
Atomic Distributed Transactions: a RESTful Design

Guy Pardon
ATOMIKOS

guy@atomikos.com
http://www.atomikos.com

Cesare Pautasso
Faculty of Informatics, University of Lugano,

Switzerland
c.pautasso@ieee.org

http://www.pautasso.info

ABSTRACT
The REST architectural style supports the reliable interaction of
clients with a single server. However, no guarantees can be made
for more complex interactions which require to atomically trans-
fer state among resources distributed across multiple servers. In
this paper we describe a lightweight design for transactional com-
position of RESTful services. The approach – based on the Try-
Cancel/Confirm (TCC) pattern – does not require any extension to
the HTTP protocol. The design assumes that resources are designed
to comply with the TCC pattern and ensures that the resources in-
volved in the transaction are not aware of it. It delegates the respon-
sability of achieving the atomicity of the transaction to a coordina-
tor which exposes a RESTful API.

Categories and Subject Descriptors
K.4.4 [Electronic Commerce]: Distributed Commercial Transac-
tions; H.2.4 [Systems]: Transaction processing

Keywords
RESTfulWeb services; REST;WebAPI Design; Atomicity; Atomic
Distributed Transaction Protocol

1. INTRODUCTION
Reliability of single client-server interactions is considered as

a primary concern by the REST architectural style [4]. This is
achieved through the uniform interface semantics of idempotent
methods (e.g., GET, PUT, DELETE in HTTP) so that any failure
during these interactions can be addressed by simply retrying the
request. However, no guarantees can be made for complex inter-
actions which atomically transfer state among multiple resources
distributed across multiple RESTful Web services [20]. For ex-
ample, when a client interacts with more than one RESTful APIs
for flight reservations, we want to ensure that all requests are per-
formed atomically to complete the reservation of all flights as a
single step.
The goal of this paper is to describe a simple solution which fits

the following design constraints: 1) Using a lightweight transaction
model (e.g., ATOMIKOS TCC [13]) to minimize interoperability
risks; 2) Avoiding extensions to the HTTP protocol to maximize
adoption; 3) Deploying the transaction coordinator as a RESTful
service (as motivated in the remainder of this paper); 4) Keeping
the participants unaware that they are part of a transaction (shipping
transaction contexts has shown to be major pain point of distributed
transactions).

Copyright is held by the author/owner(s).
WWW’14 Companion,, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04. http://dx.doi.org/10.1145/2567948.2579221.

The problem about how to transparently deal against failure sce-
narios within REST compositions, where state needs to be atomi-
cally transferred between more than two services, is an important
one. The solution makes it possible to group multiple RESTful in-
teractions and treat them as a single logical step, as well as to ensure
that it is possible to guarantee the consistency of a set of resources
which belong to multiple RESTful Web services that are deployed
on different Web servers. Whereas solutions have been proposed to
batch interactions affecting multiple resources provided by a single
server (e.g., WebDAV’s explicit locking methods [6], or the transac-
tions as a resource approach from [20, p.231]), these are not appli-
cable to interact with multiple resources distributed across multiple
services.
This paper’s contribution focuses on addressing the atomicity

property [7] of distributed transactions across RESTful Web ser-
vices in a simple way [10]. This already addresses the requirements
of a wide class of applications, where atomicity is a necessity, while
isolation is not. For example, all scenarios involving some kind of
resource reservation where clients may need to atomically perform
multiple purchases, or, more in general, atomically change the state
of a set of distributed resources.
This paper is structured as follows. In Section 2 we enumerate

the assumptions behind the Try-Cancel/Confirm pattern and how it
relates to lightweight distributed transactions. Section 3 outlines
the transaction protocol, which is illustrated with an example in the
following Section 4. We present a detailed view on the design of
the protocol in 5, and summarize the participant and coordinator
APIs in Sections 6 and 7. We reflect upon the design and discuss
some open questions in Section 8. We give a brief survey of related
work in Section 9 before drawing some conclusions in Section 10.

2. ASSUMPTIONS
The protocol we follow is based on the following assumptions -

without these assumptions there is no practical need for the outlined
solution.
Assumption 1 (A1): A business transaction T is sending requests

Ri to different RESTful services S j . Each participant S j is au-
tonomous and loosely-coupled with T and the other S j .
Example: T represents a flight reservation across two airlines,

consisting of a request R1 to book a first flight at airline S1 and a
connecting flight R2 at airline S2.
A1 is important since it distinguishes our solution from existing

techniques like session-based optimistic locking (a standard indus-
try practice that works across one site only [5, p.416]). Note that
for simplicity, we assume no ordering among Ri (no explicit first or
last request).

