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ABSTRACT
Architectural decisions are the key element behind the de-
sign process leading to a software architecture. Making soft-
ware architects aware of the implications of their decisions
is only the beginning of what can be achieved by capturing
the rationale and the constraints influencing the decision
making process in a reusable body of architectural knowl-
edge. In this paper we propose a metric-based approach
to the analysis of architectural decision models. Using a
hierarchically-structured approach we identify a number of
useful goals and stakeholders involved in the architectural
design process. Next, we sketch a set of metrics to provide
data for the evaluation of the aforementioned goals. Our
aim is to stimulate a discussion on how to find indicators
relevant for software architects by measuring the intrinsic
properties of architectural knowledge.

General Terms
Design, Documentation, Measurement, Verification, Com-
plexity

Keywords
Software Architecture, Architectural Decision Modeling, Vi-
sualization

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
D.2.2 [Software Engineering]: Design

1 Introduction
Software metrics have been widely studied in the context
of software reengineering [12] and software process improve-
ment [21]. In general, the goal of applying metrics to soft-
ware has been to assess the maturity of a software develop-
ment organization [26] and quantitatively compare the qual-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA

Copyright 2011 ACM 978-1-4503-0596-9/11/05 ...$10.00.

ity of the code artifacts it produces [20]. Concerning soft-
ware architecture, metrics have been applied to observe and
compare architectural models (e.g., [17]) within different ar-
chitectural analysis methods [10]. As opposed to measuring
the observable properties of an actual software architecture
[28], in this paper we focus on measuring properties of the
knowledge captured as part of software architecture decision
models. This knowledge is an important business asset for
software design organizations [2, 22]. Our intent is to ex-
tract additional insight from the captured knowledge and
the decisions by applying quantitative and qualitative met-
rics. Measuring the knowledge helps to evaluate its quality
in order to improve it. Thus, it also helps to improve the
quality of the outcome of the design process which makes
use of the knowledge to guide decision-making. Observing
the dynamics of the design process of a software architec-
ture also helps to estimate the complexity involved with a
given project, to keep track of changes in the design and to
estimate how quickly it is progressing towards completeness.

The paper makes the following novel contributions. It pro-
poses to apply the GQM (Goal-Question-Metric) methodol-
ogy [23] to measure software architectural knowledge. It
outlines a set of useful goals for the main stakeholders in-
volved in the design of a software architecture. For each
goal, we present a set of relevant questions which are an-
swered by combining 26 different metrics. Metrics can be
applied to the entire design space or to narrower scopes as
well as to the decisions made within a specific project space.

The approach and the metrics that we have designed can
be applied to any software architectural decision meta-model
which complies with a minimal set of assumptions which are
shared by most issue-based information systems (IBIS [9]).
By showing how to define metrics starting from the intrinsic
properties of a generic architectural meta-model, the ap-
proach goes beyond basic tradeoff analysis performed by ag-
gregating cost/risk factors associated with different design
solutions [15]. Since the metrics we propose do not rely
exclusively on specific attributes being associated with the
knowledge items, we can obtain useful insight without re-
quiring additional input and extra effort to keep the model
up to date.

In this paper we provide an initial theoretical investigation
sketching a potentially useful set of design-space metrics.
This investigation makes a strong assumption that the soft-
ware architectural knowledge is modeled completely. Relax-
ing this assumption for measuring incomplete design spaces
is outside the scope of this paper. Dealing with the analysis
of partially unknown knowledge can be seen in the context
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of a broader set of research challenges [19]. We plan to eval-
uate the metrics as we complete their implementation in the
Software Architecture Warehouse tool.

The rest of this paper is structured as follows: in Section
2 we discuss the benefits of introducing metrics to observe
and analyze architectural decisions models. Section 3 con-
tains the related research which has inspired our work. In
section 4 we give some background on the knowledge meta-
model assumptions and the GQM method used to design our
metrics. Section 5 covers five goals covering a broad range of
design scenarios. In section 6 we define 26 metrics grouped
according to the aspects of the knowledge meta-model being
measured. Section 7 concludes the paper.

