatives grows with the number of contributors. Fig-
ure shows a similar connection between design issue choice state and the
number of contributors. In particular, in our dataset, design issues with more
than three contributors always have positions stated. The relation to the com-
plete/incomplete choice states is not clearly visible.

2In the experiments the team size was 9 (both for — the SAW and the EP).

129 8.3 Results
60% : ‘
da Issues EP
‘? 08 issues saw
E 40 2 W] g8 Alternatives EP | |
g 08 Alternatives SAW
S
ey
5
S
E 2000 %Y@l @b -
I~

0%

1
(15,5,
32,29)

2
(8,7,
14,11)

3
(2,7,
9,5)

4
(5,2,
1,0)

20 A
5
(L1,
0,2)

6
0,1,
0,2)

7
0,1,
0,0)

Number of contributors (frequency for issues EB SAW and alternatives EB SAW)

Figure 8.7. Histogram of the number of contributors working on design issues
(EP, SAW) and alternatives (EP, SAW) respectively. Numbers in parentheses
reflect respective category counts (M3)

100% T
(Hno positions
) .
S 80% - B aligned
g B colliding
g 60% ===y
& |
é” 0% 2Lk FBY -l f:]
ks |
20 -2l Bl bl =l *: SR
Y 1
0% 2 3 4 5 6 7
(32,29) (14,11) (9,5) (1,0 (0,2) (0,2) (0,0

Number of contributors (frequency EB SAW)

Figure 8.8. Proportion of the consensus states in relation to the number of
contributors for the EP (left bar) and the SAW (right bar). Numbers in
parentheses represent respective alternative counts in the category (M3)

130 8.3 Results

100% = -
itk it :
e £t B no alternatives
B it] "
> 80% £k i no positions
IO ce .
= St 33 B incomplete
5 i3 E: complete
& 60%
Q ZoL 1
S e
0 = &
o | ey
=2 40% -2l =B =kl =B =H B N .
= &
T) 1 d
| ey
=2 @ L EN EB EH 0OH o
l
0% i
1 2 3 4 5 6 7

ass &7 &7 62 Q1L o1 O

Number of contributors (frequency EB SAW)

Figure 8.9. Proportion of the choice states in relation to the number of contrib-
utors for EP (left bar) and SAW (right bar). Numbers in parentheses represent
respective issue counts in the category (M3)

Metric 4 — Relative number of decision makers
Domain: Issue, Decision, Scale: Ratio, Range: %

Like Metric 3, this metric counts the number of design team members involved
in expressing positions about a particular decision. Again, as in Metric 3, this
metric calculates the number of decision makers relative to the total number of
design team members.

The histogram of the number of decision makers presented in Figure
shows that the majority of decision items (both issues and decisions) had no
positions recorded, and thus there were no deciders. It seems that the number
of occurrences in the categories declines with the growing number of deciders.
The decline pattern is similar for decisions recorded with EP and SAW (lower
chart), with a slightly larger number of decisions for more than three deciders.
The distribution seems to be different for the design issues recorded with the EP
and the SAW (upper chart). For the EB more than half of the design issues had
no positions recorded, whereas, for the SAW, the first three bins collected roughly
a third of the population each. The long-tail pattern for the SAW is visible for
categories representing more than four deciders.

In Figure 8.10] we see that there is no clear relation between the number of
decision makers and the consensus state of alternatives. Surprisingly, we have

131 8.3 Results

100%
Hno positions
. 80% | - S S o B aligned
= B coliding
)
S 60% [-
]
&
S 40% |-
ks
]
B 20% |-
%
0% 1 2 3 4 5
(29,25) (17,14) (8,6) 2,1 (0,2) (0,1)

Number of decision makers (frequency EB SAW)

Figure 8.10. Proportion of the choice states with respect to the number of the
decision makers in EP (left bar) and SAW (right bar). Numbers in parentheses
represent issue counts in the category (M4)

found single cases of decisions with only one decision maker that have stated
contradicting positions. Another surprising observation is that all alternatives
with over three deciders are aligned. The intuition suggests that with a large
number of deciders, chances for collision are higher, as in the case of the category
with three deciders.

The number of contributors and decision makers (Metrics 3 and 4, Figures|8.7
and respectively) who are involved in the work on a particular decision item,
however, is worryingly low. At the same time, the proportion of the decisions with
colliding positions grows with the number of contributors, which in turn indicates
that the argumentation model alignment is far from perfect.

Figure |8.12| shows that both for the EP and the SAW, the majority issues
without any decisions has some proposed alternatives. For categories with one
or more decision makers, the majority of the issues is in the incomplete choice
state. Surprisingly, the one design issue characterized by the highest number of
deciders has a completed choice.

Unfortunately, the population size in the categories representing a high par-
ticipation of deciders is rather small; therefore, both consensus and choice state
analysis in this categories is likely to be very noisy.

132 8.3 Results
| |
B IssuesEP
s0% |l B BB ssues saw B
B 40% |- - Q- ---- - mm oo e m o e e oo
[
3]
5
o
& 30% |- ---------- - e
5
g~
L 20 - ---- - --—-- @ -------------~-—~—"-—-—-—--------------- -
10% - - T e R
O% I .\ \l I
1 2 3 4 5 6 7
(18,8) 4,6) (3,7 (,00 (1,00 (©0,2) (0,1) (0,0)
SO% Bt] 18 Alternatives EP | |
08 Alternatives SAW
40 =k —
)
19
[
3]
2 30% [- R e e T
9]
&
)
2
= 20%-----0 - -
&
II fm 0 =
3 4 5

10%

0%

0 1 2 6 7
(29,25) (17,14) (8,6) (2,1) (0,2) (0,1) (0,00 (0,0)
Number of decision makers (frequency EB SAW)

Figure 8.11. Histogram of the decision makers count for the design issues (upper
chart) and alternatives (lower chart) for the EP and the SAW (M4)

133 8.3 Results

100% R s ——
A no alternatives
o positions
80% |- - B incomplete ||
o i complete
=
5, 60% =
o
&
[$my
2
E 40% —
2
20% |
0%

6
(188 6 G7 G0 Q0 ©2 ©1n (00

Number of decision makers (frequency EB SAW)

Figure 8.12. Proportion of the choice states to the number of the decision
makers for the EP (left bar) and the SAW (right bar) respectively. Numbers in
parentheses represent the issue counts in the category (M4)

134 8.3 Results

Metric 5 — Activity timespan
Domain: Issue, Alternative, Scale: Ratio, Range: [O,N]

Decision items are created, updated and, in some cases, eventually deleted
from design space. Their lifecycle involves a series of events that correspond to
state modifications by some of the architects. As the activity timespan of an item
we define the duration between the first event (typically the creation of the item)
and the last recorded event corresponding to the item.

The histogram of the decision item activity timespan presented in Figure[8.13]
shows that there is a slight disparity between the level of activity over time of
design issues and design alternatives between the EP and the SAW users. It
appears that users of the SAW tend to work on the items for slightly longer than
users of EB especially within the timespan range between 20 and 70 minutes.
Conversely, the vast majority of both issues and alternatives for EP has an activity
timespan shorter than 10 minutes.

In Figure we have charted a number of design issues’ characteristics in
relation to their activity timespan. For the first three characteristics (alternatives
count, editors count, and deciders count), apart from the trend exposed by the
histogram (Figure [8.13), there is no striking pattern emerging from the chart. In
the chart exposing update count there is a disparity between the data collected
for the EP and the SAW. We believe that this effect comes from the difference
in the data acquisition method (see Section[7.2.1)), and thus is not relevant for
comparison of the workshop dynamics differences for the SAW and the EP

Analogously, in Figure [8.15|we charted the characteristics of all design alter-
natives. This figure also confirms the trend observed earlier in the histogram.
Additionally, a population of alternatives with a high (four or more) position
count can be observed for the SAW. For the editors count and deciders count
we see no clearly visible trend. As before, updates count shows a significant
disparity, but to a lesser degree than in the case of design issues.

In order to expose trends existing in the data scattered in Figures[8.14/and[8.15]
we have decided to introduce a cut-off threshold that eliminates issues and
alternatives characterized by a short activity timespan. The rationale for this
is that a long activity timespan can be a good indicator of the importance of a
particular design issue or alternative.

In order to inspect the characteristics of design decisions and design issues, we
have decided to classify them based on their activity time. In Figure[8.13]it can be
seen that a major share of design issues and alternatives (decisions) were active
for a rather short time (fewer than 10 minutes). For our further analysis, we have
applied heuristics assuming that decision items characterized by a longer activity
time are of higher value for the design. In fact, Figures and show that

135 8.3 Results

B #1ssues EP Eﬂ Issues SAW £ B Alternatives EP nﬂ Alternatives SAW
8s%---&8 —4—4—7 4 7?Z7 27— —

o
S
>

40% |- QA - - -

Relative frequency

0% @t ¢

0% T T
0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89
(24’10’ (4)2’ (1553 (1’3’ (1)2’ (OJ]‘J (031) (O’OJ (OJOJ

48,28) 1,5) 2,5 23) 1.,2) 0,0 1,1) 0,00 0,0

Activity timespan range for category [minutes]

Figure 8.13. Histogram of the activity timespan for design issues and alterna-
tives. Numbers in parentheses represent frequencies for Issues (EP, SAW) and
Alternatives (EP, SAW) given the category (Mb5)

the characteristics of decision items, with longer activity times are significantly
different from those active only for a short time. As we could not decide upon
the fixed cut-off threshold between short-lived and long-lived items, we have
studied both populations in relation to a moving cut-off time (see Figure[8.16). It
can be observed that the overall count (cut-off time value 0) of both the issues
and the alternatives is favorable for the EP. Conversely, for higher values of the
cut-off time (greater than 10 minutes), the counts of the design issues and the
alternatives are significantly higher for the SAW.

In Figure [8.17]it can be observed that for the SAW the average number of
design alternatives per issue increases with growing activity time (high cut-off
values). We have not observed the similar trend for design issues recorded with
the EP

In Figure |8.16/we have plotted a relation between the cut-off time and respec-
tive issue and alternative population sizes. As hinted at earlier in the histogram
(Figure |8.13)), it is visible that the overall population size for both issues and

136 8.3 Results
‘ :

E* ° ° ° e EP

2 ~4f - T TR T e SAW |

o 9

0:;‘ é e eo oo) ® o ®

% : 2 ---0 0 ----00 -0 -—-—--—-- @ — - - o

) ()

o o

g - ® oo o0 °

<T: 0 o S e i e

°
6F-----------———=—=—=—=—----- @ oo
g E L)
2 34 o - -@ - - o - R e
= ©
M © eoeoe0 o ° () °

2 ®0-0-0- -~ 000 -0 ——————-
ro o o o | o

0 10 20 30 40 50 60 70 80 90
6l o]
° °
& w4l---®----0-------- ®---------- R e
= .
S
8 Vo)mwesw@®----0----0- 00—~~~ R
oo o o o ° °
0 - 00— - - — — - *----- e ® - - - — -

150 ,,,,,,,,,,,,, L,,,,. ,,,,,,,, e [
E
B 100 |- m oo]
g .
e «
5.‘ [] [] PY ° ®
Ofomesse [+ S " o o]

Activity timespan [minutes]

Figure 8.14. Properties of the design issues plotted the against activity timespan

for the EP and the SAW (M5)

137 8.3 Results

o
!
°
P |
>
=

N
‘

Position count
(per decision)

O]

;

o

®

P

¢

Ps

.

Editors

Deciders

Updates count
o
l

Activity timespan [minutes]|

Figure 8.15. Properties of the design alternatives plotted against the activity
timespan for the EP and the SAW (M5)

138 8.3 Results

§ 30 % e Issues EP ||
A —o— [ssues SAW
2

o

=

3

S

© 0 \ \ \ \ \ \ \ 1 !

» (31,24)(7,14)(3,12) (2,7) (1,4) (0,2) (0,1) (0,0) (0,0)

g 60 T T T ui T T . = =

= —e— Alternatives EP

g 40 - AN\ —e— Alternatives SAW ||
=

Gy

o

=

3

O 0 10 20 30 40 50 60 70 80

(55,44)(7,16) (6,11) (4,6) (2,3) (1,1) (1,1) (0,0) (0,0)
Cut-off time [minutes] (population size EB SAW)

Figure 8.16. Number of issues and alternatives depending on the cut-off thresh-
old time. In parentheses we provide counts for the EP and the SAW respectively.
(M5)

alternatives is larger in the case of the EP than the SAW (cut-off value 0). Con-
versely, for the higher cut-off time values, the population counts for the SAW
are consistently higher than for the EP Using a variable cut-off time we, have
investigated a number of issues’ and alternatives’ characteristics, as presented in
Figure The data points in this figure represent averages over the population
of decision items with the activity time over the given cut-off threshold.

139 8.3 Results
T T T T T T T T T T
6l —e— Issues EP || v|—e— Alternatives EP
§ —o—Issues SAW || --------1 —e— Alternatives SAW ||
5
E ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
E’ i
< | | vy L 70\
rs) I
5 I - SR B
el |
E A\ 4
3
A G S S U B o P
fo \ i I \ \ il L \ s L N % & L
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
,,,,,,,,,,,,,,, I I I I T I T T T T
8 —e— Issues EP —e— Alternatives EP
" —e—IssuesSAW || |~ —e— Alternatives SAW ||
o 6l i
S
Q
Q
<
ey
o]
o
Ha)
g
= i
Z.
0 N L \ > NS Py L
0O 10 20 30 40 50 60 70 0O 10 20 30 40 50 60 70
I I I | e I A I, T I I I I I
100 —eo— Issues EP || —e— Alternatives EP
—o— [ssues SAW —e— Alternatives SAW
ES
Q
(-
5
5}
0
g
3
Z.

| 1 I | 1 L

| 1

L

1 L

|
0 10 20 30 40 50 60 70

Cut-off time [minutes]

| | |
0 10 20 30 40 50

60 70

Cut-off time [minutes]

Figure 8.17. Properties of design issues and alternatives plotted against the
population cut-off time for the EP and the SAW. Error bars represent calculated
o/2 (Mb)

Number of positions

Number of deciders

Number of editors

140 8.3 Results

30% | | | | | | |
BEissues EP BBissues SAW {8 Alternatives EP [l Alternatives SAW

D5 [~ = === -]

20% ----f---------F-- .

-+ @-- - .

Relative frequency

10% - il - - Ml e o007 o .

5% A df - Al s fEER A M HH -

0% ‘
0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89
G2 “4 G5 (64 @3 G2 41 (02 (0,0
12,6) 7,5 7,6) 87) 35 7.8 84 05 0,0

Time since last change for category [minutes]

Figure 8.18. Time since last change — histogram (10-minute intervals). Very
recently edited items are on the left, while old items are towards the right. (M6)

141 8.3 Results

I I
° Issues EP
e Issues SAW
e Alternatives EP | |
Alternatives SAW

Activity time [minutes]

Time since last change [minutes]

Figure 8.19. Activity time plotted against the time of the last change for
issues and alternatives (EP, SAW) (M5, M6). The red line in Figure marks the
maximum possible activity time that could occur during the design workshop.

142 8.3 Results

Metric 6 — Time since last change
Domain: Issue, Alternative, Position, Scale: Ratio, Range: [O,N]

This metric calculates the time elapsed since the last recorded event related to
the particular decision item. The time reference would be either the current time
for live measurements, or the end of the time-frame for a time-boxed experiment.

The histogram of the time since last change for the design issues and alterna-
tives (Figure 8.18) reveals that within the first 20 minutes of the workshop (right
part of the chart), there is more activity done by the users supported by SAW,
than those using EP. Otherwise, the histogram presents a rather even distribution
of the time since last change, in particular when compared with activity time
(see Figure[8.13).

In Figure we can observe precisely the distribution of the activity time
for issues and alternatives in relation to the time since last change. The straight
line cutting thought the chart is a maximum possible activity time for the item
created at a particular moment of the design workshop, with an assumption of
the 90-minute-long session. An outlier, laying over the maximum activity time,
that consists of one SAW issue and one SAW alternative can be spotted. We have
decided to include it in the dataset as it made an important contribution to the
design. It can be observed that there are a number of items with the time since
last change close to zero and non-zero activity time. This can be interpreted as
last-minute changes that were done just before the design workshop finished.

Figures and present an analysis analogous to the one we presented
for the activity time. The even distribution of nodes on the scatter charts confirms
the rather even pace of the design workshop. Again the update count data reveals
a significant disparity between the records for the EP and the SAW, which cannot
be interpreted because of the differences in the data acquisition (see Metric 5,
Figures and and Section [7.2.1)).

An analysis performed with Metric 6 (time since the last change) shows that
the designers’ activity was distributed very evenly throughout the time of the
design workshop (see Figure|8.18)).