Assumption 2 (A2): Any Ri of T can fail in a non-transient way.

http://www.atomikos.com
http://www.pautasso.info
Cesare Pautasso
Extended 8 page version of “Atomic Distributed Transactions: a RESTful Design” by Guy Pardon, Cesare Pautasso, in Proc. of the Fifth International Workshop on Web APIs and RESTful Design (WS-REST 2014), Seoul, Korea



Example: booking the connecting flight R2 may fail due to lack
of available seats.
A2 emphasizes the point that if nothing can ever fail then idem-

potence is all that is needed for atomicity when each request Ri is
retried until all have succeeded. Idempotence can help resolve tran-
sient, technical failures but not fundamental failures such as lack of
business resources to comply with the request.
Assumption 3 (A3): T needs to be atomic, i.e., T needs to either

happen entirely (all Ri ∈ T succeed) or not at all. In the latter case,
the end result needs to be as if none of the Ri executed in the first
place.
Example: you want to book the entire flight (R1 and R2) or none

at all. If only part of the flight would be booked, you would be
charged for an incomplete trip that would lead you to the wrong
destination.
A3 states the important requirement that the outcome of the whole

transaction is what matters.
Assumption 4 (A4): Si temporarily reserves resources on behalf

of Ri in T .
Example: airline S1 holds a seat reservation for the duration of

T , but will not keep the seat reserved forever: either T succeeds
(and S1 bills the customer) or T fails (and S1 releases the seat for
another customer to book).
Corollary 1 (C1): Each Ri taking part in T may need to be can-

celled after it has been executed. Consequently, each Ri needs to
have a cancellation event Ri,cancel associated with it.
From A1 + A2 it follows that partial transactions can exist in case

of failure(s)1. For instance, it is possible for R2 to fail, leaving the
effects of R1. From A3 it follows that R1 then needs to be cancelled.
S1 is autonomous (by A1) so this requires the existence of a cancel
event R1,cancel to inform S1 about this event. In this case, by invok-
ing R1,cancel , the system can ensure atomicity. The same holds for
every Ri.
Corollary 2 (C2): Each participant Si will offer/await a confirma-

tion Ri,con f irm for every Ri.
From A4 we know that Si reserves resources on behalf of T .

From C1 we know that Ri can be cancelled. Si will thus await
confirmation of Ri to signal that cancellation will no longer hap-
pen. Since only T can know when all its requests have successfully
finished, it is the responsibility of T to trigger the confirmation.
Example: after flight reservation R2 completes, also flight R1

needs to be confirmed with S1 (and by T ) so that payment can be
issued. Cancelling a confirmed flight may still be possible but could
lead to cancellation fees.

3. PROTOCOL OUTLINE
The previous assumptions lead to this protocol:
1. A client goes about interacting with multiple RESTful service

APIs following a given workflow.
2. Interactions may lead to a state transition of the service iden-

tified by some reservation URI. This URI can be later used to con-
firm or cancel it. If the service does not hear anything after some
service-specific timeout, it will cancel autonomously.
3a. Once the workflow successfully completes, the set of reser-

vation URIs is used to confirm the state transitions of the services
with idempotent requests (e.g., PUT).
3b. If the workflow fails, the set of reservation URIs that have

been collected until the failure occurs are used to signal each of the

1As failures we abstract both business-level failures as well as tech-
nical failures, such as server crashes or network outages.

services with idempotent messages (e.g., DELETE) to cancel their
state transition.
The protocol guarantees atomicity because if it stops before steps

3a/3b the result is a cancel performed independently by each partic-
ipant after a timeout. Otherwise each participant receives an idem-
potent request for confirmation (step 3a)/cancellation (step 3b) sent
during the final phase. A more detailed discussion covering most
failure and recovery scenarios can be found in [14] and in the de-
tailed design presented below.
As with every two-phase commit solution, heuristics are needed

to deal with timeouts. To deal with them, we propose that in step
2, a timeout is specified after which the service will unilaterally
cancel. If step 3 happens too late then this might result in ’heuristic’
anomalies (i.e. the transaction atomicity was violated). In that case,
human intervention is required to reconcile the state across all sites.
In any case, the transaction service in step 3 is free to decide when
it will attempt confirmation (i.e., it might conservatively abort the
transaction if the participants are too close to expiring).

4. EXAMPLE
As we are going to show, we claim that the REST uniform in-

terface is sufficient to comply with the assumptions required to
implement the proposed protocol. Thus, it is possible to achieve
distributed transactions over RESTful service APIs without any ex-
tension of the HTTP protocol, if the services are designed to comply
with the Try-Cancel/Confirm pattern.
In the context of the running example, this pattern can be ap-

plied to the design of the RESTful flight reservation API as fol-
lows. Clients can inquire about the availability of flights at the
URI: /flight/{flight-no}/seat. For example, the GET
/flight/LX101/seat request will return a hyperlink to some
of the available seats on the flight LX101 or none if the flight is
fully booked. The URI of the chosen seat can be forwarded with
a POST request to the /booking URL, which will create a new
booking resource by returning a hyperlink identifying it such as
/booking/{id}/. The body of the request can contain payment
information as well as a reference to the chosen flight and seat (i.e.,
<seat href="/flight/LX101/seat/63F"/>). Seats on
a flight are only reserved for a limited amount of time, during which
the client should confirm the reservation. The booking can be con-
firmed using a PUT /booking/{id} request or canceled with
the corresponding DELETE /booking/{id} request.
The example illustrates that a RESTful service API compliant

with the uniform interface constraints can make use of hyperme-
dia design to support the interaction with clients following the Try-
Cancel/Confirm pattern. In the examples, clients initialize the state
of a reservation with a standard POST request, which returns a URI
identifying the resource that has been initialized. Clients can use
this URI to confirm the reservation (with PUT) or to cancel it (with
DELETE). Additionally, the state of the newly created resource
should be discarded if a confirmation is not received by the service
within a given timeout (the duration of which can be discovered by
the client with a GET request on the same hyperlink).
A possible successful run of the protocol guaranteeing the atom-

icity of multiple HTTP interactions could be summarized as fol-
lows:

1. ⇒GET swiss.com/flight/LX101/seat
⇐200

1. ⇒GET easyjet.com/flight/EZ999/seat
⇐200

2.
⇒POST swiss.com/booking
⇐302
Location: /booking/A



2.
⇒POST easyjet.com/booking
⇐302
Location: /booking/B

3a. ⇒PUT swiss.com/booking/A
⇐204

3a. ⇒PUT easyjet.com/booking/B
⇐204

The following shows a failed run of the composition, where the
protocols will perform the cancellation of the successfully com-
pleted state transitions:

1. ⇒GET swiss.com/flight/LX101/seat
⇐200

2.
⇒POST swiss.com/booking
⇐302
Location: /booking/A

1. ⇒GET easyjet.com/flight/EZ999/seat
⇐204 (No seat available)

3b. ⇒DELEte swiss.com/booking/A
⇐200

5. DETAILED PROTOCOL DESIGN
The section proposes an incremental presentation of our design

decisions, motivations and trade-offs, based on a story-based ap-
proach. Wherever possible, we have kept the response body to a
minimum (merely 204 status) in order to avoid the need for defin-
ing ad-hoc representation media types that introduce more coupling
than necessary [17].

5.1 The Basics: Cancel vs Confirm
One of the properties of classical transactions is the guarantee

that every change is temporary (subject to ’rollback’) until the appli-
cation explicitly indicates that everything is done and can be saved
(’commit’). For REST, we think the same should be possible. How-
ever, there is no classical ’rollback’ because we use service invoca-
tions rather than databases and their locking mechanism to achieve
this. In TCC, the notion of ’rollback’ is replaced by ’cancel’. Like-
wise, the notion of ’commit’ is replaced by ’confirm’.

5.1.1 Cancel
As an application developer, in case of failures, I want to revert

changes across multiple, separate participants.
For simplicity (and just like in classical transaction systems), we

have chosen the cancellation mechanism to be implicit and internal
to each participant service: after some time-out, each participant
will/should cancel (revert) it on its own. This way, without further
notifications, each participant service will eventually cancel and the
global transaction will be cancelled by default. This greatly simpli-
fies the failure semantics across multiple participant services.
Note that our notion of cancelling does not preclude any application-

specific recovery mechanisms. For instance, an e-commerce web-
site probably allows reservations to be made with a POST request.
If the reply gets lost, the user might still be able to verify if the
reservation was done (e.g., via a GET to some shopping basket
or equivalent resource representing the session state) and continue
from there. We merely offer the extra option of cancelling as a last
resort.

5.1.2 Confirm
As an application developer, I want to confirm as soon as I am

done so that no participant will cancel afterwards
If by default everything will be cancelled, there needs to be a

way to perform otherwise. In TCC, this is done via an explicit
’confirm’ request on the participant service(s) involved. In order to
do this with REST, the minimal requirement is a URI addressing the
resource to be confirmed. Only the participant service can/should

determine what that URI is - so it needs a way to communicate this
URI towards the outside world. With this in mind, we designed the
notion of the participant reservation link. The link URI (used to
confirm it) is associated with the expires attribute indicating when
the participant itself will cancel autonomously. There is also some
(fixed) meta-data about the protocol itself, useful to indicate the
semantics of the link (the tcc link relation).
The participant reservation link could be embedded in a JSON

payload as shown in the following example:
{ "participantLink": {

"uri":"http://www.swiss.com/booking/A",
"expires":"2014-01-11T10:15:54.261+01:00",
"rel":"tcc",

}
}

It is up to the participant to negotiate with the client an appro-
priate timeout duration. In the simplest case, reservations are guar-
anteed for a fixed amount of time. It is also possible to consider
cases where the timeout depends on the client profile, or an ex-
tended timeout may be granted for a fee. Since this feature affects
the interface between the participant and the application, we do not
explore it further in this paper.
The assumption of our design is that a participant reservation

link is properly identified (hence the tcc link relation) so that con-
firmation can be done with the following:
⇒PUT /booking/A HTTP/1.1
Host: www.swiss.com
Accept: application/tcc

⇐HTTP/1.1 204 No Content

Although this only shows how to confirm one single participant,
it does lay the foundation for our complete solution.

5.1.3 Timeout
As a participant, I want to keep the ability to time-out and cancel

the reservation on my end. Clients should be informed that confir-
mation is no longer possible.
Confirmation requests might come too late, i.e. after the partici-

pant already timed out and cancelled on its own. This violates the
intention of confirmation and therefore should be communicated to
the caller. The participant does this as follows:
⇒PUT /booking/A HTTP/1.1
Host: www.swiss.com
Accept: application/tcc

⇐HTTP/1.1 404 Not Found

5.2 Reusing The Hard Bits: Coordinator
With nothing more but the basics, distributed transactions are

possible if they are managed by the application developer (much
like the XA protocol enables ACID transactions). However, this is
error-prone and difficult to manage, because concerns like recov-
ery and failure handling need to be taken into account. Also, it is
important to avoid confirmation attempts after one or more time-
outs have happened, since this may lead to conflicting outcomes of
the global transaction. All this is specialized logic that is hard to
build on your own. Just like ACID transactions rely on a transac-
tion manager to manage the XA intricacies, we introduce a similar
component sharing the same responsibilities.