2 Motivation
Once the knowledge embedded in a software architecture has
been made explicit and it has been captured in a reusable
decision model, the opportunity arises to measure it in order
to address the following needs.

It is important to assess the quality of the captured knowl-
edge so that, for example, the maturity of different knowl-
edge repositories can be compared. Our expectation is that
everything else being equal, an architecture designed using
high quality knowledge it is likely to be of higher quality
than one designed using a lower quality decision model. To
this end, unless a set of well-defined metrics is introduced
in the context of a given knowledge meta-model, it becomes
difficult to evaluate the quality of the corresponding cap-
tured knowledge.

Another useful expected outcome of measuring architec-
tural knowledge is the possibility of estimating the effort
required to obtain a design. Architects approaching knowl-
edge domains unknown to them can use metrics to assess
the domain knowledge’s intrinsic complexity by observing
the entanglement of the relevant design issues and related
architectural alternatives.

With the goal of speeding up the overall design process,
metrics can also be applied to help with the pruning of ir-
relevant decisions so that architects can not only focus their
efforts on the relevant ones, but also identify the critical de-
cisions which should be initially attacked. Decisions can be
prioritized according to different metrics which weigh their
estimated impact against the corresponding constraints.

Additionally, metrics make it possible to keep track of the
progress of decision-making. In general, it is particularly
challenging to decide when a design is completed and the
architect can stop making decisions. Measuring the dynam-
ics of the decision-making process can help to gather the
necessary evidence that a project has reached its fixed point
and all the relevant decisions have been completed in a con-
sistent way.

3 Related Work
Significant efforts have been invested in researching efficient
methods for structuring, managing, and analyzing the body
of knowledge accumulated in software engineering projects [2,
22]. Concerning the software architecture design process, ar-
chitectural decision models [13] were proposed as the formal
means to capture the assumptions, constraints, issues, and
rationale for a certain solution domain in a coherent and
reusable body of knowledge.

Figure 1: Basic knowledge meta-model.

In this context, various methods have been proposed to
support software design [10], development [12], and evolu-
tion [5] processes with the use of qualitative and quantita-
tive metrics. The analysis of high level software properties
such as size, complexity, cohesion and coupling metrics was
described in [12]. A systematic approach for aggregating
low-level metrics to give meaningful answers to specific ques-
tions was proposed by [18]. Metrics have also been applied
to quantitatively observe the properties of specific software
architectures. First attempts to software architecture anal-
ysis were made with the qualitative SAAM method [14].
This was followed by quantitative methods for architecture
evaluation based on cost-benefit analysis (CBAM [7]) and
quality attributes (ATAM [15]). The idea of incorporating
GQM into the software architecture analysis was proposed
in SIMPLE [8] for the purpose of software product line eval-
uation.

In this paper we shift the focus onto measuring the soft-
ware architecture knowledge captured in reusable decision
models. We propose a minimal architectural knowledge model
that is supposed to be augmented with additional attributes
such as risk factors or effort estimates required to perform a
different kind of ’what-if’ analysis to compare different de-
sign solutions obtained over architectural knowledge. We do
not assume or require any particular number of attributes,
and instead we focus on observing the intrinsic properties
that can be measured out of the basic knowledge found in
most architectural decision meta-models.

4 Background
4.1 Knowledge meta-model
Following the observation that software architecture design
is a wicked problem [27] we present a basic software architec-
tural meta-model which generally follows from the IBIS (Is-
sue Based Information System [9]) and the Question-Option-
Criteria [16] concepts.

The meta-model which we present in this paper should be
considered as a minimal subset of concepts appearing in [1,



6, 25, 29], that is still sufficient for the purpose of demon-
strating our ideas. As shown in Figure 1, the meta-model
defines elements of two abstraction levels. The generic part
is composed of three kinds of knowledge Item elements: a
graph of Artifact nodes linked by Relation edges and clas-
sified by various Tag types. Any instance of this type is
uniquely identified by its ID and can carry a predefined set
of attributes specific for a given type. For example in the
case of a design issue these could be: name, description, and
recommendation.