143 8.3 Results
T :
= ® ° ° e FP
3~ d4f - e SAW |
o 9
0:;‘ é ¢ o® e ° ° ° ° ° oo o
"% o 2bE----- o000 --00-0-® -®-0--0- - ®--0-® - @ - - - --——-———
) 9]
jagpna
g~ ° ° o0 ° ° °
< U ¢ T e e b L L
0 10 20 30 40 50 60 70 80 90
°
6Fr-------- T it
[e o
@ 540 —————————————————— ®------- *o -0 - ---—---- 0--————— - - - -
= ©
m Y e e o o o ° °
2f--¢--0-@@--—--------- o -@--—- - * - - @0 0 0 - - ® - --------—]
> oo o o o ¢ e 000 o o . o |
0 10 20 30 40 50 60 70 80 90
6F-------- e e
° °
& w4e------------- @---------———- * e ------—-—-—-—-- L R,
< 5 .
9 O
8 OQb------ - e-0--—---- o e0o-0 - * - -0- @8 - - - R
P e o o ° ® o0 o ° ° o@
Oe----- c‘——to—‘——o———f—l—f—t——e‘ ————— o—‘ —————— ‘——0————‘ ———————
0 10 20 30 40 50 60 70 80 90
150 F-————"—--————- A T ——— I —— E—— FEEEEEEE R o —
g
2 100
O
=
_g 50 ””””””*”””””.*”””””*”””’ ***** e
% ¢ o. .:. 3 * ®e °
0 ”’4‘070707‘00970”‘-47"00”0‘7174.‘..7&7‘7 777777 o
0 10 20 30 40 50 60 70 80 90

Time since last change [minutes]

Figure 8.20. Properties of design issues plotted against the time since last
change for the EP and the SAW (M6)

144 8.3 Results
o 6 ® O EP
e _ 6 O -
gfg . o SAW
© A e R i
= A
S = ° ° ° e o
= 226 o - - *0---®O--0------ ® - - @ - mmmm—mm— -]
L =~ 00 000 o o e ® o o ° Y)
Opo®@e o @ oo @ ow@o oo o @ @eo @ 00
0 10 20 30 40 50 60 70 80 90
6Fr-------- e e e
° °
gg4 @
.L—g S ° ° e o o e o o e oo
20060 - - 0@ 0- 0 -9 W ® O W 060 S0 O~~~ —|
O@mee 00 © ®moeem o @o 00 o @ wmme c@ 000
0 10 20 30 40 50 60 70 80
°
- 4-------- R e e
g =
g g ° ° °
© S526----0--0---—- o o - -© O ® - oo @ |
= ®@ o0 00m o o e ® o o ° ewoose®)
(o @e o @ oo mow@oce o @ @es @ 00
0 10 20 30 40 50 60 70 80 9
T
°
B 40| ---mmmmmemememee oo 8o
: ..]
£ 20f----memmeemeee- S LT EREEERE
—8-. ® . ®
-] e ©® % [; ° ®
0,4**9910,‘”m?. “gl,t,,,‘,a,“o‘ogl,‘,+,t,‘ ,,,,,,,
0 10 20 30 40 50 60 70 80

90

Time since last change [minutes]

Figure 8.21. Properties of design alternatives plotted against the time since the
last change for EP and SAW (M6)

145 8.3 Results

Metric 7 — Position type count
Parameter: position type, Domain: Decision, Scale: Ratio, Range: [O,N]

The decision meta-model specifies the types of the positions that users state
about the architecture decision. In the particular meta-model that we adopted,
we distinguish: positive (accept), negative (reject), and open (neutral) positions.
This metric takes a particular decision type as a parameter and returns the number
of positions of this type that were contributed to the decision.

In Figure 8.22| we present the number of positions recorded in the consecutive
experimental runs. It is noticeable that this number varies greatly, in particular for
the EP. Figure shows that more than half of the decisions have no positions
related to them. In the following categories, it is noticeable that the relative
frequency of decisions decreases for categories with a growing number of positions.
For the SAW, a long-tail effect, similar to the one observed for Metric 5 (number
of decision makers), can be observed. In Figure we show the distribution
of the choice states within the categories. Surprisingly, for categories with four or
more positions, are all in the aligned choice state.

This result can be contrasted against Metric 7 (position type count — see
Figure[8.23), showing that more than half (51% for both the EP and the SAW) of
the decisions have no positions. This is a strong indicator that the decision model
is far from being complete, from a consensus point of view. It can be observed
that for categories representing between one and three decisions, the relative
frequency of decisions for the EP is higher. For the SAW, this effect is compensated
in categories with four or more positions.

In Figure it can be seen that decisions with no positions, by definition are
in a no positions consensus state, whereas those with one position are always
aligned. A category with two positions opens the chance of position collision,
which is reflected in the mixed composition of aligned and colliding consensus
states in this category. Interestingly, all decisions that have three positions are in a
colliding state. This might suggest that within the limits of the design workshop
there was not enough time for decision makers to revisit and reconsider their
positions to reach a consensus. Surprisingly, all decisions with more than four
positions are in the aligned state. This can be the result of timid team members
following the lead of the main architect and reconfirming his judgment. Within
the categories in which comparable data is available, the difference in the relative
frequencies of consensus state between the EP and the SAW is not significant
enough to draw conclusions.

146 8.3 Results
30 T ‘
1 B positive
a 3 O Negative
g 1 B open
R e T i
o |
a, |
(- |
S) |
g
= 0r---§g------+--------&@&---------&g& - —
=3
Z,
0
Run1 Run 2 Run 3 Run 4 Run 5
(0,20) (0,6) (28,5) (12,4) (0,13)

Figure 8.22. Number of positions with distinctive types, in consecutive ex-
perimental runs for the EP (left bar) and the SAW (right bar) respectively

(M7)
50%
& 40%
=
]
&
£ 30%
]
E
5 20%
E
10%

0%

feep OEsaw | |

mom m om
4 5 6 7 8

3
(29,25)16,12) (9,7) (2,1) (0,1) (0,1) (0,1) (0,1) (0,0)

0 1 2

Number of positions (frequency EB SAW)

Figure 8.23. Histogram for number of positions per decision (alternative). In
parentheses we provide population count in the categories for the EP and the
SAW respectively (M7)

147 8.3 Results

Metric 8 — Consensus state

Domain: Decision Scale: Ordinal Range: {no positions, aligned, colliding, sealed}
The positions contributed to the decision can be aligned in a variety of ways.

As introduced earlier in Section |5.1.2) we distinguish the following elementary

consensus (alignment) states:

no positions — when the number of positions is equal to zero,
aligned - all positions in the context of the decision are of the same type,
colliding - positions of more than one type exist,

sealed - a single position was chosen to settle the argument and seal the decision,
preventing the addition of further positions (not represented in the dataset).

Decisions with aligned or sealed positions are said to be decided for a particular
decision type (for example decided positive). This metric aggregates over all
position types the previous Metric 7 to compute the current consensus state of a
particular decision based on the previously defined rules.

In Figure |8.24{ we can see how decision consensus depends on the number of
positions on the decision. Concerning the first two categories, these are derived
directly from the state definitions (0 positions = no positions; 1 position = aligned
by definition, see Section[7.1.2). As expected two or more positions allow for
conflicts. Still, as already observed for the previous Metric 7 (position type
count), decisions with a large number of positions (4-7) are all aligned; this
might be an artifact caused by the small size of the population in our sample.

The total number of analyzed decisions was 105, with 56 from the EP and
49 from the SAW. The overall share of decisions without positions was 51% (EP:
52%, SAW: 51%), another 7% (EP: 9%, SAW: 4%) had a colliding set of positions,
and finally 42% (EP: 39%, SAW: 45%) had aligned positions.

Considering the consensus state of the decisions (Metric 8) presented in
Figure it can be noticed that both for the EP and the SAW the relative
number of decisions with aligned positions is higher than the relative number of
positions in a colliding state.

148 8.3 Results

100%
7 o positions
90% |- B coliding

aligned

80% -

70% |-

60% [-

50% -

40% |-

Relative frequency

30% |-

20% -

10% |-

0%

(29,25) (16,12) (9,7 (2,1 (0,1 (O (©,1) O

Number of positions (frequency EB SAW)

Figure 8.24. Proportion of the consensus states in relation to the number of
positions. Two bars for each category represent values for the EP (left bar) and
the SAW (right bar) respectively (M8)

149 8.3 Results

100%
Bno positions
>’ . .
o 80% - i i - O colliding |
g B aligned
S 60% |- s N .
H
2 40% |- S T N T .
ks
g 20% - - - R PRl 771 I =
0% ‘ ‘
’ 2 3 4 5 6
(5,3) (9,11) (8,7) (1,0) (1,2) (0,0

Number of alternatives (frequency EB SAW)

Figure 8.25. Proportion of the consensus states for alternatives in relation
to the number of alternatives related to a design issue for EP (left bar) and
SAW (right bar). Alternative counts in the respective category are provided in
parentheses (M9)

Metric 9 — Decision consensus state count
Parameter: consensus state, Domain: Issue, Scale: Ratio, Range: [O,N]

Building upon Metric 8, this metric counts the number of decisions with
positions aligned in the given consensus state. The metric is applicable to a design
issue, but it may also reveal interesting features when its values are aggregated
over a broader, project-level scope.

The number of decisions that have reached a given consensus state can be
observed in relationship to the number of alternatives that need to be chosen.
In Figure [8.25/we can see that independently of the number of alternatives, a
significant number of alternatives (and thus decisions) remain without positions.
Interestingly, it can be observed that decisions with aligned positions occur only
for design issues with three or more alternatives.

Analyzing the results of Metric 9 (Figure [8.25]), we noticed that, surprisingly,
the share of decisions with no positions decreases with the number of alternatives
related to the design issue. Moreover, the decisions with an aligned set of positions
occur for the design issues with three and more alternatives. This might suggest
that some design issues draw less designers’ attention and, therefore, are related
to fewer alternatives and decisions over these alternatives are often not aligned.
Other issues, drawing more designers’ attention, are related to more alternatives
and their decisions are more aligned.

150 8.3 Results

Metric 10 — Choice state
Domain: Issue, Scale: Ratio, Range: {no alternatives, no positions, incomplete,
conclusive, inconclusive, warring }

A design issue under consideration, depending on the design alternatives
addressing it and their consensus state (see Metric 8), can take one of the following
choice states:

no alternatives — there are no alternatives addressing the given issue,

no positions — there are alternatives addressing the issue, but all corresponding
decisions are without positions,

incomplete - there are positions addressing the issue’s decisions, but there is at
least one decision for which the positions are not aligned,

conclusive — all decisions are in the aligned consensus state, precisely one is
decided positive, and all others are decided negative,

inconclusive - there is more than one decision decided as positive or open,

warring - all decisions are aligned with the negative position type.

The last three choice states are all referred to as complete choices. Also, in this
case, Metric 10 aggregates the values of Metric 9 over all decisions associated
with a given issue.

In Figure we show how the choice state depends on the number of
alternatives related to the design issue. As per definition (see Section [5.1.2),
issues in the first category (0) are in the no alternatives choice state. For issues
with one alternative (category 1) are the majority of issues have no positions,
whereas the remainder (by definition) is in the complete choice state. For design
issues with two or more alternatives, it is noticeable that a complete choice is
less prevalent and replaced by an incomplete choice. Interestingly, our analysis
has found a case of one design issue with five design alternatives but no positions
related to it.

Moreover, the choice state (Metric 10) presented in Figure [8.26] shows that
the relative number of incomplete choices grows with the number of alternatives.
This might indicate that, due to time pressure, decision makers could more easily
afford to tackle the issues with fewer alternatives, which are typically easier to
address, than the issues with a larger number of alternatives, that require more
consensus building effort.

151 8.3 Results

100% :
H o alternatives
> 80% - (B no positions
2 B incomplete
3 1
5 o L - complete
g 60%
[t
o
> 40%-ZE--2hkl- a8l] =B =- - "=l - —
—
o)
o)
~20%n-ZH@ CH L CEH 2 =S =
0% ! !

0 1 2 3 4 5 6 7
7, 63 611D @67 (1,00 (1,2 (0,00 (0,0
Number of alternatives (frequency EB SAW)

Figure 8.26. Proportion of the choice states in relation to the number of
alternatives for the EP (left bar) and the SAW (right bar). Issue counts for the
categories are provided in parentheses (M10)

100%

80% B o positions
O aligned
B colliding

60%

40%

Relative frequency

20%

0% > . Iy
no positions aligned colliding all

(29,25) (22,22) (5,2) (56,49)
Final consensus state (frequency EB SAW)

Figure 8.27. Relative amount of time that decisions spent in the consensus state,
in relation to their final consensus state for the EP (right bar) and the SAW
(left bar). Respective decision counts for each consensus state are provided in
parentheses (M11)

152 8.3 Results

Metric 11 — Relative consensus state timespan
Parameter: consensus state, Domain: Decision, Scale: Ratio, Range: %

Within its lifecycle, the design decision traverses some of the consensus states
specified in the context of Metric 8. For the purpose of investigating the dynamics
of the decision-making process, it is interesting in particular to observe the timing
of the transitions between these states. This metric accepts a consensus state as a
parameter and calculates an amount of time a particular decision has spent in
this state. The calculated value is returned as a relation to the overall time-span
of a particular design decision (Metric 5).

The amount of time that each decision spends in a given consensus state can
be observed depending on the final consensus state that it will eventually reach.
In Figure[8.27 we can observe that decisions whose final consensus state is no
positions are not visiting any other states (compare Metric 14). Similarly, with
decisions in an aligned state, the only other visited state is no positions. Finally,
the decisions with the colliding final state remain for some time in both the no
positions and aligned states. The general observation that can be drawn from
the fact that the state in which decisions spent most of time is consistent with
their final consensus state decisions change their consensus state mostly towards
the beginning of their lifecycle.

Analyzing the values of relative consensus timespan (Metric 11), it is visible
that the final consensus state of the decision correlates with the consensus state
that decision occupies the majority of the time. This can be straightforward
interpreted as good for the decisions in the aligned state, but also means that
colliding decisions remain colliding forever. In fact, analyzing Metric 14, we
haven’t found any case of the decision that would turn from the colliding state
back to aligned.

153 8.3 Results

Metric 12 — Relative choice state timespan
Parameter: consensus state, Domain: Issue, Scale: Ratio, Range: %

The design issue lifecycle consists of choice states defined in the context
of Metric 10. This metric, given a particular choice state as a parameter, and
analogously to Metric 12, calculates the relative amount of time that the design
issue has spent in it.

Also, in this case, we show the amount of time that each issue spends in a
given choice state as a function of the final choice state of the issue. As pictured
in Figure the design issues that have a final state of no alternatives, no
positions, or complete show no surprising behavior (see Metric 11). An inter-
esting behavior can be observed in the bar representing the incomplete final
choice state since it shows that 5% of the time was spent in the complete choice
state. This can be a result of having reached the complete choice state before
a new design alternative was proposed, which would flip the choice state back
to incomplete. Similarly, to the observation made for Metric 11, judging by the
correspondence of the state with the largest timespan and the final choice state,
it is apparent that issues change their choice state mostly towards the beginning
of their lifecycle.

An inspection of the choice state timespan (Metric 12) and state transition
count (Metric 15) shows very similar behavior, namely, that in most of the cases
issues spent a major part of their timespan in their final choice state.

154 8.3 Results

100%

90%

. no alternatives

80%

B no positions

70% B incomplete
i

complete

60%

50%

40%

Relative frequency

30%

20%

10%

0% - > .
no alternatives no positions incomplete complete all

(7,1) (11,7) (8,12) 5,4 (31,24)

Final choice state (frequency EB SAW)

Figure 8.28. Relative amount of time that issues spent in the choice state, in
relation to their final choice state for the EP (left bar) and the SAW (right bar).
Issue counts in respective categories are provided in parentheses (M12)

155 8.3 Results

Metric 13 — Time since last position
Domain: Issue, Decision, Scale: Ratio, Range: [0,T]

The design issue lifecycle consists of choice states defined in the context
of Metric 10. This metric, given a particular choice state as a parameter, and
analogously to Metric 12, calculates the relative amount of time that the design
issue has spent in it.

The time since a position was expressed does not appear uniformly distributed
(Figure [8.29). As already observed, the majority of alternatives (and thus de-
cisions) have no positions related to them (see Metric 7 — position count, Fig-
ure in particular). The number of design issues with no positions appears
to be significantly higher for the EP (58%) than for the SAW (33%). In most of
the remaining time-bins, the relative frequency of design issues is higher for the
SAW than for the EP

It seems that very few positions were expressed at the beginning of the work-
shop (time since last position over 80 minutes), as well as at the end of the
workshop (time since last position under 10 minutes). A slight peak of occur-
rences exists in the range between 30 and 40 minutes.

There is no clear pattern emerging in the scatter charts showing the rela-
tionship between the alternative count and deciders count for design issues
(Figure [8.30). In the charts presenting the relations of the position count and
deciders count with the time since last position (Figure [8.31), a large number
of high-ranking occurrences can be observed in the aforementioned time-range
(30-40 minutes).

In Figure we present an analysis of consensus states in relation to the
time since last position. By definition, decisions without positions are in the no
positions state. For all other categories, it can be observed that the vast majority
of decisions have positions in the aligned consensus state. We could not find
a consistent trend in the relation between the time since last position and the
consensus state.

Similarly, but for design issues, in Figure|8.32|we present the relation between
the time since last position and the choice state of the design issue. Per definition
no alternatives and no positions choice states are possible only for design issues
without user positions. All other categories show a mixture of incomplete and
complete choice states. However, no clear trend or pattern is emerging in the
chart.

Finally, an inspection of the time when the last positions are stated (Metric 13,
Figure [8.29) shows that the time-distribution of decisions made throughout the
design workshop is relatively even, with a slight bump around the mid-point

156 8.3 Results

of the workshop. There is no significant growth of last-position counts towards
the end of the workshop, which means that the decision making was not rushed
towards the end.

Metric 14 — Consensus state transition count
Domain: Decision, Scale: Ratio, Range: [O,N]

The consensus state on a given design decision traverses multiple states (de-
fined for Metric 8). This metric calculates the number of state transitions. The
reason for an increase in the number of consensus state transitions would be, for
example, that newly added and/or revoked positions would make the state flip
between aligned and colliding.

Figure presents a histogram of consensus state transitions. The numbers
in parentheses represent the size of the population, in terms of the number
of decisions. Decision creation is accounted for as the first state change. The
investigation of the relation between the number of consensus state changes and
the final consensus state shows that all decisions in the no positions state have
exactly one transition, decisions in the aligned state have exactly two transitions,
and decisions in the colliding states have precisely three transitions. In the context
of the decision life-cycle (see Section and Figure [5.6), this implies that the
consensus state was not particularly volatile during the design workshops.