5.2.1 Transaction Coordinator
As an application developer, I want to reuse existing confirma-

tion logic so that I don’t have to deal with failure recovery on my
own



If the confirmation logic is offered as a reusable component (the
’coordinator’) then many concerns no longer need to be dealt with
by the application developer. Also, the error scenarios that are most
difficult to test are abstracted away into a reusable and tested com-
ponent that can be trusted. For these reasons, we developed a trans-
action coordinator component. Moreover, this component can also
be delivered as a service - as explained next and shown in Figure 1.

5.2.2 Transactions as a Service
As an application developer, I want the coordinator to be a REST-

ful service so I can access it anywhere, anytime
What better way to make a component available to a REST ap-

plication than by exposing it as a RESTful service itself? There are
many advantages, some of them being:

• Integration into REST applications is, by definition, easy and
natural since no other technical dependencies than REST itself are
introduced.

• The service can be made available to any device, anywhere,
anytime.

• The service can be deployed on a reliable environment, with
good connectivity to the participants, while keeping the rest of the
applications closer to their users (e.g., on mobile devices).

• Thanks to the simplicity of REST and since no HTTP exten-
sions are required, the interoperability of the transaction coordina-
tor with both applications and participant services is much easier to
achieve.

5.2.3 Confirmation
The application developer now needs a way to invoke the coordi-

nator service to perform the confirmation phase.
We chose the following very simple approach, where a set of

reservation links is simply transferred to the coordinator service
with an idempotent PUT request carrying a ’transaction’ payload
in the request body. The example shows the use of plain JSON [1],
but any collection media type that can carry a set of links associated
with a set of timestamps can do.
⇒PUT /coordinator/confirm HTTP/1.1
Host: www.taas.com
Content-Type: application/tcc+json
Content-Length: 253
{
"transaction" : [

{
"uri" : "http://www.swiss.com/booking/A",

"expires" : "2014-01-11T10:15:54.261+01:00"
},
{

"uri" : "http://www.easyjet.com/booking/B",
"expires" : "2014-01-11T10:15:54.261+01:00"

}
]

}
The coordinator will delegate the confirmation request to all par-

ticipant(link)s included in the supplied transaction. If all goes fine
then the following would be the typical response:
⇐HTTP/1.1 204 No Content

For simplicity, we did not attempt a transaction resource design:
there is no separate resource that identifies the transaction. Should
this be necessary and required then we can always add it later. For
now, all that matters to us is validating the concept of transactions
for REST with a working but minimal implementation.

5.2.4 Failed Confirmation
As an application developer, I want to know when the coordina-

tor failed to confirm.

Booking
Process

1. bookTrip

1.1 R1 = /booking/A 1.2 R2 = /booking/B

1.3 PUT /confirm
(R1, R2)

1.3.1 PUT R1

1.3.2 PUT R2

Figure 1: Transaction Coordinator delivered as a service.

When the coordinator fails to enforce the confirmation, we need
a way to communicate the problem back to the application. There
are two classes of problems that are relevant:
1. Problems where the overall atomicity guarantees have been

preserved: this happens if ALL participants have timed out or have
been canceled by the time confirmation starts.
2. Everything else: this is where the overall transaction guaran-

tees might not have been preserved. This happens if some partici-
pants timed out while others confirmed, or if some participants have
become unreachable.
The corresponding solutions are like this:
1. If every participant timed out and cancelled: this is indicated

by a ’404 Not Found’ error on behalf of the coordinator. It
signals that, although confirmation was desired, cancellation hap-
pened instead. While this may not be desirable, it does still adhere
to the atomic transactional semantics of all-or-nothing.
2. Everything else: to signal conditions like these, the coordi-

nator uses a ’409 Conflict’ status code and can return a de-
tailed log, showing which of the given reservation links could be
confirmed and which could not be confirmed. Note that it is the re-
sponsibility of the coordinator to minimize the number of failures
in this class.

5.3 Recovery

5.3.1 Idempotent Confirmation (at the Participant)
As a coordinator, I want confirmation of the participant to be

idempotent so I can retry confirmation after a failure or crash.
This is one of the main reasons why we chose to use PUT for

confirmation. With the given design of the participant so far, we
need no extra changes to support this.
All the coordinator needs to do is log the participant links of

ongoing transactions in the confirmation phase. Recovery is needed
in two typical cases:
1. The coordinator itself crashes: once it comes back up, it re-

tries the remaining participant links for which it was confirming the
transaction.
2. Any participant crashes, or (the equivalent) becomes unreach-

able due to network errors: the coordinator simply retries confirm
requests.

5.3.2 Idempotent Confirmation (at the Coordinator)
As an application developer, I want confirmation by the coordi-

nator to be idempotent so I can retry confirmation after a failure or
crash.



Imagine that the application succeeds at doing all the work, at all
participant service providers involved. At that time it would request
the coordinator to confirm. If there are crashes or network failures
then the response of the confirm request might get lost; this would
leave the application in doubt about the outcome of the transaction.
According to the REST statelessness constraint, once the coor-

dinator completes the confirm request, it should forget about it, so
the application should hold its own state and should still remember
the set of participants involved. Consequently, it can (and should)
retry confirm requests when needed. This is why we chose to use
PUT also for the coordinator’s confirm requests. The coordinator
will return the same response to subsequent confirmation requests
involving the same participants.

5.4 Optimizations
The basic protocol can be optimized a bit for better resource us-

age. Indeed, if there are any application-level errors then it seems
inefficient to simply let participants hold on to the required business
resources until they time out by themselves. So here, we present
some optimizations.