These generic elements are instantiated into a meta-model
which adopts a subset1 of the architectural knowledge con-
cepts proposed by Zimmermann [29]. To be precise, we use
knowledge artifacts such as Issues and Alternatives, together
with the basic SolvedBy relation connecting an Issue with
the corresponding Alternative. The relation of Dependency

represents constraints between different Alterative artifacts.
We also include the Influence relation, which can freely oc-
cur between any combination of Issues and Alternatives.

A given knowledge item can be tagged with multiple tags,
thus providing support for arbitrary, multi-dimensional clas-
sification of the knowledge. Here we introduce three special-
ized tag types which are going to be used in this paper to
define a number of useful metrics:

Decision this type of tag represents the possible outcomes
of the decision-making process. Tags are attached to the
SolvedBy relation between an Issue and an Alternative, since
we allow the reuse of alternatives shared among multiple is-
sues. In practice, the possible outcomes of a decision are
represented by three tags of this type: Positive - denoted
with + (the alternative has been selected), Negative - de-
noted with − (the alternative has been rejected) and finally
Neutral - denoted with N (the alternative has been con-
sidered but no preference has been recorded). The lack of
decisions is denoted with the symbol ∅ (the alternative has
not yet been considered – see Figure 3). Multiple decision
tags recorded over the same SolvedBy relation enable fine-
grained modeling of consensus-reaching processes, for ex-
ample through voting, where multiple designers can provide
their own contribution to the final decision model.

Project tags are used to mark the relevance of a particu-
lar knowledge item in the context of a project and thus its
membership in a given project space [19].

Stakeholder tag type represents individuals or roles that
are involved in the decision making process concerning the
artifacts to which they are attached to.

Tag-based classification of knowledge items is particularly
useful for selecting the scope of items to be measured with
the use of a given metric. Alternatively a metric’s scope
can be defined by following relations to and from knowledge
items and thus bring indirect influences into consideration.
The ultimate value of metrics calculated within a scope, con-
taining multiple knowledge items, is the result of aggregat-
ing values measured for individual knowledge items. As we
are going to show, the aggregation strategy depends on the
specific metric.
1These basic concepts can turn out to be insufficient to
cover more complex aspects of real-world scenarios, and thus
should to be extended to fit with the particular needs of dif-
ferent design domains or processes.

Figure 2: An example of design space with two Is-
sues, six Alternatives and eight Relations.

4.2 GQM methodology

To define and organize our metrics for architectural decision
models, we follow the guidance of the GQM (Goal Question
Metric) framework [3, 4, 11]. We have selected from [23]
a set of five goals that is intended to ensure a successful
architecture design process and should be general enough
to be used in conjunction with any knowledge-based design
methodology. Later, we decompose each goal into a set of
questions considering the relevant properties of the design
space and the decision model. For each question we have
defined a number of metrics which can be combined to serve
as a basis for an answer.

Following [24], every metric is associated with a scale: ei-
ther qualitative (nominal or ordinal) or quantitative (inter-
val or ratio). Most of the metrics we define use a ratio
scale over different ranges (i.e., N , non-negative integers,
{true,false} booleans, [0,1] rational numbers, and time
timestamps).

4.3 Stakeholders

Every collaborative design effort involves multiple stakehold-
ers. First, we identify the main software architecture design
roles (after [11, 30]) so that we can relate them with specific
goals in the next section.

Project Manager : responsible for providing the equipment
and the human resources required to perform the design
tasks. He/she also keeps track of their progress in order
to deliver the design (and the implementation) meeting all
milestones and deadlines agreed with the customers.

Head Architect : performs the main technical role in the
design process. She/he is responsible for obtaining a con-
sistent and feasible design fulfilling all application require-
ments. As a head of the design team his/her responsibility
is to oversee the design and to communicate with technical
and business-level project stakeholders.