Metric 15 — Choice state transition count

Domain: Issue, Scale: Ratio, Range: [O,N]

Like Metric 14, this metric calculates the number of state transitions of the choice
state (as defined in the context of Metric 10) for a given design issue.

The design issue creation leaves it in the no alternatives choice state. The first
transition occurs when an alternative is related to the design issue, thus changing
its choice state to no positions. Depending on the number of alternatives, with
the first position stated, the design issue transitions either to the complete state,
in cases in which there is only one alternative, or to the incomplete choice state
if there are multiple alternatives. Following that, further changes in the positions
can make the choice state travel between any of the aforementioned states.

Analogously to Metric 14 (consensus state transition count), but referring to
the design issue life-cycle (Figure [5.7), in Figure [8.35 we present a histogram
of the choice state transitions within the population of the design issues. In this
figure, it can be observed that the majority of the design issues for the SAW has
between one and three transitions, whereas for the EP most of the design issues
have zero or one transition.

157 8.3 Results
B IssuesEP
s00 |l @ BB ssues saw ||
B 40% |- - Q- ----- - mm oo e m o e e
[
3]
5
o
H 30% |- -l -
)
=
g~
L 20% - BBl -------------- -t
10%H-------- - ------"-"W-----"-"-"-""""-"-"----
0% \
none (-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89
(18,8) (0,1) (3,1) (1,1) (2,49 (2,2) (2,3) (1,2) (0,2) (0,0)
S0% @l U8 Alternatives EP | |
B Alternatives SAW
40%
)
19
=
3]
2 30%
9]
&
)
2
< 20%
&

10%

0%

none

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89
(29,25)(1,3) (4,1 (5,1) (4,6) (522) (43) (2,5 (0,3) (0,0)
Range of time since the last position for category [minutes]

Figure 8.29. Histogram of time elapsed since the last position for issues (up-
per chart) and alternatives (lower chart) in the EP and the SAW. Issue and
alternative counts for respective categories are provided in parentheses (M13)

158 8.3 Results

= o o ;EP
sS4l - *SAW | |
v 2
E L e e ° ° ° ° oo o o °
< M~
=) [«P]
5 S 2 -0 - ——-—-- o - - - - ® - - - -@&------- »-00---- @& - ——----————
< | * ® | i | | |
0 10 20 30 40 50 60 70 80 90
6l - T e S o]
° °
g 2 4e
c4e- - - -~ 0 - - - @ - - - - - ---—-- @ - oo
ok
D O ®
)
2F------ .- 0-0-----—---- ® - ----—-—----- o om0 - - - - - *--@------—
° i | | ° ¢ il | |

Time since last position [minutes]

Figure 8.30. Number of alternatives (per issue) and number of deciders plotted
for design issues in relation to the time since the last position for the EP and
the SAW (M13)

° o EP
o SAW ||

(@)
T
1
1
1
|
|
|
|
|
|
|
|
1
1
1
!
[}
|
|
|
|
|
1
1
1
|
|
|
|
|
|
|
|
1
1
1
|
|
|
|
|
|
|
1
1
1
|
|
|
|
|

Position count
(per alternative)
O] N
LA
1 o
° 1
° 1
s .
° 1
° 1
° |
¢ |
¢
I I

°
(7 T 4 A e |
gt
FU E
25 8 [®
U O
A 280 - --——--—-—————— - ----- o -0--@®--——- oo ---@---—---- * - -----—

o © 00 oe® o e e ® o o ° omecse® o e

|
0 10 20 30 40 50 60 70 80 90
Time since last position [minutes]
Figure 8.31. Number of positions (per decision) and number of deciders plotted

for design alternatives in relation to the time since the last position for the EP
and the SAW (M13)

159 8.3 Results

100% : |
> o B o alternatives
% 80% 1B no positions
=} .

g 60% N E incomplete
H complete
can il BH:BHEHEBEIIEH H B 7]
i)
=
c20% 21| HEEHEEHEBEEH=H BH B -

|

0%
®hone 0.9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89

(18,8) (0,1) (3,1) (1,1) (2,4) (2,2) (2,3) (1,2) (0,2) (0,0)

Time since last position [minutes]

Figure 8.32. A proportion of the design issue choice states in relation to the time
elapsed since the last position for the EP (left bar) and the SAW (right bar).
In parentheses we provide the absolute count of issues in particular categories
(M13)

100% \ |
t:f' 80% |- ~Bno positions
5 § colliding
g 60% |- -18 aligned
N
can ZHEEHEEH-HEEHEI I =EB=H H |
=
c2ont-ZHE=IIEE HEEH [l =H=H & -

0%

none 0.9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89
(29,25)(1,3) (4,1) (5,1) (4,6) (52) (43) (2,5) (0,3) (0,0)

Time since last position [minutes]

Figure 8.33. A proportion of the alternative states in relation to the time
elapsed since the last position for the EP (left bar) and the SAW (right bar). In
parentheses we provide the absolute count of alternatives in particular categories
(M13)

160 8.3 Results

30% \ |
d8 Alternatives EP
E’ 0B Alternatives SAW
5 2% @ Mmoo
b}
S
5 10% g
E Y R
0% = = =
1 2 3 4
(29,25) (22,20) (5,1) (0,2) (0,1)

Number of consensus state transitions (frequency EB SAW)

Figure 8.34. Histogram of the number of consensus state transitions for the alter-
natives. Alternative counts in respective categories are provided in parentheses

(M14)

Figure presents the proportions of the final choice state in relation to the
number of transitions. From the observation that the choice state no alternatives
applies only to issues with one choice state change, it can be inferred that no
alternatives nor positions were deleted in the process. Similarly, from the fact
that the no positions choice state applies only to design issues with two choice
state transitions, it can be inferred that no positions were revoked. The fact that
some design issues have more than four state changes (the minimum to reach a
complete choice) indicates that the choice state has flipped at least once during
the time-frame of the design workshop.

An inspection of the choice state timespan (Metric 12) and state transition
count (Metric 15) shows very similar behavior, namely, that in most of the cases,
the issues spent a major part of their timespan in their final choice state. There
is a slight difference in behavior, however, insofar as a minor amount of design
issues (7%) actually turned from the complete into the incomplete choice state.
Observing Metric 15 in Figure [8.35| one can notice that the maximal observed
number of choice state transitions reached five, which means at most two choice
state flips. This indicates that choice volatility was not particularly high.

161 8.3 Results
15% ‘ ‘
Be Issues EP
? 0o ssues saw
s 1% 2 = -
(D]
&
g
'g 5% % - B | R 1
e
0% T \

0 1 2

(7,1) (AL7) (6,100 (3,3) (5,1 (0,1) (0,1)

3

4 5

6 7 8
(0,0) (0,0

Number of choice state transitions (frequency EB SAW)

Figure 8.35. Histogram for number of choice state transitions of issues. Issue
counts in respective categories are provided in parentheses (M15)

Relative frequency

100%

o)
S
>

60%
40%
20%

0%

0 1 2
(7,1 (11,7 (5,100 (3,3) (5,1) (0,1) (0,1) (0,00 (0,0

ot o o o o o a o o a2

3

A no alternatives
B no positions [
B colliding
B aligned

4 5

6 7 8

Number of choice state transitions (frequency EB SAW)

Figure 8.36. Proportion of the final choice states in relation to the number of
choice state transitions for the EP (left bar) and the SAW (right bar). Issue
counts for respective categories are provided in parentheses (M15)

162 8.4 Interpretation

8.4 Interpretation

In this section revisit the interpretation model that we have introduced in Sec-
tion and apply it to the presented results. In order to progress systematically,
we follow the three questions that we stated in Section|(7.1.1

8.4.1 Question 1: How aligned are the decisions?

Observing results of Metric 7 (see Figure|8.22) it can be noticed that the position
alignment for the decisions with few positions (2-3) is very similar for SAW and
EP The result for decisions with more than three positions that we recorded for
SAW shows that they are all in the aligned consensus state (see Figure [8.24).
These decisions have most likely drew the most of attention. The fact that we did
not record any decisions with more than three positions for EP can be interpreted
as the preference of (decision) quantity over quality of argumentation.

In the context of the design issue, the alignment of individual decisions impacts
the choice state of a design issue. Seeing a relationship between a number of
alternatives and consensus state of them (see Figure , it can be noticed that
the proportion of consensus states does not change significantly and does not
depend on the tool type (EB SAW). It can be also observed that the decisions with
aligned consensus state occur only for issues with more than two alternatives. This
can be interpreted as focusing on the complex issues that happens independently
of used tooling.

8.4.2 Question 2: How volatile is the consensus over the decisions?

Analyzing the consensus state timespan (Metric 11, see Figure[8.27) we have
observed quite a linear progression of decisions through the consensus state ma-
chine. That is, we did not observe any decision returning from the colliding state
back to the aligned state. Combined with rather short activity timespan (Metric 5,
see Figure[8.13), this can be interpreted as immaturity and incompleteness of the
decision model. The flat distribution of the time since the last change (Metric 6,
see Figure|8.18) suggests that architects kept capturing new decisions all through
the design workshop. We expect that given more time for considerations, the
architects would revisit and refine their decisions effectively increasing observed
volatility.

In terms of impact of tooling on the consensus volatility, it can be noticed that
population of design issues and alternatives, with activity time over 10 minutes
and in particular in range over 20 minutes, is larger for SAW than its equivalent for

163 8.4 Interpretation

EP. (Metric 5, see Figure [8.16). In Figure can be observed that the position
count for the design alternatives registered by the SAW is significantly higher
than the number registered by the EP. A similar trend is visible for the number
of deciders for design alternatives. Surprisingly, a converse dynamic is visible
for the number of deciders for design issues. A much less pronounced difference
between the number of editors is visible both for issues and alternatives. Looking
at the alternative count, it is visible that for the SAW the number increases
slightly with the cut-off time, whereas for the EP value oscillates only slightly.

We interpret this as an effect of SAW helping architects to focus on specific
topics for longer, without increasing consensus volatility. Unfortunately, as can be
observed in Figure the categories’ population for long cut-off times are rather
low; therefore, the standard deviation calculated for the items in the category
is large. Without more data points, it is difficult to draw significant conclusions
from observations made here.

8.4.3 Question 3: How democratic are the decisions?

Observing stakeholder involvement in capturing decisions (Metric 3, Figure [8.7)
it can be noticed that the number of issues and alternatives captured and edited
by more than four architects is significantly higher for SAW than for EP. Similarly,
the participation in decision making (Metric 4, see Figure is significantly
higher for saw when looking at design issues, but not when looking at design
alternatives. This needs to be interpreted in relation to the number of alternatives
per issue (Metric 2, see Figure that is significantly higher for SAW than for
EP

We read this as a sign for low degree of participation in both decision capturing
and making, with a slight advantage for decisions captured with SAW. We found
it quite surprising that decisions involving a large number of decision makers are
dominantly aligned. This observation reconfirms the observation we’ve made
while analyzing other questions, which is that more effort has been invested in
particularly complex issues, leaving other ones with less attention.

In terms of decision making strategy, we did not identify a single stakeholder
that would dominate the decision making process, therefore definitively cannot
speak about the authoritative strategy. On the other hand, as pointed out ear-
lier, the participation rate was relatively low, so we cannot speak about fully
collaborative design. Finally, we did not observe a high rate of conclusive choices,
characteristic for the competitive design strategy. Consequently, we interpret
the dynamics of the architecture workshops as a phase of a mixture between
competitive and collaborative strategies.

164 8.5 Summary

8.5 Summary

In our exploratory study, we have compared the structure and dynamics of decision
models recorded during architecture workshops supported by two tools: the
Software Architecture Warehouse and the EtherPad. Both tools provide low-
latency support for collaboration in small teams and are suitable for assisting
remote and collocated design workshops. The core difference between the SAW
and the EP lies in the way the decision model structure is imposed on the recorded
data. The SAW uses an explicit decision meta-model, whereas the EP relies on
an implicit one (see Section [3.3.3)). The breadth of characteristics covered by
the framework of metrics that we devised allowed us to investigate the quality
of the collaborative architecture decision making process in a comprehensive,
multi-dimensional manner.

In reference to our thesis (see Section [4.3)), the results that we presented
suggest that in fact there exists an noticeable difference in the structure and
dynamics of the decision models recorded during the workshops assisted by the
respective tools. In the following sections, we thoroughly discuss the threats to
the validity of our observations.

8.6 Threats to Validity

The quasi-experiment that we conducted for the purpose of our study is funda-
mentally burdened by limitations to its validity. Threats to its validity come from
three sources [[CS63), [SCCOT/], namely, internal, construct, and external.

8.6.1 Internal Validity

The internal threats to validity are threats against the utility of the experiment for
demonstrating the causality that is promised by our thesis (see Section 4.3)). The
variable in the experimental set-up that we have prepared is the degree to which
the structure of the recorded decision model is forced on the design team by the
tool assisting the decision making process. In order to estimate the influence
of the variable on the dynamics of the design process, we have established two
set-ups. The base-line set-up provided designers with free-form collaboration
features, whereas the investigated scenario included the Software Architecture
Warehouse operated within a predefined decision model structure. In order to
assure the internal validity of the experiment/observation, it was crucial that both
set-ups provided with conditions differentiated only by the investigated variable.
To this end, we have devised a number of means to guarantee fair comparison of

165 8.6 Threats to Validity

the groups, working in both set-ups. The first major threat to the comparability of
the set-ups could be having non-even populations of designers. We have mitigated
this problem by using a key to assign students to either group. In order to assure
a balance of skills in both groups we have used the score of a mid-term exam and
mixed teams in such a way that the total score set was even.

Another strategy that we have used to assure the comparability of the results
was to perform design exercise sessions at exactly the same time so that no
information could be leaked between the groups. Additionally, in order to avoid
the situations in which a particular design topic matched the expertise of given
group, we have repeated the design exercises with a range of systems to be
designed. Finally, the participants were not informed beforehand which set-
up they were going to participate in, thus implementing the blinding principle
(see [ISel11l][Chapter 8]).

A significant threat to the internal validity of our observations comes from the
small population counts that make it difficult or impossible to draw conclusions
with high statistical significance. This is particularly the case for the investigations
of the decision items with a long activity time (Metric 5). With this in mind, our
results need to be interpreted as the results of an exploratory research. In order
to provide high statistical confidence, our analysis would require a significantly
larger dataset.

8.6.2 Construct Validity

In order to quantify the qualities of the decision model and the dynamics of the
decision making process, we have devised a number of metrics (see Section[7.1.2).
The goal of the evaluation that we have performed is to demonstrate the appli-
cability of the argumentation decision metrics to the data recorded during the
architecture design workshops.

The metrics provide the raw input that needs to be interpreted. In Section|7.1.3
we have provided an interpretation model suitable for analyzing both set-ups
individually and for distilling differences between them. The combination of
well-defined metrics together with the interpretation model assures construct
validity.

8.6.3 External Validity

The external threats to validity question the potential for generalizing the re-
sults obtained in the experimental set-up to the in-situ environment. This is, in
fact, a serious issue that many experiments in software engineering are facing.

166 8.6 Threats to Validity

van Heesch and Avgeriou in [VHA10] and [VHAT1l] discuss in detail differences
between so-called Naive and Mature architecting. In fact, our experimental con-
ditions are close to the Naive architecting mode. We cannot claim anything about
the transferability of these results to the Mature architecting mode. Performing
similar experiments on the population of “Mature” architects was unfeasible for a
number of reasons. First of all, the time of experienced software architects is a
very valuable resource. Second, the level of expertise and experience among the
profession architects is very diverse. It would be very difficult, if not impossible, to
create two design teams with comparable potential to perform our experiments.

Another external threat to validity comes from the fact that we have used a
dummy set of exercises instead of real-world problems. We have made a conscious
decision about it, because this way we were in full control of the scope of the
problem and the feasibility of the solution. In fact, the exercise execution time
constraints and logistics such as parallel execution would have made it very
difficult to use real-world projects.

Chapter 9

Conclusions

Software systems are encompassing our daily life. Many of them are designed
to make it easier by transferring complexity from real-life into the data and
processes inside the system. As much as this internal complexity can be hidden
from the end-user, it is inevitably absorbed by its design. Software architecture,
being an abstraction over the software design, helps to divide and conquer design
complexity, but does not remove it altogether. In fact, software architecture design
sets very high requirements on the architects’ work quality, because of the high
impact that it has on the final shape of the system. The breadth and depth of the
expertise required to deliver an architecture design often requires the effective
collaboration of multiple domain specialists.

The modern way of looking at software architecture is to consider it as a set
of principal design decisions [JBO5]]. This implies that the quality of architecture
design translates directly to the quality of architecture design decisions. This ob-
servation has guided our investigation of how to estimate and assure high quality
of collaborative architecture decisions. We have followed a heuristic for decision
quality that relies on decision makers being 1) smart and 2) well informed.
The collaborative decisions introduce a third factor, namely consensuality. Our
research on architecture decision argumentation modeling and the dynamics of
the decision making process is paving the way towards a better understanding of
the quality of collaborative architecture decisions and thereby, ultimately, towards
better software design.

9.1 Summary

In this dissertation, we thoroughly explored the design space of collaborative
software architecture decision making support tools, and within this space we

167

168 9.2 Contributions

identified a desirable combination of decisions that later served for us as a foun-
dation for the design of the Software Architecture Warehouse. Next, we reviewed
a number of architecture decision meta-models and observed that none of them
offers support for detailed decision argumentation modeling. Therefore, we have
devised an argumentation viewpoint extension to the ISO 42010 architecture
description standard. The Software Architecture Warehouse was tailored to fully
support the argumentation viewpoint. Within the framework of the argumen-
tation viewpoint we identified a decision consensus lifecycle and a design issue
choice state lifecycle. Following that, we specified a framework of fifteen metrics
suitable for estimating structure and dynamics of architecture decision models
with argumentation. Next, we implemented and applied the framework of deci-
sion argumentation metrics to the experimental data acquired during a series of
in-class architecture design workshops.