5.4.1 Participant Cancellation
As a participant provider, I would like to be notified as early as

possible when there is a need to cancel
The participant service is likely to reserve valuable business re-

sources for the duration of the transaction. Should there be a need
to cancel then it is very likely that the participant service wants
to know about this well before it times out. Again, since we are
talking about REST, the minimum requirement is a URI to follow
for notifying the participant. For simplicity, we did not want to in-
troduce an additional URI. Rather, we assume that the same URI
representing the reservation resource that is used for confirmation
can optionally also be used for cancellation as follows:
⇒DELETE /booking/A HTTP/1.1
Host: www.swiss.com
Accept: application/tcc

⇐HTTP/1.1 204 No Content

Note that the actual response does not really matter since the
cancellation request is merely a courtesy call on behalf of the ap-
plication (developer). In its absence, the participant would cancel
autonomously anyway.
The capability to cancel a participant explicitly is really optional

in our design: any participant can choose to ignore it. If a partici-
pant provider does not support cancellation by the application then
any DELETE request would simply produce:
⇐HTTP/1.1 405 Method Not Allowed

This does not affect overall correctness of the state, since the par-
ticipant will time out and cancel autonomously anyway. Thus, the
consistency of the distributed transaction is eventually preserved.

5.4.2 Coordinator Cancellation
As an application developer, I want to delegate the cancellation

logic to the coordinator so I don’t have to cancel those participant
providers myself.
The following example shows how the application can cancel all

the participants involved:
⇒PUT /coordinator/cancel HTTP/1.1
Host: www.taas.com
Content-Type: application/tcc+json
Content-Length: 253

{
"transaction" : [

{
"uri" : "http://www.swiss.com/booking/A",

"expires" : "2014-01-11T10:15:54.261+01:00"
},
{

"uri" : "http://www.easyjet.com/booking/B",
"expires" : "2014-01-11T10:15:54.261+01:00"
}

]
}

5.4.3 Failed Participant Cancellation
As a coordinator, I don’t care if cancellation fails on the partici-

pant
The coordinator notifies the participant of cancellation, but ig-

nores the result. This makes perfect sense, because cancellation
is driven by the participant provider’s needs to release reserved re-
source as early as possible. In effect, cancellation is merely a no-
tification out of courtesy. There are a number of different reasons
that support this decision:
1. Since explicit cancellation of a participant is really an op-

tional operation, some participants may return a 405 error if they
do not support this operation.
2. Since the participant may have timed out before the coordina-

tor requests an explicit cancellation on it, it may return a 404 error.
3. The participant URI does not really exist for some reason.
In all these cases, the overall transaction is cancelled everywhere

(since no participant is ever confirmed). Hence, all these errors can
be safely ignored by the coordinator - making the protocol more
comfortable to use because application developers need to worry
less about error handling.

5.4.4 Failed Coordinator Cancellation
As an application developer, I don’t care if cancellation fails on

the coordinator
For the same reasons, the coordinator does not return any errors

upon cancellation; instead, it always return 204 (including cases
where some participant URI does not exist).
Corollary: cancellation by the coordinator is idempotent
This follows from the previous discussion: failed cancellations

at both participants and the coordinator can be ignored. Hence we
decided to use the PUT method for the coordinator’s cancellation
interface: it is idempotent and allows request body content (unlike
DELETE).

5.5 MIME Types

5.5.1 Participant: application/tcc
The participant interactions require no request payload, nor do

they return any response payload. So we chose this MIME type
purely for indicating the semantics of confirm/cancel expected by
the client. We deliberately omitted any payload from the participant
interactions, so implementations can be as simple as possible with
minimal interoperability risks. There is no need for the participant
to support anything like XML or JSON for that matter.

5.5.2 Coordinator: application/tcc+json
JSON seemed the best option to make the coordinator accessible

to the largest range of applications. As we imply custom semantics
with some of the attributes, this is reflected in the MIME type.

6. PARTICIPANT API
Here we summarize the actual RESTful API from the partici-

pant perspective. Because participant instances are implemented



by third-party providers, interoperability can only be achieved with
a minimalistic, simple and clear design.

6.1 Participant Responsibilities
The participant manages the provider-specific state of a reserva-

tion of business resources. By default the reservation times out after
a while, unless it is confirmed by the application (coordinator).

6.2 Required: time-out and cancel
Every participant implementation MUST cancel autonomously

after some internal timeout. More precisely: nothing is permanent
until the participant receives confirmation.

6.3 Required: participant link
Every participant implementation MUST return participant link

instances for an invocation that can be confirmed on its end. These
links contain metadata such as the URI to invoke (for confirmation),
the expiration date/time when the participant will cancel on its own,
and other information related to the protocol version and semantics.
As an example, participant links are of the following form:

{"participantLink": {
"uri":"http://www.example.com/part/123",
"expires":"2014-01-11T10:15:54.261+01:00",
"rel":"tcc"}

}

The exchange of participant links is between the participant and
the application, outside the context of the TCC protocol. Although
our example suggests JSON, there is no real requirement on the
data format of this exchange: this is entirely between the partic-
ipant provider and the application developer to agree on. Other
approaches, such as Link headers [22] can be used.