Business Analyst : translates customer needs into formal-
ized requirements and communicates them to the technical
members of the team.

Scribe is a professional writer in charge of documenting
which issues were considered during design meetings and
capturing the rationale behind the chosen alternatives so
that the architect’s knowledge and intention can be accu-
mulated in the decision model.



5 Goals and Questions
5.1 Prioritize Decisions (G1)
Stakeholder: Head Architect.

Bootstrapping the design process for a complex project
can be a challenging task. In order to support this task
we suggest the use of metrics which provide architects with
guidance that will dynamically prioritize decisions according
to their properties and relations.
Questions:

1. What is the impact of this decision on other decisions?
This can be answered by counting the number of outgo-
ing influence relations (influence out-degree (M4)) and
the number of decisions which depend on it (dependency

out-degree (M2)). In case of top-down design, highly in-
fluential decisions are likely to be taken first.

2. How strongly is this decision influenced or constrained
by other decisions? The metrics influence in-degree

(M3) and dependency in-degree (M1) can be combined
to answer this question. Early identification of the de-
sign issues which require to make decisions which de-
pend on many other issues can ease the preparation of
preliminary design sketches while keeping the decision
model consistent. Leaving these issues for late arbitra-
tion can result in extensive changes towards the end of
design process to ensure consistency.

3. How complex is the decision? This can be learned from
the complexity (M5) metric. Depending on the chosen
design strategy, it can be beneficial to begin the design
by considering complex issues, or – on the contrary –
to leave them until the end by first tackling the simple
issues.

4. How many people are involved in this decision? By
observing metrics counting the number of individuals

involved (M15) and the number of roles involved (M16)
the architect can estimate the communication effort and
amount of compromise required to take a given decision.
This becomes especially important in projects having a
complicated stakeholder structure.

5.2 Prioritize Alternatives (G2)
Stakeholder: Head Architect

As the architect ponders each design issue, metrics can
simplify the task of comparing the value of various alterna-
tives being studied. Clearly selecting a final alternative in
the design requires the input of the architect, but the pro-
cess of pruning unwanted alternatives and the corresponding
iterative refinement of the design can be supported by the
following questions.
Questions:

1. When was an alternative created? Long-living knowl-
edge artifacts are likely to remain stable in the future
and therefore might be preferred by conservative ar-
chitects taking the long-term perspective. Long-lived
alternatives can be detected with the age (M23) metric.

2. How many times was this alternative given a positive
decision? The fact that a given alternative was often
selected in a given past timeframe or in a set of inter-
esting projects could help to make a strong argument
for selecting it again. Comparing the positive decisions

(M9) discounted by the negative decisions (M10) that
have been attached to the alternatives in the context
of a particular issue can provide a valuable insight in

case multiple architects are involved in a collaborative
design scenario.

3. How often was an alternative reused? The fact that
some alternative was considered relevant for multiple
projects is already a good recommendation for it. This
can be measured by counting the number of project ref-

erences (M17).
4. How many times was this alternative changed and when

did the last change happen? On the one hand, a very
high number of changes (M20) can be a sign of sus-
pect volatility. On the other hand no changes at all
in combination with a low number of positive decisions

(M9) and a long time since the last change (M24) may
indicate that the particular alternative has been aban-
doned.

5. When was a new Solved by relation created to this al-
ternative? Knowing the last time when there was a new
reference created between a given alternative and an is-
sue is an interesting measure of reuse. Finding out that
there are recent new references might indicate that a
particular concept proves to be reusable in many situ-
ations. The time since the alternative was referenced
can be obtained with the last referenced (M25) metric.

6. How many times was this alternative viewed and by how
many people? Alternatives with high counts of visits

(M19) and visitors (M21) are likely to be candidates
worthy of consideration. This metric cannot be used in
isolation, but should be considered in combination with
the those mentioned before.