9.2 Contributions

This dissertation makes several contributions that we summarize as follows:

Design Space of Tools SupportingCollaborative Software Architecture Decisions

We surveyed seventeen tools suitable for supporting software architects in
the process of collaborative design decision making. The tools ranged from
generic, real-time collaborative editors to specialized software architecture
modeling suites. As a result, we have obtained a design space with seven
design issues and nineteen design alternatives that constitutes a reusable
asset for the design of future generation tools.

Architecture Decision Argumentation Viewpoint
We defined an argumentation viewpoint extension to the ISO 42010 architec-
ture description standard. Its main goal is to provide precise representation
for designer positions and thereby make it possible to explicitly represent
the consensus of design decisions. On the basis of the viewpoint positions,
we defined a decision consensus lifecycle and a design issue choice state
machine.

Architecture Decision Argumentation Metrics
Within the framework of the decision argumentation viewpoint, we defined
a suite of fifteen metrics suitable for estimating structure and dynamics of
software architecture decisions, with particular focus on decision argumen-
tation.

169 9.3 Limitations

The Software Architecture Warehouse
We implemented a web application designed to support collaborative ar-
chitecture decision making for architecture design workshops in collocated
and distributed configurations. The Software Architecture Warehouse fully
implements the decision argumentation viewpoint. Additionally we imple-
mented an analyzer that realizes the argumentation metrics that we defined
earlier.

In-class Evaluation Study
We conducted a series of in-class architecture design workshops in a config-
uration that allowed us to collect parallel design logs for two teams, one
assisted by the SAW, the other one by the EtherPad. We used the collected
data to showcase the application of the Architecture Argumentation Metrics.

9.3 Limitations

In our work on the Software Architecture Warehouse, we limited the scope of
managed design artifacts to architecture decisions. We decided to do so in order
to focus our research, development and evaluation effort. This approach has
proven to be sufficient in the context of the heavily time-constrained, in-class
design workshops, but our observations might not transfer well into the context
of a large industrial organization that needs to effectively manage a broader
spectrum of architecture design artifacts.

In particular simultaneous work on architecture design and decisions, in a
fashion similar to twin-peaks model, can potentially change dynamics of architec-
ture workshops. We anticipate a slower pace of workshops and more in-depth
discussion within the design domain. We can speculate that such conditions
would lead to more pronounced benefits of using structured decision in the live,
collaborative setting.

Secondly, we have conducted the evaluation in the sterile, academic conditions,
that do not perfectly resemble the typical architecture design workshop conditions
in an industrial setting. Our participants are unexperienced and overly uniform.
Our experience in industrial environment shows that that typical participants of
an architecture workshop are much more diversified in terms of expertise and
experience. We have also identified that experienced experts are often strongly
opinionated; therefore we anticipate more authoritarian dynamics.

Thirdly, as we already mentioned, the design workshops that we have investi-
gated were limited time-limited by the duration of a single exercise session. In

170 9.4 Lessons Learned

the industrial setting, the design stakeholders typically invest way more effort
and time into the architecture design. We expect an increase of time spent in
both in a solitary mode - in the form of workshop preparation and post-workshop
clean-up, as well as in collaborative modes - multiple rounds of workshops and
high latency expert opinion exchange.

Finally, the engagement level of participants in our evaluation was relatively
low; resulting in decision spaces that with rather few design decisions that have
a significant number of recorded positions. This often made it difficult to inter-
pret metric outcomes and draw conclusions with statistical confidence. We are
confident that decision-centric representation of software architecture and, in
particular, argumentation viewpoint are going be recognized and gain acceptance
of professional software architects; therefore we believe that accumulation of
larger number of decision spaces will eventually provide conclusive evidence of
observations presented in this thesis.

9.4 Lessons Learned

Through five years, that we have devoted to research and development, we
have gathered a unique insight into the state of the art and practice. In this
section, we collect lessons that we have learned. We trust that the reader will find
our experience valuable and that it will foster progress in software architecture
decisions research and practice.

Standing on the shoulders of giants

Pretty early, we have learned that there exists a plethora of architecture
decision modeling standards (see Section [3|and there is no point in propos-
ing yet another standard to rule them all. Instead, for we have decided
to increase level of abstraction and meta-model decision meta-model, ef-
fectively making it possible to apply our considerations to virtually any
decision model. This decision was reflected in the design of the Software
Architecture Warehouse (see Section [6.6.3).

Limiting engineering scope and focusing the effort
We have taken rather practical, engineering approach to researching soft-
ware architecture decisions. It means that we have spent a significant
amount of time on design, development and broadly understood software
engineering. It has been a great journey to make, but with hindsight, we
can say that due to limitations in quality and availability of resources it is
very hard to produce high quality of software covering broad functionality.

171 9.5 The Road Ahead

In particular when working with modern and fast changing ecosystem, such
as web technologies.

Early engagement with the industry
Our experience shows that gaining an interest of industrial partner is not an
easy task. Nevertheless, in spite of the fact that confronting industry was
very challenging, it was also very rewarding, as we have received invaluable
input that has guided our research.

End-to-end automation of data analysis
We have invested a significant amount of effort in the development of analy-
sis framework that we documented in Chapter[7] Very soon we have realized
that changes to the Analyzer often require a re-run of the complex data
analysis workflow (see Figure[7.8). An approach that we found successful
in managing changes was to introduce a continuous integration principle
to data analysis and to eliminate all manual steps from the process.

9.5 The Road Ahead

This dissertation opens the way for the new research in several directions:

User-centric Metrics for the Argumentation Analytics
The analysis of the data collected during the design in-class workshops was
focused mostly on the structure and dynamics of the decision model. We see
a research potential in characterizing profiles of the design team members
depending on the role that they play in the design workshop.

Research on Distributed Architecture Design Team Dynamics
All the design workshops that we conducted took place in a collocated con-
figuration. We expect that a set-up in which some or all of the design team
members are telecommuting would show significantly different dynamics
from those we have observed. This is particularly tempting because the
required infrastructure (i.e. the Software Architecture Warehouse) is fully
featured to support this mode of operation.

The dynamics of Professional Design Teams
The evaluation that we have performed relied on subjects that were very
homogeneous in terms of their knowledge, but rather inexperienced in
the software architecture design. We predict that the dynamics of a team

172 9.5 The Road Ahead

consisting of professional architects with diverse skills and experience would
be significantly different.

Standalone, offline deployment of the Software Architecture Warehouse
The current deployment pattern for the SAW assumes reliable connectivity
to the central server. This requirement can be easily fulfilled in office
conditions, but might prove to be very difficult to be satisfied on the go.
In practice design architects often review and rework their decisions out
of the office, without reliable connectivity. The architecture of the SAW
(rich web-client) is ready to support this mode of operation, but we see a
significant challenge in the non-linear synchronization of the underlying
knowledge graph model.

Decision Making Guidance

Due to its warehouse-like characteristics, such as multi-tenancy and its
decision meta-model agnosticism, the Software Architecture Warehouse is
a perfect tool for serving as an accumulator of design experience. When
appropriately aggregated, such design experience can provide great input
for the guidance of future decisions. Due to the highly sensitive nature
of design decisions, a new, strong authorization model would need to be
implemented in the SAW.

Live Monitoring
The current implementation of the Software Architecture Warehouse sup-
ports live monitoring for only a few metrics of the decision space under
design. We see big potential in providing decision makers with comprehen-
sive live monitoring of the decision space characteristics.

Appendix A

The Dataset

In this appendix, we provide a concise, tabular summary of the experimental data
collected during the evaluation process.

Column names in Tables|A.1} |A.2] |[A.3] and [7.10|refer to micro-metrics defined
in Section[7.2.4] The original workshop event records are available publicly under
https://github.com/ian7/saw/tree/navigate/analysis/logs-unweaved.

173

https://github.com/ian7/saw/tree/navigate/analysis/logs-unweaved

= » e O £ 5§ ¥ @ 7 B B B F Z OC
: 2 g 7 22 : £ F E g2 € %2
o, a o » » » = = L,
8 ® a S & E o m o = B B & s 9 8
o A & ¢ = 2 3 F T Y Z o ?
£ co & 8 § & 8 % 8% § & »
= g = & o mw g @ 2 8§ 2
e 8 5 &8 & o 2 8 2.
2 § & 8 3 o &
o [al o O %] 8 o

o S o 8

a 2 o o

g 5 =

a3
oL

Run 1 EP ex4 0O 3238 0 9 9 0 9 9 0 O O 0 O
Run 2 EP ex5 0 2064 0 2 2 0 5 5 0 0 0 0 O
Run 3 EP ex7/ 0O 3957 0O 13 13 0 27 27 0O 14 6 4 O
Run 4 EP ex8 0 4194 0 3 2 0 7 7 0 7 1 0 O
Run 5 EP ex9 0O 4019 0 4 4 O 8 7 0 0 0 0 O
Run 1 SAW | 51765a68da300c1849000001 0 5900 0O 5 5 1 9 6 4 3 4 0 O
Run 2 SAW | 5187d355da300c37f7000001 O 5371 0O 5 5 0O 11 6 0 2 4 1 1
not used SAW | 518a833eda300c484c000001 O 7804 0 26 9 11 18 9 O 2 1 1 1
Run 3 SAW | 51925958da300c697d000001 O 5587 O 6 6 0O 13 9 1 4 4 1 2
Run 4 SAW | 5193a637da300¢3002000001 O 5563 0 5 4 1 7 4 0 2 0 0 O
Run 5 SAW | 519a3a22da300¢3793000001 0O 5938 0 5 5 0O 13 8 2 5 0O 0 O

Table A.1. Micro-metric values matrix for selected decision spaces

VLT

ol S = E 5 g = = = Q = = = = 9 c Iy 2z Q =4 =
= g 5 5 5 5 3§ & = 7 g g 9 s g g § © 3
S 2z % s R, s g g g ° ER 5
o 5 5 5 5 o 5 2 5 £ g
Ez 8 2 % E : 5 % % 3
-] = LT} B, o 2 =] 3 2.
g & § 2 3 ’ g
= 5 a 2 8
3 5
2
517652dfda300c1675000001 51777f76da300c5671000003 0 4580 2705 2 3 1 1 1 0 incomplete 5] 28 3 4549 0 1 18 2812 1875 2 1 2705
517652dfda300¢1675000001 5177813bda300¢57f1000001 0 4127 4029 1 0 0 0 0 0 no alternatives 1 4127 0 0 0 0 1 3266 98 1 0 -1
517652dfda300c1675000001 51778237da300c57f1000004 0 3875 2051 2 2 0 0 2 0 complete 4 32 18 1774 2051 1 28 3523 1824 2 1 2051
517652dfda300¢1675000001 517783b9da300c57af000001 0 3489 2431 2 2 1 0 1 0 incomplete 4 71 772 2431 215 1 21 3943 1058 2 1 2646
517652dfda300c1675000001 51778d86da300c57f1000008 0 980 55 1 3 3 0 0 0 incomplete 5] 107 818 55 0 0 23 6426 925 1 0 -1
517652dfda300¢1675000001 51779096da300c5adf000001 0 196 130 1 0 0 0 0 0 no alternatives 1 196 0 0 0 0 44 7243 66 1 0 -1
51765a68da300c1849000001 517a37dbda300c67dc000001 1 6867 2011 4 2 0 0 2 0 complete 4 4692 5] 57 2115 & 29 7193 4856 4 3 2109
51765a68da300c1849000001 517a4368da300c691f000001 0 3910 878 7 3 1 0 2 0 complete 4 32 9 88 3781 6 20 5488 3032 7 6 2511
51765a68da300c1849000001 517a46f7da300c6b31000001 0 2999 879 6 5 2 1 2 0 incomplete 5 102 30 2821 46 5] 24 6608 2120 6 5 2220
51765a68da300c1849000001 517a4870da300c6c85000001 1 2622 2595 1 0 0 0 0 0 no alternatives 1 2622 0 0 0 0 23 6779 27 1 0 -1
51765a68da300c1849000001 517a49fbda300c6b43000006 0 2227 880 2 0 0 0 0 0 no alternatives 1 2227 0 0 0 0 4 7176 1347 2 0 -1
51765a68da300c1849000001 517a4b44da300c6c¢55000001 0 1898 1574 5 2 1 0 1 0 complete 3 54 24 0 1820 5 24 7515 324 5 5 1574
5187d355da300c37f7000001 5189f4dada300c286d000003 0 5443 2452 4 3 2 0 1 0 incomplete B3] 68 21 5354 0 2 19 699 2991 4 2 5332
5187d355da300¢37f7000001 5189f6afda300c286d000006 0 4974 2299 3 2 1 0 1 0 incomplete 4 105 507 2299 2063 1 13 1131 2675 3 1 4362
5187d355da300c37f7000001 5189fa67da300c2a50000001 0 4022 2103 3 2 2 0 0 0 incomplete) 164 12 3846 0 0 7 2222 1919) 0 -1
5187d355da300c37f7000001 5189fcf0da300c2a32000001 0 3373 3334 1 1 1 0 0 0 no positions 2 38 3335 0 0 0 29 2742 39 1 0 -1
5187d355da300c37f7000001 518a0425da300c2ca3000001 0 1528 955 1 3 0 1 2 0 incomplete 7 60 62 1297 109 1 23 5131 573 1 1 1015
518a833eda300c484c000001 518¢cb237da300c3c1f000003 0 6125 3685 6 2 1 1 0 0 incomplete 3 28 26 6071 0 5 6 1688 2440 6 5 3685
518a833eda300c484c000001 518cb2c6da300c3d05000003 0 5982 5982 1 0 0 0 0 0 no alternatives 1 5982 0 0 0 0 0 1822 0 1 0 -1
518a833eda300c484c000001 518cb334da300c3ceb000001 1 5872 5499 2 0 0 0 0 0 no alternatives 1 5872 0 0 0 0 0 1932 373 2 0 -1
518a833eda300c484c000001 518cb345da300¢3c8b000001 0 5855 5855 1 0 0 0 0 0 no alternatives 1 5855 0 0 0 0 0 1949 0 1 0 -1
518a833eda300c484c000001 518cb347da300c3c28000004 0 5853 5853 1 0 0 0 0 0 no alternatives 1 5853 0 0 0 0 0 1951 0 1 0 -1
518a833eda300c484c000001 518cb361da300c3c16000005 1 5827 5736 2 0 0 0 0 0 no alternatives 1 5827 0 0 0 0 23 2018 91 2 0 -1
518a833eda300c484c000001 518cb3alda300c3c16000006 1 5763 5740 1 0 0 0 0 0 no alternatives 1 5763 0 0 0 0 0 2041 23 1 0 -1
518a833eda300c484c000001 518cb3a3da300c3¢70000003 1 5761 5728 1 0 0 0 0 0 no alternatives 1 5761 0 0 0 0 0 2043 33 1 0 -1
518a833eda300c484c000001 518cb3a5da300c3c28000006 1 5760 5726 1 0 0 0 0 0 no alternatives 1 5760 0 0 0 0 0 2044 34 1 0 -1
518a833eda300c484c000001 518cb3a5da300c3cf4000001 0 5759 3774 3 2 1 0 1 0 incomplete) 67 3 5689 0 1 17 2126 1985) 1 5443
518a833eda300c484c000001 518cb3a5da300c3cf4000002 0 5759 5759 1 0 0 0 0 0 no alternatives 1 5759 0 0 0 0 0 2045 0 1 0 -1
518a833eda300c484c000001 518cb3a5da300c3c16000007 1 5759 5725 1 0 0 0 0 0 no alternatives 1 5759 0 0 0 0 0 2045 34 1 0 -1
518a833eda300c484c000001 518cb3a6da300c3ccf000003 0 5758 5758 1 0 0 0 0 0 no alternatives 1 5758 0 0 0 0 0 2046 0 1 0 -1
518a833eda300c484c000001 518cb3adda300c3d05000004 1 5751 5723 1 0 0 0 0 0 no alternatives 1 5751 0 0 0 0 0 2053 28 1 0 -1
518a833eda300c484c000001 518cb489da300c3c28000008 0 5531 5531 1 0 0 0 0 0 no alternatives 1 5531 0 0 0 0 0 2273 0 1 0 -1
518a833eda300c484c000001 518cb567da300c3d05000007 1 5309 4855 2 0 0 0 0 0 no alternatives 1 5309 0 0 0 0 0 2495 454 2 0 -1
518a833eda300c484c000001 518cb6b0da300c3d0500000b 1 4980 4851 2 0 0 0 0 0 no alternatives 1 4980 0 0 0 0 0 2824 129 2 0 -1
518a833eda300c484c000001 518cb6b0da300c3cf4000008 1 4980 4851 2 0 0 0 0 0 no alternatives 1 4980 0 0 0 0 0 2824 129 2 0 -1
518a833eda300c484c000001 518cb6b9da300c3c28000009 1 4971 4849 2 0 0 0 0 0 no alternatives 1 4971 0 0 0 0 0 2833 122 2 0 -1
518a833eda300c484c000001 518¢b749da300c3¢70000004 0 4827 3474 2 1 1 0 0 0 no positions 2 1352 3475 0 0 0 8 2988 1353 2 0 -1
518a833eda300c484c000001 518cb811da300c3c70000005 0 4627 4406 4 2 2 0 0 0 incomplete 3 104 18 4505 0 0 14 3263 221 4 0 -1
518a833eda300c484c000001 518¢b868da300¢3¢70000007 0 4540 4437 1 3 3 0 0 0 incomplete 8} 26 65 4449 0 0 13 3278 103 1 0 -1
518a833eda300c484c000001 518cb8bada300c3ccf000005 0 4458 4458 1 0 0 0 0 0 no alternatives 1 4458 0 0 0 0 0 3346 0 1 0 -1
518a833eda300c484c000001 518cbb9bda300c3cf400000¢ 0 3721 3518 2 2 2 0 0 0 no positions 2 203 3518 0 0 0 15 4262 203 2 0 -1