6.4 Required: PUT to confirm
The URI indicated in the participant link instances MUST sup-

port the PUT operation in order to confirm:
⇒PUT /part/123 HTTP/1.1
Host: www.example.com
Accept: application/tcc

⇐HTTP/1.1 204 No Content

Note the MIME type of the request, indicating the expectations
of the client about the semantics implied by the TCC protocol.
If the confirmation request arrives after the participant has al-

ready timed out and cancelled on its own then the participant MUST
return a 404 error:
⇒PUT /part/123 HTTP/1.1
Host: www.example.com
Accept: application/tcc

⇐HTTP/1.1 404 Not Found

Any other errors will trigger recovery logic in the coordinator
service (typically in the form of retries until it gives up).

6.5 Optional: DELETE to cancel
Each participant URI MAY optionally implement DELETE to

receive explicit requests to cancel:
⇒DELETE /part/123 HTTP/1.1
Host: www.example.com
Accept: application/tcc

⇐HTTP/1.1 204 No Content

Any errors during cancel can be ignored and do not affect the
overall transaction outcome.

In case of an intermediate (internal) timeout/cancel by the partic-
ipant itself, it is OK to return 404:
⇒DELETE /part/123 HTTP/1.1
Host: www.example.com
Accept: application/tcc

⇐HTTP/1.1 404 Not Found

Since DELETE is really an optional operation, some participants
may choose not to implement it. In that case:
⇒DELETE /part/123 HTTP/1.1
Host: www.example.com
Accept: application/tcc

⇐HTTP/1.1 405 Method Not Allowed

This is perfectly fine in our overall design. Any others (such as,
but not limited to, the MIME type not being understood) are also
fine here.

6.6 Optional: GET for failure diagnostics
The participant service may implement GET to allow for failure

diagnostics. In-line with our intent of being minimalistic, diagnos-
tic features are (currently) outside the scope of our protocol itself
and left to the application designers, so they can be tuned on a per-
case basis.

7. COORDINATOR API
The coordinator service is implemented by us and used by appli-

cation developers. Therefore, we present the coordinator protocol
from the point-of-view of a client of the RESTful interface as op-
posed to discuss the implementation internals of the coordinator.

7.1 Coordinator Responsibilities
The coordinator’s core responsibilities are the following:
1. Confirm all participants when asked to do so.
2. Recover after failures of participant instances or the coordina-

tor itself, in particular during the confirmation phase.
3. Intelligently use the supplied expiration date/time informa-

tion to minimize the number of heuristic transaction outcomes.
4. Determine the right error on problematic outcomes of confir-

mation.
5. Nice to have: allow cancellation of all participants.

7.2 PUT to confirm
Use PUT to confirm a transaction with the coordinator service.

A transaction is really only a collection of participant links:
⇒PUT /coordinator/confirm HTTP/1.1
Host: www.taas.com
Content-Type: application/tcc+json
Content-Length: 425
{
"transaction": [

{
"uri": "http://www.example.com/part/123",
"expires": "2014-01-11T10:15:54.261+01:00"

},
{

"uri": "http://www.example.com/part/234",
"expires": "2014-01-11T10:15:54.261+01:00"

}
]

}
If all goes well then the result would be:

⇐HTTP/1.1 204 No Content

If the request to confirm arrives too late - meaning all participants
have timed out and cancelled already, then:



⇐HTTP/1.1 404 Not Found

The worst that can happen is a mixed outcome where some par-
ticipants confirmed, whereas others did not. This is indicated as
follows:
⇐HTTP/1.1 409 Conflict

Of course, the idea is to minimize the number of cases where this
happens - which is one important part of the coordinator’s responsi-
bilities. If and when this happens, though, it is up to the application
to inspect the affected participants - possibly via a GET request to
each participant URI.

7.3 PUT to cancel
A cancellation request is similar to confirmation, except for the

URI on which the coordinator is listening:
⇒PUT /coordinator/cancel HTTP/1.1
Host: www.taas.com
Content-Type: application/tcc+json
Content-Length: 425
{
"transaction": [

{
"uri": "http://www.example.com/part/123",
"expires": "2014-01-11T10:15:54.261+01:00"

},
{

"uri": "http://www.example.com/part/234",
"expires": "2014-01-11T10:15:54.261+01:00"

}
]

}
The only foreseen result is:

⇐HTTP/1.1 204 No Content

Any other outcome can be safely ignored since by definition no
participant has been confirmed, meaning eventually all work will
be cancelled everywhere.

8. DISCUSSION
We have presented a minimalistic protocol that offers the basics

of atomicity guarantees for transactions spanning across multiple
RESTful Web services. This section provides an overview of de-
sign issues that are still open to further refinement and discussion.

8.1 Application-Level Errors:
Cancel after Confirm

For simplicity, the coordinator does not check nor prohibit the
case where the application first confirms a transaction and then
later cancels the same transaction - for whatever reason. We con-
sider this to be bad behavior on the account of the application, but
checking for it would mean introducing new error codes on both the
participant side and the coordinator side. We’ve tried that, and as a
result we could no longer tolerate the cancellation of unknown par-
ticipants, nor could we tolerate other types of participant failures.
The resulting added complexity seemed too high to justify the cor-
responding gains so we’ve chosen not to reject such sequence of
requests. It is thus the responsability of the application developer
to avoid that confirmed transactions are then cancelled at a later
point in time.

8.2 Security
We did not consider security because we thought it is an orthogo-

nal matter typically dealt with by HTTPS. Nevertheless, there may
be arguments in favor of more non-trivial solutions such as URI
signing, OAuth and the like. Likewise, we assume that the partic-

ipant reservation URIs are public URIs that can be forwarded by
the application to the coordinator. This is common behavior on the
open Web, where links are meant to be shared. However, if the par-
ticipant will only allow the original client application to follow the
reservation link, then additional work is needed for the application
to delegate trust to the coordinator so that also this other compo-
nent is allowed to follow the link to the participant. We consider
this issue to be part of future work, based on the feedback we get
from this first implementation.