5.3 Ensure design consistency (G3)
Stakeholder: Head Architect.

Consistency is a crucial property of the architectural de-
sign because the implementation of inconsistent designs is
not feasible. A decision model can be called fully consistent
if all possible decisions were made and there are no conflict-
ing decisions, that is decisions made about all alternatives
(within the scope of a project) are of the same type. A
decision model which contains conflicting decisions is incon-
sistent. A model that contains no conflicting decisions, but
is incomplete (not all decisions are taken) is only partially
consistent, given by the proportion of the number of taken
decisions.
Questions:

1. Does the decision model contain conflicting decisions?
That is, have all alternatives been tagged with deci-
sion tags of the same kind (either Positive or Negative)?
The presence of conflicts is indicated by looking at the
number of alternatives for which there are conflicting
decisions (collision (M11) metric).

2. How complete is the decision model within modeled
project space? What is the percentage of decisions
which have been taken in relation to all decisions in
given project space? Under the assumption that the
project space is modeled completely, this can be mea-
sured as the

completeness = 1− no decisions(M10)
total number of alternatives(M13)

5.4 Monitor design progress (G4)
Stakeholders: Head Architect, Project Manager



Tracking the design progress is essential for project man-
agement. An approximate estimate of the design progress
can be drawn by observing the dynamics of the decision
model and answering the following
Questions:

1. Is the design progressing? The progress can be seen by
measuring the rate of change of the previously defined
completeness of the decision model as well as the time
since the last decision (M26) was made.

2. Is the design changing? Counting the number of changed
decisions within a given timeframe gives an idea of the
rate of change of the design. For example, decisions may
be changed from negative to positive and vice versa.
The metric of total number of decisions (M9) can also
be sampled over time and should be interpreted in re-
lation to the total number of alternatives (M13).

5.5 Assess knowledge quality (G5)
Stakeholder: Analyst, Scribe, Head Architect.

We expect that the quality of the domain knowledge con-
tained in a decision model has a direct influence on the final
quality of the design. In case of large-scale projects it is of-
ten difficult or practically impossible to manually inspect the
background information based on which all design decisions
have been made. Having the means to estimate the qual-
ity of the domain knowledge gives architects and analysts
the opportunity to increase their awareness of the quality of
the knowledge they are relying upon during their decision-
making. It also helps to direct the efforts of the scribes
towards the knowledge items which need rework in order
to improve their quality. We do not claim that it is possi-
ble to specify an absolute measure for assessing the quality
of the knowledge contained in a decision model. Still, an
automated measurement mechanism should help to identify
outliers so that the design team can focus on them.
Questions:

1. How exhaustive is the description of the knowledge? By
localizing which spots in the design space have a low
descriptiveness (M18), scribes and other design team
members can decide where to direct additional docu-
mentation and knowledge-gathering effort.

2. How complex are relations within a given scope of the
knowledge? Measuring complexity (M5) and observ-
ing its distribution within a given scope, designers can
identify outliers and irregularities. Having done that,
they can decide to refactor the knowledge by decom-
posing design issues that are too complex into smaller
ones. Likewise, they may refine underdeveloped and
disconnected artifacts by adding missing relationships
to them.

3. Is a given knowledge item well categorized? In order to
be accessible and discoverable, the knowledge needs to
be properly classified so that designers can locate rel-
evant information by browsing through various cross-
cutting categories and tags associated with them. Rich
and meaningful classification (M14) eases the identifi-
cation of the issues representing important design con-
cerns and can help to refine text-based search results.

4. How many designers authored a given item? A number
of authors (M22) that were involved in editing a given
knowledge item can indicate the amount of accumulated
experience of its multiple authors, who – like in most
collaborative wiki-like knowledge management systems

– had a chance of correcting, reviewing and building
upon each other’s content. Like in the previous goal
(G2 - Prioritizing Alternatives), this metric also cannot
be used in isolation but should be combined with oth-
ers. For example, items with a high number of changes

(M20) can be volatile or can have reached a good level
of refinement depending on the item’s age (M23) and
time since last change (M24).