GLT

ol 5 o [= m > > ez} o) = = = = o I > o o =
g 3 g Q g =5 £ 3 5 B o 2 o = = = & 3 £ = = & @,
< g B 2 2 2 2 2 2 1 5 5 5 5 2 2 b= g 2 g
& & s g F 2 = g 5 z z g o 8 5 = 5 B 3
g a 2 a 2 a 2 T S 2 3 g g @ 3 P> 5
& 5 5 5 = e F £ 5 3 : i g
E 3 8 2z % E § F T B =
& o] = @ B, o 2 B 3 Q.
s E 3 =& g g ¢ g
=3 S a 3 8
o o
2
518a833eda300c484c000001 518cbcafda300c3cfd000006 0 3445 2943 3 6 6 0 0 0 incomplete 3 37 29 3379 0 0 13 4385 502 3 0 -1
518a833eda300c484c000001 518cc0aada300c3c2800000e 0 2426 2239 2 1 0 0 1 0 complete 3 107 24 0 2295 2 18 5393 187 2 2 2239
51925958da300c697d000001 51932ecdda300c1678000001 0 5799 3869 2 3 2 0 1 0 incomplete 3 93 99 5607 0 1 58 868 1930 2 1 3869
51925958da300c697d000001 51932f88da300c1666000003 0 5612 5479 1 2 2 0 0 0 incomplete 3 114 19 5479 0 0 29 1084 133 1 0 -1
51925958da300c697d000001 51933184da300c168a000005 0 5104 3488 2 2 0 0 2 0 complete 6 476 11 876 3741 2 143 1634 1616 2 2 3488
51925958da300c697d000001 5193321cda300c1768000002 0 4952 3191 3 3 1 0 2 0 incomplete 3 114 309 4529 0 2 8 1707 1761 3 2 3191
51925958da300c697d000001 51933226da300¢1678000003 0 4942 4364 2 1 1 0 0 0 no positions 2 237 4705 0 0 0 45 2222 578 2 0 -1
51925958da300c697d000001 519333d4da300c1666000009 0 4512 4270 3 2 0 0 2 0 complete 4 36 24 182 4270 2 13 2257 242 3 2 4270
5193a637da300¢3002000001 5195f29ada300c2853000002 0 3777 2886 4 3 2 0 1 0 incomplete 3 24 38 3715 0 2 20 1807 891 4 2 3350
5193a637da300¢3002000001 5195f60bda300c2a50000001 1 2896 2888 1 0 0 0 0 0 no alternatives 1 2896 0 0 0 0 0 2667 8 1 0 -1
5193a637da300¢3002000001 5195f82eda300¢2a50000003 0 2349 833 2 2 1 0 1 0 incomplete 3 15 12 2322 0 1 12 3251 1516 2 1 833
5193a637da300¢3002000001 5195f866da300c2baa000002 0 2293 1820 3 2 2 0 0 0 incomplete 3 448 25 1820 0 0 21 3708 473 3 0 -1
5193a637da300¢3002000001 5195fa28da300¢2¢31000001 0 1843 1793 1 2 2 0 0 0 no alternatives 1 1843 0 0 0 0 33 3746 50 1 0 -1
519a3a22da300c3793000001 519¢6¢39da300c7f59000001 0 3835 1 3 5 5 0 0 0 incomplete 3 64 1520 2251 0 0 38 2139 3834 3 0 -1
519a3a22da300¢3793000001 519¢6d5ada300c0fdb000001 0 3546 2139 3 3 1 0 2 0 incomplete 3 56 32 3458 0 2 40 2436 1407 3 2 2139
519a3a22da300c3793000001 519c6ee0da300c7f59000002 0 3156 2164 1 2 1 0 1 0 incomplete 3 37 10 3109 0 1 28 2815 992 1 1 2164
519a3a22da300¢3793000001 519¢6f3eda300c0263000001 0 3062 2997 2 1 0 0 1 0 complete 3 53 12 0 2997 1 13 2886 65 2 1 2997
519a3a22da300c¢3793000001 519¢713bda300c7f7d000008 0 2553 2146 2 2 1 0 1 0 incomplete B 26 13 2514 0 2 18 3405 407 2 2 2146
ex4 ex4-101 0 3238 2916 1 0 0 0 0 0 no alternatives 1 3238 0 0 0 0 1 322 322 1 0 -1
ex4 ex4-102 0 2663 2381 2 2 2 0 0 0 incomplete 3 150 132 2381 0 1 1 576 282 2 0 -1
ex4 ex4-103 0 2662 2603 1 0 0 0 0 0 no alternatives 1 2662 0 0 0 0 1 635 59 1 0 -1
ex4 ex4-104 0 2585 2072 1 1 1 0 0 0 no positions 2 513 2072 0 0 1 1 1133 513 1 0 -1
ex4 ex4-105 0 1610 1572 1 1 1 0 0 0 no positions 2 38 1572 0 0 1 1 1663 38 1 0 -1
ex4 ex4-106 0 1327 537 1 2 2 0 0 0 incomplete 3 719 71 537 0 1 1 1928 790 1 0 -1
ex4 ex4-107 0 1130 361 2 3 3 0 0 0 incomplete 3 755 6 369 0 1 2 2862 769 2 0 -1
ex4 ex4-108 0 1067 1003 1 0 0 0 0 0 no alternatives 1 1067 0 0 0 0 1 2235 64 1 0 -1
ex4 ex4-109 0 566 541 1 0 0 0 0 0 no alternatives 1 566 0 0 0 0 1 2697 25 1 0 -1
ex5 ex5-102 0 1228 1206 1 2 2 0 0 0 incomplete) 12 10 1206 0 1 1 846 22 1 0 -1
ex5 ex5-103 0 462 322 1 3 3 0 0 0 incomplete 3 73 42 347 0 1 1 1671 140 1 0 -1
ex7 ex7-101 0 3957 3548 2 & 1 0 2 0 incomplete) 355 2 3600 0 2 1 351 409 2 2 3548
ex7 ex7-102 0 3534 3451 2 2 1 0 1 0 incomplete 3 16 60 3458 0 2 1 435 83 2 1 3451
ex7 ex7-103 0 3518 3517 1 0 0 0 0 0 no alternatives 1 3518 0 0 0 0 1 440 1 1 0 -1
ex7 ex7-104 0 3445 2514 4 4 2 1 1 0 incomplete 5 44 6 3393 2 4 1 555 931 4 3 2514
ex7 ex7-105 0 2514 1874 3 5 1 0 4 0 incomplete 5 5 11 2413 85 B8] 1 1447 640) 2 1874
ex7 ex7-106 0 2354 2346 1 0 0 0 0 0 no alternatives 1 2354 0 0 0 0 1 1611 8 1 0 -1
ex7 ex7-107 0 2291 1914 3 1 0 0 1 0 complete & 263 114 0 1914 2 1 1834 377 & 1 1914
ex7 ex7-108 0 2178 2076 1 0 0 0 0 0 no alternatives 1 2178 0 0 0 0 1 1881 102 1 0 -1
ex7 ex7-109 0 1757 1298 5 3 0 1 2 0 incomplete 4 9 0 1666 82 4 1 2203 459 5 4 1298
ex7 ex7-110 0 1746 0 4 3 0 2 1 0 incomplete 5 12 9 1662 63 4 1 2223 1746 4 3 0
ex7 ex7-111 0 1309 1018 2 1 0 0 1 0 complete 2 0 291 0 1018 2 2 2673 291 2 1 1018
ex7 ex7-112 0 902 858 2 3 2 0 1 0 incomplete 3 5 5 892 0 2 1 3058 44 2 1 858
ex7 ex7-113 0 845 683 2 2 0 0 2 0 complete 4 21 13 128 683 2 1 3128 162 2 2 683
ex8 ex8-101 0 4194 3761 4 2 0 0 2 0 complete 4 159 4 270 3761 4 1 159 433 4 3 3761
ex8 ex8-102 0 3032 2638 4 2 0 0 2 0 complete 4 287 18 79 2648 4 1 1449 394 4 3 2638

9.1

177

Time since last decision

Deciders2

Contributors

Activity Time

Last update

Update count

Deciders

Time In Complete

Time In Incomplete

Time In NoPositions

Time In NoAlternatives

ChoiceState Changes

Final Choice

Alternatives in Sealed

Alternatives in Aligned

Alternatives in Colliding

Alternatives in NoPositions}

Alternatives Count

Editors

LastChange

Lifespan

Destroyed

Project

+ = = N~
o [=o}
dwoolwn
72221
N [
N N
[P JPEENCAE-N
R RN
™ ™

0
1
1
1
1

4
1
1
1
1

79 387 2261

16 3993 0
3976 0 0
275 3701 0

22 0 0

0
10
9
0
2158

5
&
2
2
2

incomplete
incomplete
no positions
incomplete
no positions

0
0
0
0
0

<+ =N
o oI

o @V aa
N O N
M onom

N OO Q
N O D
NO O O
NFoHoA

0
0
0
0
0

ex8-103
ex9-101
ex9-102
ex9-103
ex9-104

ex8
ex9
ex9
ex9
ex9

ign issues

Table A.2. Micro-metric values matrix for the des

& g 2 2 & 2 B 8 ® & & 8 A =3 SR ® & 8 2 8 & = = &g =z ¢

e <] g 3 2 5 8 g z @ g 2 5 5 5 5 z @ @ 2 =] g g =

= 3 S z E & g H g z 2 o] @ 2 3 o = Z <) 2

® =3 o 3 g & I] 5 = 2, ©»] ® 2 & 5

2 g g £ = = 2 2 £ 2 & - 3

& a 8 = a & @ a

o S aQ o

3 @ 53 @

o & g

g 2

5193a637da300c3002000001 4faalda8924ff84f2600000e 0 1804 1772 0 0 0 0 0 0 0 0 no positions n/a 0 0 0 0 0 0 1 0 3759 32 1 0 -1

51765a68da300c1849000001 4faalda8924£f84f2600000e 0 1839 1254 0 0 0 0 0 0 0 0 no positions n/a 0 0 0 0 0 0 2 0 7539 585 2 0 -1

518a833eda300c484c000001 4faalda8924ff84f2600000e 0 3525 3525 0 0 0 0 0 0 0 0 no positions n/a 0 0 0 0 0 0 1 0 4279 0 1 0 -1

5193a637da300c3002000001 4faaldad924£852¢2000008 0 1793 1793 0 0 0 0 0 0 0 0 no positions n/a 0 0 0 0 0 0 1 0 3770 0 1 0 -1
517652dfda300c1675000001 51777f92da300c56d5000002 0 4552 2705 2 2 1 0 0 0 1 0 colliding n/a 1 1487 360 2705 0 2 2 0 2825 1847 2 1 2705
517652dfda300c1675000001 51777f95da300c56cc000001 0 4549 4376 1 1 0 0 1 0 0 0 aligned Negative 1 173 4376 0 0 1 2 0 2828 173 2 1 4376

517652dfda300c1675000001 51777fabda300c56cc000002 0 4527 2756 0 0 0 0 0 0 0 0 no positions n/a 0 4527 0 0 0 0 1 22 2940 1771 1 0 -1
517652dfda300c1675000001 51778257da300c56d5000007 0 3843 2153 1 1 1 0 0 0 0 0 aligned Positive 1 1690 2153 0 0 1 2 0 3534 1690 2 1 2153
517652dfda300c1675000001 51778269da300c56a7000002 0 3825 2051 1 1 0 0 1 0 0 0 aligned Negative 1 1774 2051 0 0 1 2 0 3552 1774 2 1 2051
517652dfda300c1675000001 51778400da300¢57a6000002 0 3418 2646 1 1 0 0 1 0 0 0 aligned Negative 1 772 2646 0 0 1 2 0 3959 772 2 1 2646

517652dfda300c1675000001 517787dbda300c57f1000007 0 2431 2370 0 0 0 0 0 0 0 0 no positions n/a 0 2431 0 0 0 0 1 37 4986 61 1 0 -1

517652dfda300c1675000001 51778df1da300c5af3000001 1 873 867 0 0 0 0 0 0 0 0 no positions n/a 0 873 0 0 0 0 1 0 6504 6 1 0 -1

517652dfda300c1675000001 51778e66da300c5afd000001 0 756 0 0 0 0 0 0 0 0 0 no positions n/a 0 756 0 0 0 0 1 7 7376 756 1 0 -1

517652dfda300c1675000001 51779123da300¢5baf000001 0 55 41 0 0 0 0 0 0 0 0 no positions n/a 0 55 0 0 0 0 1 9 7335 14 1 0 -1
51765a68da300c1849000001 517a4388da300c6aaa000001 1 3878 1080 6 6 6 0 0 0 0 0 aligned Positive 6 20 3858 0 0 1 7 4 5508 2798 7 6 2511
51765a68da300c1849000001 517a4391da300c6a81000003 0 3869 878 2 2 0 0 2 0 0 0 aligned Negative 2 38 3831 0 0 1 3 4 5514 2991 3 2 3814

51765a68da300c1849000001 517a43b4da300c6b1d000001 1 3834 3791 0 0 0 0 0 0 0 0 no positions n/a 0 3834 0 0 0 0 2 0 5544 43 2 0 -1
51765a68da300c1849000001 517a475dda300c6¢1c000002 0 2897 879 5 5 0 0 5 0 0 0 aligned Negative 4 41 2856 0 0 1 5 10 6505 2018 5 4 2279
51765a68da300c1849000001 517a477bda300c6c29000001 0 2867 879 3 3 2 0 1 0 0 0 colliding n/a 3 135 174 2558 0 2 6 12 6521 1988 6 3 2558
51765a68da300c1849000001 517a4788da300c6c46000001 0 2854 880 4 4 4 0 0 0 0 0 aligned Positive 4 82 2772 0 0 1 6 27 6553 1974 6 4 2220

51765a68da300c1849000001 517a4830da300c6c61000005 1 2686 2170 0 0 0 0 0 0 0 0 no positions n/a 0 2686 0 0 0 0 2 0 6692 516 2 0 -1

51765a68da300c1849000001 517a4867da300c6b31000005 1 2631 2175 0 0 0 0 0 0 0 0 no positions n/a 0 2631 0 0 0 0 2 0 6747 456 2 0 -1
51765a68da300c1849000001 517a4a2fda300c6c6a000003 0 2175 2130 1 1 0 0 1 0 0 0 aligned Negative 1 45 2130 0 0 1 2 0 7203 45 2 1 2130
51765a68da300c1849000001 517a4a32da300c6c29000002 0 2172 2109 2 2 2 0 0 0 0 0 aligned Positive 2 57 2115 0 0 1 3 0 7206 63 3 2 2109
51765a68da300c1849000001 517a4b7ada300c6c61000006 0 1844 1574 6 6 0 0 6 0 0 0 aligned Negative 5 24 1820 0 0 1 5 5 7550 270 5 5 1574

5187d355da300¢37f7000001 5189f51eda300c2888000003 0 5375 5373 0 0 0 0 0 0 0 0 no positions n/a 0 5375 0 0 0 0 1 0 717 2 1 0 -1
5187d355da300c37f7000001 5189f533da300¢2923000001 0 5354 2453 2 2 2 0 0 0 0 0 aligned Positive 2 10 5344 0 0 1 3 0 738 2901 3 2 5332
5187d355da300¢37f7000001 5189f718da300c2968000001 0 4869 4362 1 1 0 0 1 0 0 0 aligned Negative 1 507 4362 0 0 1 3 49 1263 507 3 1 4362

5187d355da300c37f7000001 5189fafcda300c287¢000006 0 3873 3838 0 0 0 0 0 0 0 0 no positions n/a 0 3873 0 0 0 0 1 36 2252 35 1 0 -1

5187d355da300¢37f7000001 5189fb0bda300c2a87000001 0 3858 3857 0 0 0 0 0 0 0 0 no positions n/a 0 3858 0 0 0 0 1 0 2234 1 1 0 -1

5187d355da300c37f7000001 5189fb17da300c2a87000002 0 3846 3846 0 0 0 0 0 0 0 0 no positions n/a 0 3846 0 0 0 0 1 0 2246 0 1 0 -1

5187d355da300¢37f7000001 5189fd16da300¢2b9c000001 0 3335 3321 0 0 0 0 0 0 0 0 no positions n/a 0 3335 0 0 0 0 1 13 2770 14 1 0 -1

5187d355da300c37f7000001 518a0122da300c2a32000002 0 2299 2283 0 0 0 0 0 0 0 0 no positions n/a 0 2299 0 0 0 0 1 15 3807 16 1 0 -1
5187d355da300¢37f7000001 518a0461da300c2ca3000003 0 1468 1155 1 1 0 0 1 0 0 0 aligned Negative 1 313 1155 0 0 1 1 0 4624 313 1 1 1155
5187d355da300c37f7000001 518a049fda300c2dcd000001 0 1406 1015 4 2 1 0 0 1 1 0 colliding n/a 1 282 109 1015 0 4 1 5 4846 391 1 1 1015
5187d355da300c37f7000001 518a050cda300c2dba000002 0 1297 1266 1 1 0 0 1 0 0 0 aligned Negative 1 31 1266 0 0 1 1 29 4820 31 1 1 1266
518a833eda300c484c000001 518¢b253da300c3c16000002 0 6097 3685 8 6 5 0 0 0 1 1 colliding n/a 5 39 16 6042 0 2 5 4 1730 2412 5 5 3685