8.3 Transaction Resource Model
So far, a transaction only exists explicitly as the request body of

a stateless confirm/cancel request towards the coordinator. There is
no RESTful resource for it yet. For now, this minimalistic design
should be enough to get us the necessary feedback concerning the
feasibility and desirability of our approach. Applications should be
able to build a resource-ful model on top of this, and later versions
of our API should be able to incorporate such additions.

8.4 IANA Standardization
So far, we did not achieve standardization at IANA for our neu-

tral MIME types or link relationships because we haven’t found the
standards organization that needs to participate in that. We feel like
the MIME types involved should not be vendor-specific (i.e., in the
vnd.* namespace) because we stress interoperability. However, that
leaves the open question of how to avoid collisions in the naming
of the MIME types and the tcc link relationship.

8.5 Discovery of Coordinator API
Clients of the coordinators do not need to include hard-coded ref-

erences to the confirm and cancel URIs of the coordinator service.
Instead, hypermedia can be used to let them discover the actual
URIs with a GET request on the coordinator root URI. Hyperlinks
will be returned referring to the confirmation URI (with a link re-
lationship rel="confirm") and to the cancellation URI (with a
link relationship rel="cancel"). The standardization of these
link relationships with IANA is currently pending.

9. RELATED WORK
REST is widely perceived as an established lightweight technol-

ogy for building Web services [20] and Web APIs [19]. The prop-
erties of the REST architectural style are meant to enable serendip-
itous reuse by means of composition [23].
The idea of RESTful service composition has also been explored

in the Bite project [2,21], or with the BPEL for REST extensions [15].
All of these contributions to do not explicitly address the require-
ment for transactional composition of RESTful services.
In addition to several threads on the rest-discuss mailing list,

summarized by [8], the problem of transactional interactions for
RESTful services has started to attract some interest also in the re-
search community. A recent survey of RESTful transaction models
has been published here [12]. For example, [18] proposed an ap-
proach to RESTful transactions based on isolation theorems. The
RETRO [11] transaction model also complies with the REST ar-
chitectural style. The Timestamp-based Two Phase Commit Pro-
tocol for RESTful Services (TS2PC4RS) algorithm was originally
presented in [3] and extended to deal with fault tolerance in [9].
Our approach shares with 2PC the challenge of achieving a dis-
tributed agreement, however we build upon the notion of reserva-
tion which fits directly into the business model of the participant
service provider and does not require participants to deal with low-
level details of running 2PC protocol rounds.



In this paper we presented a RESTful design based on apply-
ing the Try-Cancel/Confirm pattern to the design of a RESTful ser-
vice. The pattern fits with the business requirements of many ser-
vice providers that need to participate within long running transac-
tions that do not require isolation. Thus, they offer services allow-
ing clients to issue requests triggering state transitions (or resource
reservations) which can later be canceled and have to be confirmed
within a given time window.
These basic assumptions could be weakened. For instance, it

might be that some service providers do not hold reservations. Like-
wise, it might be that some requests cannot fail under normal cir-
cumstances (like read-only GET requests). Further research along
these lines, will help to widen the applicability of transactions over
RESTful APIs which do not fully comply with the Try-Cancel/Confirm
pattern.
An informal proof of the protocol upon which the design pre-

sented in this paper is based was originally published in [14]. This
paper adds the concept of having the transaction coordinator deliv-
ered as a service and presents a detailed RESTful design for its in-
terface and a systematic discussion of its main use cases, including
recovery scenarios.
A browser extension that can intercept participant reservation

URIs as the user navigates between different sites has been pre-
sented in [16]. The browser extension makes use of an embed-
ded implementation of the coordinator to atomically confirm a dis-
tributed transaction implicitly recorded by tracking the navigation
activities of the browser. Using the API design presented in this
paper, it becomes possible to off-load the confirmation to the coor-
dinator delivered as a service.

10. CONCLUSIONS
In this paper we have given a detailed presentation of a simple

RESTful design for achieving atomicity in distributed transactions
involving multiple, separate Web resources that comply with the
Try-Cancel/Confirm (TCC) pattern. There are currently two known
implementations of the design (one in Java by ATOMIKOS2 and
another in JavaScript by the University of Lugano). Since our solu-
tion does not require any HTTP protocol extension, but can be seen
more like a pattern, or a design best practice, we do not think it can
be standardized per se. However, the design presented in this paper
could grow to become the standard interface of a RESTful trans-
action coordinator delivered as a service. To achieve this, we plan
to submit the MIME types and Link relation to IANA. Likewise,
it would be beneficial to provide scaffolding in several languages
and frameworks to make it easier to support the TCC pattern when
building well-behaved participants. As previously mentioned, fu-
ture work also involves dealing with security issues and extending
the coordinator API to support persisting transactions as resources
in addition to the current stateless approach.
While there are already many examples of e-commerce Web sites

that provide users with the ability to reserve items for a given time,
we expect similar functionality to be pushed in the corresponding
Web APIs, which will then require an agreed upon mechanism for
advertising the presence of participant links within response pay-
loads. This will be critical to achieve adoption of our approach,
so that atomic compositions of RESTful services can work on the
World Wide Web.