6 Metrics
6.1 Structural metrics
Structural metrics are defined over the topology of the graph
established by the relationships among the knowledge items.

6.1.1 Dependency (M1, M2) and influence (M3, M4)
Domain: Issues, Alternatives, Scale: Ratio, Range: N

The depends relationship between artifacts is used to rep-
resent the fact that the choice of one alternative implies the
choice of the other alternative. The influence relation on
the other hand can appear between any combination of is-
sues and alternatives. The following four metrics are used to
gauge the cohesion between knowledge items established by
the dependency and influence graph. The in-degree (number
of incoming relations) shows how strongly a given artifact
depends on or is influenced by others. Measuring the out-
degree (number of outgoing relations) shows how many other
artifacts are affected by it.

M1(a) := | depends relations coming into a |
M2(a) := | depends relations outgoing from a |
M3(i) := | influences relations coming into i |

M4(i) := | influences relations outgoing from i |
When measuring the dependency or influence degree of mul-
tiple items within a scope, only the relations to (and from)
items outside of the scope are counted.

6.1.2 Complexity (M5)
Domain: Issues, Alternatives, Scale: Ratio, Range: N

We define complexity to measure the entanglement of a
particular knowledge item following its direct relationships.
In practice, it can be interpreted as an estimator for the
amount of effort required to analyze and decide upon a se-
lected knowledge item due to the requirement to understand
its relationships. In the context of an issue i related by
SolvedBy with set of alternatives Ai, we define complexity

as:
M5(i) := |Ai| +

P
a∈Ai

(M1(a) + M2(a) + M3(a) + M4(a))
Likewise, for a design alternative a, being a solution for a
set of design issues Ia, we define complexity as:

M5(a) := |Ia| +
P

i∈Ia
(M3(i) + M4(i))

In case of a more elaborate model, this definition would
need to be extended for additional relations. For multiple
items within a scope, complexity is additive. An example of
the complexity of the simple decision model of Figure 3 is
given in Table 1.

a1 a2 a3 a4 a5 a6 i1 i2
M5 1 1 1 2 1 2 5 3

Table 1: Complexity metric values for the decision
model of Fig. 3



Figure 3: An example of an incomplete and incon-
sistent decision model over two design issues.

6.2 Decision metrics
The purpose of decision metrics is to determine the consis-
tency and the completeness of a decision model. The main
assumption on the structure of the knowledge meta-model
(see section 4.1) on which they are defined is that multi-
ple decision tags can be applied to the same alternative (in
the context of a given issue). For example, the decision
model captures a fine-grained representation of individual
decisions made by different stakeholders, which may vote
to accept or reject a certain alternative. Thus, we distin-
guish two categories of metrics: fine-grained metrics, which
take into consideration individual decision tags as they are
attached to alternatives, and coarse-grained metrics, which
aggregate all decisions that have been cast on each alterna-
tive solving a given design issue. We also introduce global
outcome-oriented metrics, which look at the overall decision
state of the various design issues in a given scope/decision
model.

6.2.1 Fine-grained metrics
Domain: Solved by relations, Scale: Ratio, Range: N

If we assume that multiple decision tags can be attached
to an alternative a in the context of each design issue (which
is solved by the alternative in question), it becomes possible
to count how many tags of each kind (positive, negative and
neutral) there are.

M6(a) := | positive (+) decisions attached to a |
M7(a) := | negative (-) decisions attached to a |
M8(a) := | neutral (N) decisions attached to a |

M9(a) := M6(a) + M7(a) + M8(a)
(total number of decisions)

These metrics are additive if they are taken in the scope of
multiple alternatives. Examples are given in Table 2.