518a833eda300c484c000001 518cb26dda300c3c1f000004 0 6071 5493 0 0 0 0 0 0 0 0 no positions n/a 0 6071 0 0 0 0 2 5 1742 578 2 0 -1

518a833eda300c484c000001 518cb3e8da300c3b6f000009 0 5692 5589 0 0 0 0 0 0 0 0 no positions n/a 0 5692 0 0 0 0 1 3 2214 103 1 0 -1
518a833eda300c484c000001 518cb3ebda300¢3¢82000003 0 5689 5443 1 1 0 0 1 0 0 0 aligned Negative 1 246 5443 0 0 1 2 1 2210 246 2 1 5443

518a833eda300c484c000001 518¢b879da300c3¢31000008 0 4523 4523 0 0 0 0 0 0 0 0 1o positions n/a 0 4523 0 0 0 0 1 0 3281 0 1 0 -1

8LIT

10901

at

pakonsaq
uedsajry
a8ueyDise
JUNOY UONISOd
9ADISOd
POOASYRANISOJ
aAnBSaN
payoadgaAneSaN
uado
payoaayguado

2118 [RUL]

UoISIA([BUL]

SIapag
SUOTIISOJON U] SWIL],
Ppausiy uf sury,
Surpyrod uf sury,
po[esg uf suILL,
s1001pH

unod a1epdn
S1epdn 1se]

sy, AANOY

518a833eda300¢484c000001
518a833eda300c484c000001
518a833eda300c484c000001
518a833eda300c484c000001
518a833eda300c484c000001
518a833eda300c484c000001
518a833eda300c484c000001
518a833eda300c484c000001
518a833eda300c484c000001
518a833eda300c484c000001
518a833eda300c484c000001
518a833eda300c484c000001
518a833eda300c484c000001
51925958da300c697d000001
51925958da300¢697d000001
51925958da300c697d000001
51925958da300¢697d000001
51925958da300c697d000001
51925958da300¢697d000001
51925958da300c697d000001
51925958da300¢697d000001
51925958da300c697d000001
51925958da300¢697d000001
51925958da300c697d000001
51925958da300¢697d000001
51925958da300c697d000001
5193a637da300¢3002000001
5193a637da300c3002000001
5193a637da300¢3002000001
5193a637da300c3002000001
5193a637da300¢3002000001
5193a637da300c3002000001
5193a637da300c3002000001
519a3a22da300¢3793000001
519a3a22da300¢3793000001
519a3a22da300¢3793000001
519a3a22da300¢3793000001
519a3a22da300¢3793000001
519a3a22da300¢3793000001
519a3a22da300¢3793000001
519a3a22da300¢3793000001
5192a3a22da300¢3793000001
519a3a22da300¢3793000001

518cb882da300c3c1f00000c
518cb88bda300c3cfd000003
518¢b8c3da300¢3d0500000¢
518cb8cfda300c3c1f00000d
518cbc66da300¢3c16000009
518cbc91da300c3ceb000004
518cbed4da300c3c7000000a
518cbcf1da300¢3d0500000f
518cbd35da300c3b6f00000d
518cbe39da300c3c3100000a
518cbe50da300c3cf400000e
518cbea4da300c3c2800000d
518¢c115da300c4081000001
51932f2ada300c1666000002
51932f8dda300c175e000001
51932ffada300c1680000003
5193300dda300c1666000004
519330dcda300c1728000002
5193328eda300c1768000003
51933313da300c1678000004
51933360da300c1666000007
5193336bda300c1850000001
519333c¢3da300c168a000006
519333c4da300c1768000004
519333f8da300c175e000005
51933410da300c17ff000003
5195f2b2da300c2a07000001
5195f2d8da300c2a07000002
5195f615da300c2a58000001
5195f83dda300c2ba1000001
5195f849da300c2bb5000001
5195fa26da300c2ba1000002
5195fa3fda300¢2a50000005
519¢6¢79da300c019f000001
519¢6d92da300c0fdb000002
519¢6db2da300c022e000001
519c¢6debda300c024e000001
519¢6f05da300c7f59000003
519¢6f0fda300c7f7d000006
519¢6f73da300c7f7d000007
519¢7155da300c02e0000005
519¢7162da300c019f000003
519¢7269da300c019f000004

CONFHOHONNOOOONOONRHRHORHHOROOOHRONOOOOOOOO O o o ohunoy uonisog paroeduwo)

H O OO0 O0O00D00O0O00000O00000O0O000OHOO0O0O00O0O0O000OO0O0OO0O0OO
CONFHOHONNOOOONOONHHOWHWOROOOHONOOOOOOOOOOO O
CONHOHONNOOOONOONOHOHOHOOOOOHONOOOOOOOOOOOO
OO0 0000000000000 0000000000000000O0000O0O0O0O0O0O0OO
C000000000000000OHOOOHOOROOO0OOO0OOOOOO0OO0OOOOOO OO
0000000000000 000000O0OHO0OO0OO0OO0O0O0O0OO0OO0OO0O0O0O0OO0O0O0OO0 OO O
OO0 0000000000000 000000000000000000O0O0O00O00O0 OO O
0O 0000000000000 00000O00O0OHOO0OO0O0O0O0OO0OO0OO0O0O0O0OO0O0O0O0O0 OO O

no positions
no positions
no positions
no positions
no positions
no positions
no positions
no positions
no positions
no positions
no positions
no positions
aligned
no positions
aligned
no positions
no positions
no positions
aligned
no positions
aligned
aligned
aligned
no positions
aligned
aligned
aligned
no positions
no positions
aligned
no positions
no positions
1o positions
no positions
aligned
aligned
no positions
aligned
no positions
aligned
aligned
no positions
no positions

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
Positive
n/a
Positive
n/a
n/a
n/a
Negative
n/a
Positive
Negative
Positive
n/a
Positive
Negative
Positive
n/a
n/a
Positive
n/a
n/a
n/a
n/a
Positive
Positive
n/a
Positive
n/a
Positive
Positive
n/a
n/a

N
%1

w
=N ® N
CPPCOCOFOPEOLOLCOOO0OOO0OO0OOO

O

-
OO 0000000000000 OVOOODODO0ODOODDODO0OODDODOO0OO0OODOOOOOOO0

N

-
S)

COHRHORORHOOOOHROOHRHRHOWHRWOHROOOROROOOOOOOOo oo o of saduey) LIS SNSUISUOD
wuNuwwooooocoocoao

COMNMHOROFRNOOOOHROONRHONRHHOHOOOHRONOOOOOOOOOOOO
C 0000000000000 000000000000000O00O00O0O0O00O0O0O0O OO
T I I A R N e i R I e O N N R e e e e e

—-
j

328
102

374

ZSI9pRQ
6LT

s10INQIIUOD

UOISIDAP ISB] 9DUIS SUIL],

OCONHOFROHNOOCOOHOONHHONKHHOROOORONOOOOOOOOOOOO

HROMNR RSN ONR SRR AENONR RN A RRR RS R RN R SRS R e N e

3 g % 2 g R £ £ :z z ° 5 o o) o S 2 8 5§ B = & 2 & 2
3 5 B = 2 ° & 35 3 & g & @ 2 s s s] o 2 g g 5
= @ g B g z S 3 g z = g g & e 2 g g ® 3
® g = s 2 5 2 2 & = g o £ @ 5 g i
=] S =~ S a S g = = @ 3 = g 8
g & g g & F B Oz z
g a 3 [a ®
=1 2 <8 2.
g 2 s
£ 2
5192a3a22da300¢3793000001 519c¢727eda300c02d7000003 1 2231 327 0 0 0 0 0 0 0 0 no positions n/a 0 2231 0 0 0 0 1 13 3727 1904 1 0 -1
51923a22da300c3793000001 519¢7a8dda300c057c000001 0 167 160 0 0 0 0 0 0 0 0 no positions n/a 0 167 0 0 0 0 1 4 5777 7 1 0 -1
519a3a22da300¢3793000001 519¢7b32da300c05a0000001 0 2 1 0 0 0 0 0 0 0 0 no positions n/a 0 2 0 0 0 0 1 0 5936 1 1 0 -1
ex4 ex4-1 0 2513 0 0 0 0 0 0 0 0 0 no positions n/a 1 2513 0 0 0 1 1 2 3238 2513 1 0 -1
ex4 ex4-2 0 2381 2206 0 0 0 0 0 0 0 0 no positions n/a 1 2381 0 0 0 1 1 1 1032 175 1 0 -1
ex4 ex4-3 0 2072 2014 0 0 0 0 0 0 0 0 no positions n/a 1 2072 0 0 0 1 1 1 1224 58 1 0 -1
ex4 ex4-4 0 1572 1477 0 0 0 0 0 0 0 0 no positions n/a 1 1572 0 0 0 1 1 1 1761 95 1 0 =1
ex4 ex4-5 0 608 589 0 0 0 0 0 0 0 0 no positions n/a 1 608 0 0 0 1 1 1 2649 19 1 0 -1
ex4 ex4-6 0 537 531 0 0 0 0 0 0 0 0 no positions n/a 1 537 0 0 0 1 1 1 2707 6 1 0 =1
ex4 ex4-7 0 375 370 0 0 0 0 0 0 0 0 no positions n/a 1 375 0 0 0 1 1 1 2868 5 1 0 -1
ex4 ex4-8 0 369 362 0 0 0 0 0 0 0 0 no positions n/a 1 369 0 0 0 1 1 1 2876 7 1 0 =1
ex4 ex4-9 0 361 40 0 0 0 0 0 0 0 0 no positions n/a 1 361 0 0 0 1 1 1 3198 321 1 0 -1
ex5 ex5-4 0 1216 1207 0 0 0 0 0 0 0 0 no positions n/a 1 1216 0 0 0 1 1 1 857 9 1 0 =1
ex5 ex5-5 0 1206 1190 0 0 0 0 0 0 0 0 no positions n/a 1 1206 0 0 0 1 1 1 874 16 1 0 -1
ex5 ex5-6 0 389 380 0 0 0 0 0 0 0 0 no positions n/a 1 389 0 0 0 1 1 1 1684 9 1 0 =1
ex5 ex5-7 0 347 332 0 0 0 0 0 0 0 0 no positions n/a 1 347 0 0 0 1 1 1 1732 15 1 0 -1
ex5 ex5-8 0 322 175 0 0 0 0 0 0 0 0 1o positions n/a 1 322 0 0 0 1 1 1 1889 147 1 0 =1
ex7 ex7-1 0 3602 3601 0 0 0 0 0 0 0 0 no positions n/a 1 3602 0 0 0 1 1 1 356 1 1 0 -1
ex7 ex7-10 0 2509 2421 1 1 1 0 0 0 0 0 aligned Positive % 88 2421 0 0 2 2 1 1452 88 2 1 2421
ex7 ex7-11 0 2498 2337 2 2 2 0 0 0 0 0 aligned Positive 3 41 2457 0 0 2 3 2 1620 161 3 2 2382
ex7 ex7-11 0 2498 2337 % % 2 0 0 0 0 0 aligned Positive 8! 41 2457 0 0 2 3] 2 1620 161 8! 2 2382
ex7 ex7-12 0 2336 1874 1 1 1 0 0 0 0 0 aligned Positive 2 462 1874 0 0 2 2 1 1662 462 2 1 1874
ex7 ex7-13 0 2291 2185 0 0 0 0 0 0 0 0 1o positions n/a 1 2291 0 0 0 1 1 1 1772 106 1 0 -1
ex7 ex7-14 0 2028 1914 1 1 1 0 0 0 0 0 aligned Positive 2 114 1914 0 0 2 2 1 2043 114 2 1 1914
ex7 ex7-15 0 1748 1428 1 1 1 0 0 0 0 0 aligned Positive 1 320 1428 0 0 2 1 1 2209 320 1 1 1428
ex7 ex7-16 0 1748 1686 1 1 1 0 0 0 0 0 aligned Positive 2 62 1686 0 0 2 2 1 2209 62 2 1 1686
ex7 ex7-17 0 1748 1298 3 3 0 0 2 0 1 0 colliding n/a 3 352 82 1314 0 3 3 1 2209 450 3 3 1298
ex7 ex7-18 0 1734 0 2 2 1 0 1 0 0 0 colliding n/a 3 89 1645 0 0 3 3 1 2232 1734 3 2 0
ex7 ex7-19 0 1725 1529 2 2 1 0 1 0 0 0 colliding n/a 3 133 63 1529 0 3 3 1 2238 196 3 2 1529
ex7 ex7-2 0 3600 3548 1 1 0 0 1 0 0 0 aligned Negative 2 52 3548 0 0 2 2 1 365 52 2 1 3548
ex7 ex7-20 0 1710 1691 1 1 0 0 1 0 0 0 aligned Negative 1 19 1691 0 0 2 1 1 2248 19 1 1 1691
ex7 ex7-22 0 1309 1018 1 1 1 0 0 0 0 0 aligned Positive 2 291 1018 0 0 2 2 1 2654 291 2 1 1018
ex7 ex7-23 0 897 895 0 0 0 0 0 0 0 0 no positions n/a 1 897 0 0 0 1 1 1 3062 2 1 0 -1
ex7 ex7-24 0 892 887 0 0 0 0 0 0 0 0 no positions n/a 1 892 0 0 0 1 1 1 3070 5 1 0 -1
ex7 ex7-25 0 880 858 1 1 1 0 0 0 0 0 aligned Positive 2 22 858 0 0 2 2 1 3080 22 2 1 858
ex7 ex7-26 0 824 683 1 1 1 0 0 0 0 0 aligned Positive 2 141 683 0 0 2 2 2 3247 141 2 1 683
ex7 ex7-27 0 811 772 1 1 0 0 0 0 1 0 aligned Open 1 39 772 0 0 2 1 1 3157 39 1 1 772
ex7 ex7-3 0 3589 3555 1 1 0 0 1 0 0 0 aligned Negative 1 34 3555 0 0 2 1 1 375 34 1 1 3555
ex7 ex7-4 0 3518 3445 0 0 0 0 0 0 0 0 no positions n/a 1 3518 0 0 0 1 1 2 512 73 1 0 -1
ex7 ex7-5 0 3458 3451 1 1 0 0 0 0 1 0 aligned Open 1 7 3451 0 0 2 1 1 500 7 1 1 3451
ex7 ex7-6 0 3401 2514 8] 3 2 0 0 0 1 0 colliding n/a 4 201 211 2989 0 3 4 1 561 887 4 3 2514
ex7 ex7-7 0 3395 3362 1 1 1 0 0 0 0 0 aligned Positive 2 33 3362 0 0 2 2 1 567 33 2 1 3362
ex7 ex7-8 0 3198 3182 0 0 0 0 0 0 0 0 no positions n/a 1 3198 0 0 0 1 1 1 775 16 1 0 -1

08T

o = o = = sl o sl o] Z Z o o <] = o = = = = o = =} = > o o =

e U g 5 8 2 g g2 & & & ¥ % g g § B g § § § = ¥ & £ g & &

2 g <] Q g ° =3 2 2 2 s = = = o & ® ® & @ 5 2 = =) g, o o

I <] g 5 &8 5 5 E 7 2 =] 2 5 5 5 5 g @ 3 2 a g 2 g

& & 9 & g & El & e z 2 e % & g 3 g & © 3

® 2 - s 2 7 g = & = 2 o 5 o 2 3 =

2 g 3 & & s 2 3 = 2 B - g

Z & 8 Z 2 3 7 2

g a 3 [a ®

4 2 = 2.

o 8 z

2 % =]

S a

ex7 ex7-9 0 3175 3167 0 0 0 0 0 0 0 0 no positions n/a 1 3175 0 0 0 1 1 1 790 8 1 0 -1
ex8 ex8-1 0 4035 3813 2 2 2 0 0 0 0 0 aligned Positive 3 194 3841 0 0 2 3 1 163 222 3 2 3813
ex8 ex8-2 0 4031 3761 1 1 1 0 0 0 0 0 aligned Positive 2 270 3761 0 0 2 2 1 166 270 2 1 3761
ex8 ex8-3 0 2745 2638 2 2 2 0 0 0 0 0 aligned Positive 3 90 2655 0 0 2 3 1 1466 107 3 2 2638
ex8 ex8-4 0 2727 505 2 2 2 0 0 0 0 0 aligned Positive 3 79 2648 0 0 2 3 2 3689 2222 3 2 2647
ex8 ex8-4 0 2727 505 2 2 2 0 0 0 0 0 aligned Positive 3 79 2648 0 0 2 3 2 3689 2222 3 2 2647
ex8 ex8-5 0 504 288 1 1 1 0 0 0 0 0 aligned Positive 2 216 288 0 0 2 2 1 3697 216 2 1 288

ex8 ex8-6 0 497 0 2 2 1 0 1 0 0 0 colliding n/a 2 380 117 0 0 3 2 1 3710 497 2 1 0

ex9 ex9-1 0 4009 3993 0 0 0 0 0 0 0 0 no positions n/a 1 4009 0 0 0 1 1 1 26 16 1 0 -1

ex9 ex9-2 0 3993 3985 0 0 0 0 0 0 0 0 no positions n/a 1 3993 0 0 0 1 1 1 34 8 1 0 -1

ex9 ex9-3 0 3976 2180 0 0 0 0 0 0 0 0 no positions n/a 1 3976 0 0 0 1 2 5 1839 1796 2 0 -1

ex9 ex9-3 0 3976 2180 0 0 0 0 0 0 0 0 no positions n/a 1 3976 0 0 0 1 2 5 1839 1796 2 0 -1

ex9 ex9-3 0 3976 2180 0 0 0 0 0 0 0 0 no positions n/a 1 3976 0 0 0 1 2 5 1839 1796 2 0 -1

ex9 ex9-4 0 3701 0 0 0 0 0 0 0 0 0 no positions n/a 1 3701 0 0 0 1 2 2 4019 3701 2 0 -1

ex9 ex9-5 0 3697 3690 0 0 0 0 0 0 0 0 no positions n/a 1 3697 0 0 0 1 1 1 329 7 1 0 -1

ex9 ex9-6 0 22 22 0 0 0 0 0 0 0 0 no positions n/a 1 22 0 0 0 1 1 0 3997 0 1 0 -1

Table A.3.