2http://www.atomikos.com/Main/ForServiceOrientedArchitectures

11. REFERENCES
[1] D. Crockford. JSON: The fat-free alternative to XML. In Proc. of

XML 2006, Boston, USA, December 2006.
http://www.json.org/fatfree.html.

[2] F. Curbera, M. Duftler, R. Khalaf, and D. Lovell. Bite: Workflow
composition for the web. In Proc. of the 5th International Conference
on Service-Oriented Computing (ICSOC 2007), Vienna, Austria,
2007.

[3] L. A. H. da Silva Maciel and C. M. Hirata. A timestamp-based two
phase commit protocol for Web services using REST architectural
style. Journal of Web Engineering, 9(3):266–282, 2010.

[4] R. Fielding. Architectural Styles and The Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine,
2000.

[5] M. Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley, November 2002.

[6] Y. Y. Goland, E. J. Whitehead, A. Faizi, S. Carter, and D. Jensen.
HTTP extensions for distributed authoring —WebDAV. Internet
RFC 2518, Feb. 1999.

[7] J. Gray. The transaction concept: Virtues and limitations (invited
paper). In Proc.of the Seventh International Conference on Very
Large Data Bases, VLDB ’81, pages 144–154. VLDB Endowment,
1981.

[8] M. Little. REST and transactions?, 2009.
http://www.infoq.com/news/2009/06/rest-ts.

[9] L. A. H. d. S. Maciel and C. M. Hirata. Fault-tolerant
timestamp-based two-phase commit protocol for RESTful services.
Software: Practice and Experience, 43(12):1459–1488, 2013.

[10] T. Margaria and M. Hinchey. Simplicity in IT: The power of less.
Computer, 46(11):23–25, 2013.

[11] A. Marinos, A. R. Razavi, S. Moschoyiannis, and P. J. Krause.
RETRO: A consistent and recoverable RESTful transaction model. In
ICWS 2009, pages 181–188, 2009.

[12] N. Mihindukulasooriya, M. E. Gutiérrez, and R. G. Castro. Seven
challenges for RESTful transaction models. In Proc. of Fifth
International Workshop on RESTful Design (WS-REST 2014), 2014.

[13] G. Pardon. Try-Cancel/Confirm: Transactions for (Web) Services,
2009.
http://www.atomikos.com/Publications/TryCancelConfirm.

[14] G. Pardon and C. Pautasso. Towards distributed atomic transactions
over RESTful services. In REST: From Research to Practice, pages
507–524. Springer, 2011.

[15] C. Pautasso. BPEL for REST. In Proc.of the 7th International
Conference on Business Process Management (BPM 08), Milan,
Italy, September 2008.

[16] C. Pautasso and M. Babazadeh. The atomic web browser. Poster at
the 22nd International World Wide Web Conference (WWW 2013),
pages 217–218, May 2013.

[17] C. Pautasso and E. Wilde. Why is the Web loosely coupled? a
multi-faceted metric for service design. In Proc. of 18th International
World Wide Web Conference (WWW2009), pages 911–920, 2009.

[18] A. R. Razavi, A. Marinos, S. Moschoyiannis, and P. J. Krause.
RESTful transactions supported by the isolation theorems. In
ICWE’09, pages 394–409, 2009.

[19] L. Richardson, M. Amundsen, and S. Ruby. RESTful Web APIs.
O’Reilly, September 2013.

[20] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly, May
2007.

[21] F. Rosenberg, F. Curbera, M. J. Duftler, and R. Kahalf. Composing
RESTful services and collaborative workflows. IEEE Internet
Computing, 12(5):24–31, September-October 2008.

[22] T. Steiner and J. Algermissen. Fulfilling the hypermedia constraint
via HTTP OPTIONS, the HTTP vocabulary in RDF, and link
headers. In Proc. of the Second International Workshop on RESTful
Design (WS-REST 2011), pages 11–14, 2011.

[23] S. Vinoski. Serendipitous reuse. IEEE Internet Computing,
12(1):84–87, 2008.

http://www.atomikos.com/Main/ForServiceOrientedArchitectures
http://www.json.org/fatfree.html
http://www.infoq.com/news/2009/06/rest-ts
http://www.atomikos.com/Publications/TryCancelConfirm

	Introduction
	Assumptions
	Protocol Outline
	Example
	Detailed Protocol Design
	The Basics: Cancel vs Confirm
	Cancel
	Confirm
	Timeout

	Reusing The Hard Bits: Coordinator
	Transaction Coordinator
	Transactions as a Service
	Confirmation
	Failed Confirmation

	Recovery
	Idempotent Confirmation (at the Participant)
	Idempotent Confirmation (at the Coordinator)

	Optimizations
	Participant Cancellation
	Coordinator Cancellation
	Failed Participant Cancellation
	Failed Coordinator Cancellation

	MIME Types
	Participant: application/tcc
	Coordinator: application/tcc+json


	Participant API
	Participant Responsibilities
	Required: time-out and cancel
	Required: participant link
	Required: PUT to confirm
	Optional: DELETE to cancel
	Optional: GET for failure diagnostics

	Coordinator API
	Coordinator Responsibilities
	PUT to confirm
	PUT to cancel

	Discussion
	Application-Level Errors:Cancel after Confirm
	Security
	Transaction Resource Model
	IANA Standardization
	Discovery of Coordinator API

	Related Work
	Conclusions
	References