6.2.2 Coarse-grained metrics
Domain: Issues, Scale: Ratio, Range: N

In the context of a particular design issue i with set of
related alternatives Ai, we distinguish between the following
decision states over an alternative a ∈ Ai (see Figure 3). The
set of decisions contributing to the state of alternative a is
defined as D(a).

no decisions when no decision tags are attached (for ex-
ample I2 → A5),

no decision(a) ⇔ D(a) = ∅
collision when there are multiple conflicting (mixed positive

and negative) decision tags (for example I1 → A1 and I1 →
A6).

i1 Solved by i2 Solved by
a1 a2 a3 a4 a6 i1 a4 a5 a6 i2

M6 1 0 1 2 1 5 1 0 1 2 M6

M7 1 1 0 0 1 3 0 0 0 0 M7

M8 0 0 0 0 0 0 0 0 0 0 M8

M9 2 1 1 2 2 8 1 0 1 2 M9
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1 M10

M11 2 0 M11

M12 3 2 M12

M13 5 3 M13

Table 2: Fine grained decision metrics for the deci-
sion model of Fig. 3

collision(a) ⇔ ∃dj , dk ∈ D(a) : dj �= dk

decided when there is at least one decision tag, and all are
of the same kind (either positive or negative; neutral tags
are ignored). For example: I1 → A2, I1 → A3 and I1 → A4.

decided(a) ⇔ ∀dj , dk ∈ D(a), j �= k : di = dj

These lead to the definition of the following metrics:

M10(i) := |a ∈ Ai : no decision(a) |
M11(i) := |a ∈ Ai : collision(a) |
M12(i) := |a ∈ Ai : decided(a) |

Given that alternatives may not be found in any other
state, it is possible to count the total number of alternatives

(M13) for a given issue i as:

M13(i) := M10(i) + M11(i) + M12(i)

6.3 Tag-based metrics
Design space exploration in search for relevant issues and al-
ternatives can be very challenging. Assuming that tags can
be used to classify knowledge items and thus ease the identi-
fication of relevant knowledge items, it becomes possible to
measure how well a given item is classified, for which stake-
holder it is relevant and within how many project decision
models it has been reused.

6.3.1 Classification (M14)
Domain: Issues, Alternatives, Scale: Ratio, Range: N

The classification metric evaluates the richness of the clas-
sification associated with particular knowledge items i.

M14(i) := |unique tags on i |
In case of multiple knowledge items being measured, the
metric counts the number of unique tags for all the items in
the scope under consideration.

6.3.2 Collaboration metrics (M15,M16)
Domain: Issues, Scale: Ratio, Range: N

Learning how many individuals and how many roles are
involved in the decision-making over a design issue i is im-
portant to estimate the implied collaboration and commu-
nication overhead. For example, decisions that require an
agreement to be reached between multiple roles may involve
formal design meetings and thus require more effort.

M15(i) := | individuals responsible for i |
M16(i) := | unique role tags applied to i |

For example, an issue which needs to be decided by two
developers A and B together with analyst C will result in 2
involved roles and 3 responsible individuals.



6.3.3 Reuse metric (M17)
Domain: Issues, Alternatives, Scale: Ratio, Range: N

The project references (M17) metric is defined as the num-
ber of projects in which a given knowledge item i has been
used.

M17(i) := | project tags applied to i |
When used to measure set of knowledge items, it only

counts the number of unique projects referenced by all of
the items in the set.

6.4 Content-based metrics
6.4.1 Descriptiveness (M18)
Domain: Issues, Alternatives, Decisions, Scale: Ratio,
Range: [0, 1]

We assume that each knowledge item i is described by its
attributes to convey relevant information about the concept
it represents. For the purpose of learning how complete this
description is, we propose a metric to measure the descrip-

tiveness of knowledge items:

M18(i) :=
|non-empty attributes of i|

|total attributes of i|
For example, an artifact that has no information in its at-
tributes has a descriptiveness level of 0. On the other hand,
artifacts where all attributes are non-empty has a descrip-

tiveness of 1. The descriptiveness measured for a decision
can be seen as the degree of justification measuring whether
an explicit rationale for the decision is given (1) or is missing
(0).