Micro-metric values matrix for the design alternatives

181

182

Bibliography

[AAE*14]

[AKL*07]

[ANP12]

[BCKO3]

[BCMMO8]

[BCR94]

[BDLvV09]

Tim Aerdts, Stefan Arians, Vadim Emrich, Michael Klingen, Ben
Ripkens, and Theo Rutten. Open decision repository, 2014. https:
//code.google.com/p/opendecisionrepository/.

Paris Avgeriou, Philippe Kruchten, Patricia Lago, Paul Grisham, and
Dewayne E. Perry. Sharing and reusing architectural knowledge
- architecture, rationale, and design intent. In 29th International
Conference on Software Engineering (ICSE 2007), pages 109-110,
2007.

Saeed Aghaee, Marcin Nowak, and Cesare Pautasso. Reusable de-
cision space for mashup tool design. In Simone Diniz Junqueira
Barbosa, José Creissac Campos, Rick Kazman, Philippe A. Palanque,
Michael D. Harrison, and Steve Reeves, editors, ACM SIGCHI Sympo-
sium on Engineering Interactive Computing Systems, EICS’12, Copen-
hagen, Denmark - June 25 - 28, 2012, pages 211-220. ACM, 2012.

L. Bass, P Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley, third edition, 2003.

Janet E. Burge, John M. Carroll, Raymond McCall, and Ivan Mistrik.
Rationale-Based Software Engineering. Springer, 2008.

Victor Basili, Gianluigi Caldiera, and Dieter H. Rombach. The goal
question metric approach. In Encyclopedia of Software Engineering.
Wiley, 1994.

Muhammad Ali Babar, Torgeir Dingsd@yr, Patricia Lago, and Hans
van Vliet. Software Architecture Knowledge Management - Theory
and Practice. Springer, 2009.

183

https://code.google.com/p/opendecisionrepository/
https://code.google.com/p/opendecisionrepository/

184 Bibliography

[BGBG95] Ronald M. Baecker, Jonathan Grudin, William Buxton, and Saul
Greenberg. Readings in Human-Computer Interaction: Towards the
Year 2000. Morgan-Kaufmann, 1995.

[BGJO5] Muhammad Ali Babar, Ian Gorton, and D. Ross Jeffery. Capturing
and using software architecture knowledge for architecture-based
software development. In 2005 NASA / DoD Conference on Evolvable
Hardware, 29 June - 1 July 2005, Washington, DC, 2005.

[BHSO07a] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-
Oriented Software Architecture Volume 4: A Pattern Language for
Distributed Computing. Wiley, 2007.

[BHS07b] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-
Oriented Software Architecture Volume 5: On Patterns and Pattern
Languages. Wiley, 2007.

[BMO5] Felix Bachmann and Paulo Merson. Experience using the web-based
tool wiki for architecture documentation. Technical Report SEI-
2005-TN-041, Carnegie Mellon University, Software Engineering
Institute, 2005.

[BMR*96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal. Pattern-Oriented Software Architecture Volume 1:
A System of Patterns. Wiley, 1996.

[Boe00] Barry W. Boehm. Requirements that handle ikiwisi, cots, and rapid
change. IEEE Computer, 33(7):99-102, 2000.

[Boo06] Grady Booch. On design. Blog, March 2006. https://www.ibm,
com/developerworks/community/blogs/gradybooch/entry/
on_design?lang=en.

[Bos04] Jan Bosch. Software architecture: The next step. In First European
Workshop on Software Architecture, volume 3047 of Lecture Notes in
Computer Science, pages 194-199. Springer, St Andrews, UK 2004.

[Bro10] Frederick P Brooks. The Design of Design: Essays from a Computer
Scientist. Addison-Wesley, 2010.

[Bur05] Janet E. Burge. Software Engineering Using design RATionale. PhD
thesis, Worcester Polytechnic Institute, 2005.

https://www.ibm.com/developerworks/community/blogs/gradybooch/entry/on_design?lang=en
https://www.ibm.com/developerworks/community/blogs/gradybooch/entry/on_design?lang=en
https://www.ibm.com/developerworks/community/blogs/gradybooch/entry/on_design?lang=en

185

Bibliography

[Cap09]

[CB88]

[CDN10]

[CAVL10]

[Cho06]

[Cle07]

[Clel1]

[CLW07]

[CNPDO6]

Rafael Capilla. Embedded design rationale in software architec-
ture. In Joint Working IEEE /IFIP Conference on Software Architec-
ture 2009 and European Conference on Software Architecture 2009,
WICSA/ECSA 2009, Cambridge, UK, 14-17 September 2009, pages
305-308. IEEE, 2009.

Jeff Conklin and Michael L. Begeman. gibis: a hypertext tool for
exploratory policy discussion. In Proceedings of the 1988 ACM con-
ference on Computer-supported cooperative work, CSCW 88, pages
140-152, 1988.

Rafael Capilla, Juan C. Duefias, and Francisco Nava. Viability for
codifying and documenting architectural design decisions with tool
support. Journal of Software Maintenance, 22(2):81-119, 2010.

Viktor Clerc, Edwin de Vries, and Patricia Lago. Using wikis to
support architectural knowledge management in global software
development. In SHARK ’10: Proceedings of the 2010 ICSE Workshop
on Sharing and Reusing Architectural Knowledge, pages 37-43, 2010.

Chun Wei Choo. The Knowing Organization: How Organizations
Use Information to Construct Meaning, Create Knowledge and Make
Decisions. Oxford University Press, second edition edition, 2006.

Paul C. Clements. An economic model for software architecture
decisions. In ESC °07: Proceedings of the First International Workshop
on The Economics of Software and Computation, 2007.

Viktor Clerc. Architectural Knowledge Management in Global Software
Development. PhD thesis, Free University of Amsterdam, 2011.

Viktor Clerc, Patricia Lago, and Hans van Vliet. The architect’s
mindset. In Sven Overhage, Clemens A. Szyperski, Ralf Reussner,
and Judith A. Stafford, editors, Software Architectures, Components,
and Applications, Third International Conference on Quality of Soft-
ware Architectures, QoSA 2007, Medford, MA, USA, July 11-23, 2007,
Revised Selected Papers, volume 4880 of Lecture Notes in Computer
Science, pages 231-249. Springer, 2007.

Rafael Capilla, Francisco Nava, Sandra Pérez, and Juan C. Duefias.
A web-based tool for managing architectural design decisions. ACM
SIGSOFT Software Engineering Notes, 31(5), 2006.

186

Bibliography

[Con68]

[Con05]

[Coy05]

[CS63]

[CSMO8]

[Dalll]

[dBFL*07]

[DeM86]

[dGJKK12]

[Durll]

Melvin E. Conway. How do committees invent? Datamation maga-
zine, 1968.

Jeff Conklin. Dialogue Mapping: Building Shared Understanding of
Wicked Problems. Wiley, 1st edition, 2005.

Richard Coyne. Wicked problems revisited. Design Studies, 26(1):5
-17, 2005.

Donald T. Campbell and Julian C. Stanley. Experimental and quasi-
experimental designs for research. Houghton Mifflin Company, 1963.

Xiaofeng Cui, Yanchun Sun, and Hong Mei. Towards automated solu-
tion synthesis and rationale capture in decision-centric architecture
design. In Proceedings of the Seventh Working IEEE /IFIP Conference
on Software Architecture WICSA 08, pages 221-230, 2008.

Kimiz Dalkir. Knowledge Management in Theory and Practice. MIT
Press, second edition, 2011.

Remco de Boer, Rik Farenhorst, Patricia Lago, Hans van Vliet, Viktor
Clerc, and Anton Jansen. Architectural knowledge: Getting to the
core. In Proceedings of the 3rd Internationale Conference on the
Quality of Software Architectures (QoSA), pages 197-214. Springer
LNCS, 2007.

Tom DeMarco. Controlling Software Projects: Management, Measure-
ment, and Estimates. Prentice Hall, 1986.

Thijmen de Gooijer, Anton Jansen, Heiko Koziolek, and Anne Kozi-
olek. An industrial case study of performance and cost design space
exploration. In David R. Kaeli, Jerry Rolia, Lizy K. John, and Diwakar
Krishnamurthy, editors, Third Joint WOSP /SIPEW International Con-
ference on Performance Engineering, ICPE’12, Boston, MA, USA - April
22 - 25, 2012, pages 205-216. ACM, 2012.

Zoya Durdik. An architecture-centric approach for goal-driven re-
quirements elicitation. In SIGSOFT/FSE’11 19th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-19) and
ESEC’11: 13rd European Software Engineering Conference (ESEC-13),
Szeged, Hungary, September 5-9, 2011, pages 384-387, 2011.

187

Bibliography

[EC09]

[Ede05]

[EG89]

[EHKO06]

[EKO03]

[End95]

[End00]

[FCKK11]

[FdB09]

[FJFHO9]

Peter Eeles and Peter Cripps. The Process of Software Architecting.
Pearson, 2009.

Amnon H. Eden. Strategic versus tactical design. In 38th Hawaii
International Conference on System Sciences (HICSS-38 2005), 3-6
January 2005, Big Island, HI, USA, 2005.

Clarence A. Ellis and Simon J. Gibbs. Concurrency control in group-
ware systems. In James Clifford, Bruce G. Lindsay, and David Maier,
editors, Proceedings of the 1989 ACM SIGMOD International Con-
ference on Management of Data, Portland, Oregon, May 31 - June 2,
1989., pages 399-407. ACM Press, 1989.

Amnon H. Eden, Yoram Hirshfeld, and Rick Kazman. Abstraction
classes in software design. IEEE Software, 153:163-182, 2006.

Amnon H. Eden and Rick Kazman. Architecture, design, implemen-
tation. In Lori A. Clarke, Laurie Dillon, and Walter E Tichy, editors,
Proceedings of the 25th International Conference on Software Engi-
neering (ICSE-03), May 3-10, 2003, Portland, Oregon, USA, pages
149-159. IEEE Computer Society, 2003.

Mica R. Endsley. Thoward a theory of sitaution awareness in dynamic
systems. Human Factors, 37(1):32-64, March 1995.

Mica R. Endsley. Theoretical underpinnings of situation awareness:
a critical review. In M. R. Endsley and D. J. Garland, editors, Situ-
ation Awareness Analysis and Measurement, pages 1-24, Mahwah,
NJ, USA, 2000. Lawrence Erlbaum Associates.

Davide Falessi, Giovanni Cantone, Rick Kazman, and Philippe
Kruchten. Decision-making techniques for software architecture
design: A comparative survey. ACM Computing Surveys, 43(4):33,
2011.

Rik Farenhorst and Remco C. de Boer. Architectural Knowledge
Management: Supporting Architects and Auditors. PhD thesis, Vrije
Universiteit Amsterdam, 2009.

Rik Farenhorst and Hans van Vliet Johan E Hoorn, Patricia Lago.
What architects do what they need to share knowledge. Technical
report, VU University Amsterdam, 2009.

188 Bibliography

[FLvV07a] Rik Farenhorst, Patricia Lago, and Hans van Vliet. Eagle: Effective
tool support for sharing architectural knowledge. Int. J. Cooperative
Inf. Syst., 16(3/4):413-437, 2007.

[FLvV07b] Rik Farenhorst, Patricia Lago, and Hans van Vliet. Prerequisites
for successful architectural knowledge sharing. In 18th Australian
Software Engineering Conference (ASWEC 2007), April 10-13, 2007,
Melbourne, Australia, pages 27-38, 2007.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley, 2002.

[FS99] Martin Fowler and Kendall Scott. UML Distilled: A Brief Guide to the
Standard Object Modeling Language (2nd Edition). Addison-Wesley,
1999.

[FWC93] J. Favela, A. Wong, and A. Charkavatrthy. Supporting collaborative
engineering design. Engineering with computers, 9:125-132, 1993.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[GIZ08] David Greenspan, Aaron Iba, and J.D. Zamfirescu. Etherpad, 2008.
http://etherpad.org/.

[Goo13] Google. Google Docs, 2013. http://docs.google.com.

[Gru94] Jonathan Grudin. Computer-supported cooperative work: History
and focus. IEEE Computer, 27(5):19-26, 1994.

[GS94] David Garlan and Mary Shaw. An introduction to software archi-
tecture. Technical report, Software Engineering Institute, Carnegie
Mellon University, 1994.

[Han05] Sven Ove Hansson. Decision Theory: A Brief Introduction. Depart-
ment of Philosophy and the History of Technology, Royal Institute
of Technology (KTH), Stockholm, 2005.

[HGS™13] Matthias Heinrich, Franz Josef Griineberger, Thomas Springer,
Philipp Hauer, and Martin Gaedke. Gawi: A comprehensive
workspace awareness library for collaborative web applications. In
Florian Daniel, Peter Dolog, and Qing Li, editors, 13th International

http://etherpad.org/
http://docs.google.com

189 Bibliography

Conference on Web Engineering, ICWE 2013, Aalborg, Denmark, July
8-12, 2013. Proceedings, volume 7977 of Lecture Notes in Computer
Science, pages 482—485. Springer, 2013.

[HKN*07] Christine Hofmeister, Philippe Kruchten, Robert L. Nord, Henk Ob-
bink, Alexander Ran, and Pierre America. A general model of soft-
ware architecture design derived from five industrial approaches.
Journal of Systems and Software, 80(1):106 — 126, 2007.

[HLO8] Lile Hattori and Michele Lanza. On the nature of commits. In
23rd IEEE /ACM International Conference on Automated Software
Engineering - Workshop Proceedings (ASE Workshops 2008), 15-16
September 2008, LAquila, Italy, pages 63-71. IEEE, 2008.

[HP96] Randy Y. Hirokawa and Marshall Scott Poole. Communication and
Group Decision Making. SAGE Publications, Inc, 2nd edition, 1996.

[HRLT09] Carol L. Hoover, Mel Rosso-Llopart, and Gil Taran. Evaluating Project
Decisions: Case Studies in Software Engineering. Addison-Wesley,
2009.

[HWO03] Gregor Hophe and Bobby Woolf. Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions. Addison-
Wesley, 2003.

[HWBYZ13] Gregor Hohpe, Rebecca Wirfs-Brock, Joseph W. Yoder, and Olaf

Zimmermann. Twenty years of patterns’ impact. IEEE Software,
30(6):88, 2013.

[Inm02] W. H. Inmon. Building the Data Warehouse. Wiley, 2002.

ISO91] 1 9 . Information technology - software product evaluation -
[ISO91] ISO 9126. Inf i hnology fi prod luati
quality characteristics and guidelines for their use, 1991.

[ISO11] ISO 42010. ISO/IEC 42010 - Systems and software engineering —
architecture description, 2011.

[Jac95] Michael Jackson. Software Requirements and Specifications: A Lexicon

of Practice, Principles and Prejudices. Addison-Wesley Professional,
1995.

190

Bibliography

[JAvdV09]

[JBO5]

[Jos09]

[JvdVAHO7]

[KCDO09]

[KG14]

[KJO4]

[KKCO00]

[Kle99]

[KLvV06]

Anton Jansen, Paris Avgeriou, and Jan Salvador van der Ven. En-
riching software architecture documentation. Journal of Systems
and Software, 82(8):1232 — 1248, 2009.

Anton Jansen and Jan Bosch. Software architecture as a set of
architectural design decisions. In Fifth Working IEEE / IFIP Confer-
ence on Software Architecture (WICSA 2005), 6-10 November 2005,
Pittsburgh, Pennsylvania, USA, pages 109-120, 2005.

Andrew Josey. TOGAF Version 9 Enterprise Edition. The Open Group,
January 2009.

Anton Jansen, Jan Salvador van der Ven, Paris Avgeriou, and Di-
eter K. Hammer. Tool support for architectural decisions. In Sixth
Working IEEE / IFIP Conference on Software Architecture (WICSA
2007), 6-9 January 2005, Mumbai, Maharashtra, India, page 4. IEEE
Computer Society, 2007.

Philippe Kruchten, Rafael Capilla, and Juan Carlos Dueas. The
decision view’s role in software architecture practice. IEEE Software,
26(2):36-42, 2009.

Heiko Koziolek and Thomas Goldschmidt. Tool-driven technology
transfer to support software architecture decisions. In Software
Engineering 2014, Fachtagung des GI-Fachbereichs Softwaretechnik,
25. Februar - 28. Februar 2014, Kiel, Deutschland, volume 227 of LNI,
pages 159-164. GI, 2014. https://decisions.codeplex.com/.

Michael Kircher and Prashant Jain. Pattern-Oriented Software Archi-
tecture Volume 3: Patterns for Resource Management. Wiley, 2004.

Rick Kazman, Mark Klein, and Paul Clements. ATAM: Method for
architecture evaluation. Technical Report CMU/SEI-2000-TR-004,
CMU SEI, August 2000.

Gary Klein. Sources of Power. MIT Press, 1999.

Philippe Kruchten, Patricia Lago, and Hans van Vliet. Building up
and reasoning about architectural knowledge. Quality of Software
Architectures, pages 43-58, 2006.

https://decisions.codeplex.com/

191 Bibliography

[KOS06] Philippe Kruchten, J. Henk Obbink, and Judith A. Stafford. The
past, present, and future for software architecture. IEEE Software,
23(2):22-30, 2006.