The aggregated value of descriptiveness over a scope is
calculated as the average of the descriptiveness for each in-
dividual item in the scope.

6.5 Access Metrics
Domain: Issues, Alternatives Scale: Ratio, Range: N

Assuming that it is possible to log all accesses (i.e., read
and write operations) to a decision model’s knowledge items,
measuring the access frequency and the change intensity can
provide additional insight. To do so, for any knowledge item
i, we introduce the visits (M19), changes (M20), visitors

(M21) and authors (M22) metrics:

M19(i) := | read-only accesses to i |
M20(i) := |write accesses to i |

M21(i) := |users reading i |
M22(i) := |users editing i |

When measured over a scope of knowledge items, the first
two metrics (visits and changes) sum the access counters
for individual items, while the visitors and authors metrics
count the unique users.

6.6 Dynamics Metrics
Domain: Issues, Alternatives Scale: Ratio, Range: time

In order to observe the dynamics of a decision model, we
observe the access and modification time-stamps of particu-
lar knowledge items. For that purpose we propose four dy-
namics metrics: the first measures the age (M23) of a knowl-
edge item, while the other three measure the time since the
last change (M24), reference (M25) and usage (M26).

M23(i) := tnow − time(creation of i)
M24(i) := tnow − time(last attribute change of i)

M25(i) := tnow − time(last reference to i)
M26(i) := tnow − time(last decision made over i)

Goal Metric

G1. M1 dependency in-degree

Prioritize Decisions M2. dependency out-degree

M3. influence in-degree

M4. influence out-degree

M5. complexity

M15. individuals involved

M16. roles involved

G2. M9. positive decisions

Prioritize Alternatives M10. negative decisions

M17. project references

M19. visits

M20. changes

M21. visitors

M23. age

M24. time since last change

M25. last referenced

G3. M10. no decisions

Ensure Design Consistency M11. collision

M13. total number of alternatives

G4. M9. total number of decisions

Monitor Design Progress M10. no decisions

M13. total number of alternatives

M26. last decision

G5. M5. complexity

Assess Knowledge Quality M14. classification

M18. descriptiveness

M20. changes

M22. authors

Table 3: Summary overview of the Goals with the
corresponding Metrics

Aggregated metrics compute the age of the most recent time
stamp over the items in the given scope.

7 Conclusion
In this paper we have presented an initial sketch of a novel
set of metrics (summarized in Table 3) for observing and
analyzing architectural decision models. The metrics sup-
port the goals of the main stakeholders of a software design
project and enable them to quantitatively and qualitatively
measure the properties of the knowledge that has been cap-
tured in the design space and reused across multiple deci-
sion models. Metrics enable architects not only to assess the
complexity, the quality and the descriptiveness of the knowl-
edge, but also to prioritize their decision-making according
to various metrics. We also propose to use metrics for closely
following the dynamics of the software design process, esti-
mating and tracking the degree of completeness of a design,
as well as detecting inconsistencies as they are introduced.

Due to space limitations we included a theoretical defi-
nition of the metrics and did not present here a complete
evaluation of their practical usefulness. We have been im-
plementing them as part of the Software Architecture Ware-
house (SAW) project, which is a Web-based interactive de-
sign support tool for tracking decisions made by architects
and managing architectural knowledge. The tool supports
knowledge capture, analysis, and sharing among distributed
design teams. It has been recently extended with an inter-
active 2D visualization of decision models (Figure 4) based



Figure 4: Screenshot of the Software Architecture
Warehouse tool in metrics visualization mode

on the metrics defined in this paper.
We will further continue this research with an analytic

specification of the metrics and pursue an empirical evalu-
ation of their usefulness in practice. Once the basic set of
metrics has stabilized we will combine them to build detec-
tion strategies helping to provide feedback and guidance to
architects as they make progress with their design. We plan
to use the metrics to compare different existing architectural
knowledge repositories in order to extract the differences be-
tween various knowledge domains.
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