[Kru95] PB. Kruchten. The 4+1 view model of architecture. Software, IEEE,
12(6):42-50, Nov 1995.

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures, An Algo-
rithmic Point of View. Springer, 2008.

[Kva00] Thomas Kvan. Collaborative design: what is it? Automation in
construction, 9(4):409-415, 2000.

[Lag09] Patricia Lago. Establishing and Managing Knowledge Sharing Net-
works, chapter 7, pages 113-130. Springer, 2009.

[LCO1] Bo Leuf and Ward Cunningham. The Wiki Way: Quick Collaboration
on the Web. Addison-Wesley Professional, 2001.

[Lee89] Jintae Lee. Decision representation language (DRL) and its support
environment. A.I. Working Paper No. 325, 1989.

[Lee97] Jintae Lee. Design rationale systems: Understanding the issues.
IEEE Intelligent Systems, 12(3):78-85, 1997.

[LG86] Barbara Liskov and John Guttag. Abstraction and specification in
program development. MIT Press, 1986.

[LJAO9] Peng Liang, Anton Jansen, and Paris Avgeriou. Knowledge archi-
tect: A tool suite for managing software architecture knowledge.
Technical report, Software Engineering and Architecture (SEARCH)
Group University of Groningen, 2009.

[LJA10] Peng Liang, Anton Jansen, and Paris Avgeriou. Collaborative Soft-
ware Engine, chapter Collaborative Software Architecting through
Knowledge Sharing, pages 343-367. Springer, 2010.

[LMO06] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Prac-
tice: Using Software Metrics to Characterize, Evaluate, and Improve
the Design of Object-Oriented Systems. Springer, 2006.

192

Bibliography

[LTZ13]

[Mah06]

[MTO0O0]

[MTK*14]

[MZ11]

[NHCO07]

[NP11]

[NP13]

loanna Lytra, Huy Tran, and Uwe Zdun. Supporting consistency be-
tween architectural design decisions and component models through
reusable architectural knowledge transformations. In Khalil Drira,
editor, Software Architecture - 7th European Conference (ECSA2013),
Montpellier, France, July 1-5, volume 7957 of LNCS, pages 224-239,
2013.

Michael Mahemoff. Ajax Design Patterns. O’Reilly Media, 2006.

Nenad Medvidovic and Richard N. Taylor. A classification and com-
parison framework for software architecture description languages.
IEEE Trans. Software Eng., 26(1):70-93, 2000.

Christian Manteuffel, Dan Tofan, Heiko Koziolek, Thomas Gold-
schmidt, and Paris Avgeriou. Industrial implementation of a docu-
mentation framework for architectural decisions. In 2014 IEEE /IFIP
Conference on Software Architecture, WICSA 2014, Sydney, Australia,
April 7-11, 2014, pages 225-234. IEEE Computer Society, 2014.

Christoph Miksovic and Olaf Zimmermann. Architecturally sig-
nificant requirements, reference architecture, and metamodel for
knowledge management in information technology services. In Pro-
ceedings of the 2011 Ninth Working IEEE /IFIP Conference on Software
Architecture, WICSA '11, pages 270-279, Washington, DC, 2011.

Rajiv Nag, Donald C. Hambrick, and Ming-Jer Chen. What is strate-
gic management, really? inductive derivation of a consensus defi-
nition of the field. Strategic Management Journal, 28(9):935-955,
2007.

Marcin Nowak and Cesare Pautasso. Goals, questions and metrics
for architectural decision models. In Proceedings of the 6th Workshop
on Sharing and reusing architectural knowledge SHARK ’11, Waikiki,
HA, 2011.

Marcin Nowak and Cesare Pautasso. Team situational awareness
and architectural decision making with the software architecture
warehouse. In Khalil Drira, editor, 7th European Conference on
Software Architecture, ECSA 2013, Montpellier, France, July 1-5, 2013.
Proceedings, volume 7957 of LNCS, pages 146-161. Springer, 2013.

193 Bibliography

[NPZ10] Marcin Nowak, Cesare Pautasso, and Olaf Zimmerman. Architectural
decision modeling with reuse: Challenges and opportunities. In
Proceedings of the 5th Workshop on Sharing and reusing architectural
knowledge SHARK ’10, Cape Town, South Africa, 2010.

[NT95] Ikujiro Nonaka and Hirotaka Takeuchi. The Knowledge-Creating Com-
pany: How Japanese Companies Create the Dynamics of Innovation.
Oxford University Press, 1995.

[NusO1] Bashar Nuseibeh. Weaving together requirements and architectures.
IEEE Computer, pages 115-119, 2001.

[0oEEO0] Institute of Electrical and Electronics Engineers. Recommended
practice for architectural description of software-intensive systems,
2000.

[Par09] David Lorge Parnas. Document based rational software development.
Knowl.-Based Syst., 22(3):132-141, 2009.

[PB88] C. Potts and G. Bruns. Recording the reasons for design decisions.
In Proceedings of the 10th International Conference on Software Engi-
neering, pages 418 —427, apr 1988.

[PIPWJ08] Witold Pedrycz, Nikhil Ichalkaranje, Gloria Phillips-Wren, and
Lakhmi C. Jain. Intelligent Decision Making: An Al-Based Approach.
Springer, 2008.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study
of software architecture. SIGSOFT Softw. Eng. Notes, 17:40-52,
October 1992.

[PZL08] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful
web services vs. big web services: Making the right architectural de-
cision. In 17th International World Wide Web Conference WWW2008,
pages 805-814, Beijing, China, April 2008.

[Rit72] Horst Rittel. On the Planning Crisis: Systems Analysis of the ’First
and Second Generations’. Bedriftskonomen, 34:390-396, 1972.

[Rit06] Tom Ritchey. General morphological analysis a general method for
non-quantified modelling. Swedish Morphological Society, 2002—
2006.

194

Bibliography

[Rob00]

[ROJ9O0]

[RW73]

[SCB14]

[SCCO1]

[SEI10]

[Sell1]

[SHLOS]

[Sim97]

[SLK09a]

Nancy Roberts. Wicked problems and network approaches to reso-
lution. International Public Management Review, 1, 2000.

Spencer Rugaber, Stephen B. Ornburn, and Richard J. Leblanc Jr.
Recognizing design decisions in programs. IEEE Software, 1990.

Horst W. J. Rittel and Melvin M. Webber. Dilemmas in a general
theory of planning. Policy Science, 4:155-169, 1973.

Stephan Sehestedt, Chih-Hong Cheng, and Eric Bouwers. Towards
quantitative metrics for architecture models. In Anna Liu, John
Klein, and Antony Tang, editors, WICSA Companion, page 5. ACM,
2014.

William R. Shadish, Thomas D. Cook, and Donald T. Campbell.
Experimental and Quasi-experimental designs for generalized casual
inference. Houghton Mifflin Co., 2001.

CMU SEI. Software engineering institute, 2010. Commu-
nity Software Architecture Definitions http://www.sei.cmu.edu/
architecture/start/community.cfm.

Howard J. Seltman. Experimental Design and Analysis. Pearson
Prentice Hall, Upper Saddle River, New Jersey, 2011. http://www.
stat.cmu.edu/~hseltman/309/Book/PrefTOC. pdf.

Weiming Shen, Qi Hao, and Weidong Li. Computer supported
collaborative design: Retrospective and perspective. Computers in
Industry, 59(9):855-862, 2008.

Herbert A. Simon. Administrative Behavior: A Study of Decision-
making Processes in Administrative Organizations: A Study of Decision-
making Processes in Administrative Organisations. The Free Press,
1997.

Mojtaba Shahin, Peng Liang, and Mohammad-Reza Khayyambashi.
Architectural design decision: Existing models and tools. In Joint
Working IEEE /IFIP Conference on Software Architecture 2009 and
European Conference on Software Architecture 2009, WICSA /ECSA
2009, pages 293-296, 2009.

http://www.sei.cmu.edu/architecture/start/community.cfm
http://www.sei.cmu.edu/architecture/start/community.cfm
http://www.stat.cmu.edu/~hseltman/309/Book/PrefTOC.pdf
http://www.stat.cmu.edu/~hseltman/309/Book/PrefTOC.pdf

195

Bibliography

[SLKO9b]

[SNHO5]

[SSRBOO]

[SSST01]

[Ste46]

[SZPO7]

[TAO5]

[Tan90]

[Tan07]

[Tau06]

Mojtaba Shahin, Peng Liang, and Mohammad Reza Khayyambashi.
A survey of architectural design decision models and tools. Technical
Report SBU-RUG-2009-SL-01, Sheikh Bahaei University & University
of Groningen, Jun 2009.

Dilip Soni, Robert L. Nord, and Christine Hofmeister. Software
architecture in industrial applications. In Dewayne E. Perry, Ross
Jeffrey, and David Notkin, editors, 17th International Conference on
Software Engineering, Seattle, Washington, USA, April 23-30, 1995,
Proceedings., pages 196-207. ACM, 1995.

Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann. Pattern-Oriented Software Architecture Volume 2: Pat-
terns for Concurrent and Networked Objects. Wiley, 2000.

Albert Selvin, Simon Buckingham Shum, Maarten Sierhuis, Jeff
Conklin, Beatrix Zimmermann, Charles Palus, Wilfred Drath, David
Horth, John Domingue, Enrico Motta, and Gangmin Li. Com-
pendium: Making meetings into knowledge events. In Knowledge
Technologies, Austin, TX, March 2001.

S. S. Stevens. On the theory of scales of measurement. Science,
103:677-680, 1946.

Nelly Schuster, Olaf Zimmermann, and Cesare Pautasso. Adkwik:
Web 2.0 collaboration system for architectural decision engineering.
In Proc. of the International Conference on Software Engineering &
Knowledge Engineering (SEKE’2007), 2007.

Jeff Tyree and Art Akerman. Architecture decisions: Demystifying
architecture. IEEE Software, 22(2):19-27, 2005.

Steven L. Tanimoto. Viva: A visual language for image processing.
J. Vis. Lang. Comput., 1(2):127-139, June 1990.

Antony Tang. A Rationale-based Model for Architecture Design Rea-
soning. PhD thesis, Swinburne University of Technology, February
2007.

Gadi Taubenfeld. Synchronization Algorithms and Concurrent Pro-
gramming. Pearson / Prentice Hall, 2006.

196

Bibliography

[TGA13]

[TJHO7]

[TMDO9]

[Tra95]

[VHA10]

[VHA11]

[VHAH12a]

[VHAH12b]

[VLO8]

Dan Tofan, Matthias Galster, and Paris Avgeriou. Difficulty of archi-
tectural decisions - a survey with professional architects. In ECSA,
volume 7957 of Lecture Notes in Computer Science, pages 192—-199.
Springer, 2013.

Antony Tang, Yan Jin, and Jun Han. A rationale-based architecture
model for design traceability and reasoning. Journal of Systems and
Software, 80(6):918-934, 2007.

Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. Software
Architecture - Foundations, Theory and Practice. Wiley, 2009.

Will Tracz. Confessions of a Used Program Salesman. Addison-Wesley,
1995.

Uwe van Heesch and Paris Avgeriou. Naive architecting - under-
standing the reasoning process of students - a descriptive survey. In
Muhammad Ali Babar and Ian Gorton, editors, Software Architecture,
4th European Conference, ECSA 2010, Copenhagen, Denmark, August
23-26, 2010. Proceedings, volume 6285 of Lecture Notes in Computer
Science, pages 24-37. Springer, 2010.

Uwe van Heesch and Paris Avgeriou. Mature architecting - a sur-
vey about the reasoning process of professional architects. In 9th
Working IEEE /IFIP Conference on Software Architecture, WICSA 2011,
Boulder, Colorado, USA, June 20-24, 2011, pages 260-269. IEEE
Computer Society, 2011.

Uwe van Heesch, Paris Avgeriou, and Rich Hilliard. A documenta-
tion framework for architecture decisions. Journal of Systems and
Software, 85(4):795-820, 2012.

Uwe van Heesch, Paris Avgeriou, and Rich Hilliard. Forces on
architecture decisions - a viewpoint. In Joint Working IEEE /IFIP
Conference on Software Architecture and European Conference on
Software Architecture, WICSA /ECSA, Helsinki, Finland, August 20-24.
IEEE, 2012.

Axel van Lamsweerde. Requirements engineering: from craft to
discipline. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2008, Atlanta,
Georgia, USA, November 9-14, 2008, pages 238-249, 2008.

197

Bibliography

[Wol93]

[Zac87]

[Zdu09]

[Zha02]

[Zim09]

[Zim11]

Michael Wolfe. New architectures for wisiwyswiwswys (what i see
is what you see when i want to see what you see). In Clyde W.
Holsapple and Andrew B. Whinston, editors, Recent Developments
in Decision Support Systems, volume 101 of NATO ASI Series, pages
361-379. Springer Berlin Heidelberg, 1993.

John A. Zachman. A framework for information systems architec-
ture (abstract of tutorial). In Salvatore T. March, editor, Entity-
Relationship Approach, Proceedings of the Sixth International Confer-
ence on Entity-Relationship Approach, page 7. North-Holland, 1987.

Uwe Zdun. Capturing design knowledge. IEEE Software, pages
25-27, March/April 2009.

Lei Zhang. Knowledge Graph Theory and Structural Parsing. PhD
thesis, University of Twente, 2002.

Olaf Zimmermann. An Architectural Decision Modeling Framework
for Service-Oriented Architecture Design. PhD thesis, Universitat
Stuttgart, 2009.

Olaf Zimmermann. Architectural decisions as reusable design assets.
IEEE Software, 28(1):64-69, 2011.

[ZKL*09] Olaf Zimmermann, Jana Koehler, Frank Leymann, Ronny Polley,

and Nelly Schuster. Managing architectural decision models with
dependency relations, integrity constraints, and production rules.
Journal of Systems and Software, 82(8):1249 — 1267, 2009.

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Architecture Decision Argumentation Modeling
	Collaborative Architecture Decision Making
	Estimation of Collaborative Architecture Decisions Quality
	Contributions
	Structure

	Background
	Architecture Design Process
	Quality of Software Architecture
	Architectural Knowledge

	Knowledge Management
	Decision Making Process
	Wicked Problems

	Computer Supported Collaborative Work
	The Problem of Collaborative Design
	Positioning in Environment
	From Situational Awareness to Good Decisions

	Collaborative Design of Software Architecture
	Summary

	Related Work and the State of the Art
	Architecture Views and Decision Modeling
	Architectural Knowledge Management and Decision Support Tools
	Collaborative Design Paradigms
	Design Issue: Model Location
	Design Alternative: Centralized
	Design Alternative: Distributed

	Design Issue: Synchronization
	Design Alternative: Manual
	Design Alternative: Automatic

	Design Issue: Meta-Model Type
	Design Alternative: Implicit Meta-Model
	Design Alternative: Explicit Meta-Model

	Design Issue: Collaborative Design Paradigm
	Design Alternative: Shared File
	Design Alternative: Wiki
	Design Alternative: Shared Repository
	Design Alternative: Collaborative Editor
	Design Alternative: Blackboard

	Liveness
	Design Issue: Conflict Prevention
	Design Alternative: None
	Design Alternative: Locks

	Design Issue: Conflict Resolution
	Design Alternative: Manual
	Design Alternative: Automatic

	Design Issue: Liveness
	Design Alternative: None
	Design Alternative: Low
	Design Alternative: Medium
	Design Alternative: High

	Tools
	Potential Gap
	Summary

	Collaborative Software Architecture Decisions
	Typical Scenarios
	Architecture Synthesis
	Architecture Evaluation
	Synthesis and Evaluation

	Scoping the Research Problem
	Team Situational Awareness and Architecture Design
	Collaborative Architecture Design Decision Consensus (RP1)
	Quality of the Collaborative Architecture Decisions (RP2)

	Research Thesis
	Summary

	Architecture Decision Argumentation Viewpoint
	Decision Model and Argumentation Viewpoint
	The Lifecycle of Positions within Alternatives
	The Lifecycle of a Design Decision

	Summary

	Software Architecture Warehouse
	Shared Design Space Awareness
	Usage Context
	Application Scenario
	SAW Features
	Project-Based Design and Reusable Design Issues
	Decision Elicitation
	Collaborative Brainstorming
	Decision Making
	Position Conflict Management
	Focus Tracking and Convergence
	Progress Monitoring

	Architecture Design Decisions
	Design Issue: Model Location
	Design Issue: Synchronization
	Design Issue: Meta-Model Type
	Design Issue: Conflict Prevention
	Design Issue: Conflict Resolution

	Selected Design Aspects
	Client-Server Split
	Rich Web-Application
	Graph-based Decision Space Meta-Meta-Model
	Node Graph Observer and Notification System
	Smart Client-Side Graph Caching
	Deployment

	Summary

	The Analyzer
	Goals
	Questions
	Metrics
	Structural Metrics
	Content Metrics
	Argumentation Metrics

	Interpretation Model

	Analysis Workflow
	Data Acquisition
	Event Identification
	Decision Model Structure Recognition
	Micro-Metrics
	Item Identification Micro-Metrics
	Item Dynamics Micro-Metrics
	Argumentation Micro-Metrics
	Issue Micro-Metrics
	Project Micro-Metrics

	Summary

	Evaluation
	Formative Evaluation
	Empirical Evaluation
	Participants
	Baseline and Observation
	Data Collection

	Results
	Interpretation
	Question 1: How aligned are the decisions?
	Question 2: How volatile is the consensus over the decisions?
	Question 3: How democratic are the decisions?

	Summary
	Threats to Validity
	Internal Validity
	Construct Validity
	External Validity

	Conclusions
	Summary
	Contributions
	Limitations
	Lessons Learned
	The Road Ahead

	The Dataset
	Bibliography

