
AJAX

Prof. Cesare Pautasso

cesare.pautasso@usi.ch

http://www.pautasso.info

@pautasso

1 / 37

Web application Architecture

Client Server

Web Browser Web Server

Request

Response

Application File System

Database

Application

Backend

5 / 37

©2013 Cesare Pautasso

Very Thin Client

Display

Request

Response

Application
Data

Input/

Output

6 / 37

Client/Server

Display

Request

Response

Application
Data

7 / 37

Rich Client

Display

Request

Response

Data
Application

8 / 37

General Architecture

Display

Request

Response

Server

Application Data

Client

Application

Cache

9 / 37

©2013 Cesare Pautasso

Rich vs. Thin Client
Rich Client

Applications runs on the client (may use the server for storage)

Platform Examples:

Software needs to be deployed on the client

Zero latency

Complete control, native access to the platform

Thin Client

Application runs on the server, client only perform UI tasks

Examples:

Zero deployment/upgrade costs

Cannot (yet) work offline: sensitive to network failures

Limited control of the platform

Windows, MacOS/X

Eclipse RCP/Java

Dumb Terminals

Web 1.0 Applications

11 / 37

What about security?

Web servers should not ever run

any code sent by a Web browser

Web Browser Web Server

Request

Response

Web browsers use a sandbox (secure virtual

machine) to run code downloaded from a Web server

12 / 37

Interconnect

How to connect the client with the server?

How to connect the server with the client?

Send user commands and input data as HTTP

requests from the client to the server

Pull: Fetch and refresh output data

Push: Notify client about state changes

13 / 37

Web Browser Web Server

PULL

PUSH

14 / 37

Web 1.0 Architecture

Web Browser

Web Server

Application

Page 1 Click on link

HTM
L

Submit form

Page 3
H
TM

L

A new page must be loaded
for every interaction

15 / 37

Web 1.0 Architecture - Problems
UI not Responsive

Server unnecessarily busy rendering Web pages in HTML

when it could be just sending JSON and offload the

rendering to the browser

The entire UI must be refreshed for every interaction, even if

only parts of it need to be updated

The browser is blocked until the new page is downloaded from

the server

16 / 37

Web 2.0 Architecture

Web Browser

Web Server

Application

Page 1 Click

JSON

KeyPress

JSO
N

User interactions are decoupled
from client/server interactions

17 / 37

Advantages

When the user interacts with the application we send a JSON/XML

request to the server and receive a JSON/XML response back.

The HTML rendering is done on the client

JSON is faster, smaller, cheaper to encode, send and decode

compared with XML/HTML

Clients do not have to download the entire data but can fetch the

data they need when they need it

18 / 37

Problems

Since the whole application runs in the same

page:

HTTP connections are expensive:

Back button broken

Cannot bookmark current "state" of the application (could use

URI #fragments)

Do not poll the server too often

Browsers limit the number of parallel connections to the same

server

19 / 37

AJAX

AJAX combines different technologies:

HTML5 and CSS in the display

Dynamic display and interaction with DOM

Data interchange and manipulation using

XML/XSLT

Asynchronous data retrieval with

XMLHttpRequest

Javascript binding everything together

20 / 37

Synchronous Interaction

The user waits for the server to process each

request

Web Browser Web Server

21 / 37

Asynchronous Interaction

The UI thread is never blocked since server

interactions run in the background

Web Browser Web Server

UI AJAX

22 / 37

XMLHttpRequest (GET, Synch)

function GET(url) {

 var xhr = new XMLHttpRequest();

 xhr.open("GET", url, false);
 xhr.send(null);

 //this will continue after the response has arrived

 if (xhr.status == 200)

 return xhr.responseText;
 else

 //handle error

}

false = synchronous

responseText contains

the JSON string to be

parsed

23 / 37

XMLHttpRequest (GET, Asynch)

function GET(url, callback) {
 var xhr = new XMLHttpRequest();

 xhr.open("GET", url, true);
 xhr.onreadystatechange = function() {

 if (xhr.readyState == 4) {

 if (xhr.status == 200)

 callback(xhr.responseText);
 else

 //handle error

 }

 }

 xhr.send(null);

 //this will continue immediately

}

true = asynchronous

readyState
0 uninitialized

1 opened

2 sent

3 receiving

4 complete

24 / 37

XMLHttpRequest (POST, Asynch)
function POST(url, params, callback) {
 var xhr = new XMLHttpRequest();
 xhr.open("POST", url, true);
 xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 if (xhr.status == 200)
 callback(xhr.responseText);
 }
 }
 xhr.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded");
 xhr.send(params);
 //this will continue immediately
}

25 / 37

Event Notification

XMLHttpRequest helps to read data from the server when

the browser needs to refresh parts of a Web page

How can the server decide when to make the

browser update its Web page?

Long Polling

Server push

WebSockets

26 / 37

Long Polling

The client polls the server for updates which

are sent only when they become available

Web Browser Web Server

Request
Data Available

Request

Data Available
Wait...

Request

Timeout
Wait...

Resend

27 / 37

Server Push

The server misuses HTTP by keeping the

response open forever

Web Browser Web Server

Request
Event

Event

Event

Event

Neverending

HTTP Reponse

28 / 37

HTML5 WebSockets

Bi-directional, full-duplex communication channel

Web browsers connect to Web servers and exchange

messages

Optimized with low overhead for message payloads

(2 bytes)

Just a socket for the browser, nothing to do with the

Web

29 / 37

The original HTTP connection is upgraded to

use the WebSocket protocol

Web Browser HTTP Server

HTTP GET Upgrade

send
onmessage

onmessage
send

WS Server

30 / 37

31 / 37

WebSocket (Client)

var location = "ws://www.nyse.com/GOOG";

//open a WebSocket connection with the server

var socket = new WebSocket(location);

socket.onopen = function(event) {

 //connection established

 //send a message to the server

 socket.send("Hello, WebSocket");

}

socket.onmessage = function(message) {

 //message received from the server

 console.log(message.data);

}

socket.onclose = function(event) {

 //connection closed by the server

 console.log("closed");

}

socket.onerror = function(event) {

 //communication error

 console.log("error!"+event);

}

32 / 37

33 / 37

WebSocket (Server)

var WebSocketServer = require('websocket').server;

var http = require('http');

var server = http.createServer(

function(request, response) {

 console.log('HTTP Request: ' + request.url);

 response.writeHead(404);

 response.end();

});

server.listen(8888);

// Create a WebSocket Server wrapping the HTTP Server

wsServer = new WebSocketServer({

 httpServer: server

});

//Check if the request origin is allowed to connect

function originIsAllowed(origin) { return true; }

wsServer.on('request', function(request) {

 if (!originIsAllowed(request.origin)) {

 request.reject(); return;

 }

 // Connection Accepted

 var connection = request.accept(null, request.origin);

 var echo = function(message) {
 if (message.type === 'utf8') {

 console.log('Received: ' + message.utf8Data);

 connection.sendUTF(message.utf8Data);

 }

 else if (message.type === 'binary') {

 console.log('Received binary data');

 connection.sendBytes(message.binaryData);

 }
 }
 connection.on('message', echo);
 connection.on('close',
 function(reasonCode, description) {...});
});

References

Gottfried Vossen, Stephan Hagemann, Unleashing Web 2.0 – From Concepts to

Creativity, Morgan Kaufmann, 2007

Paul Graham,

, September 2001.

Adam Bosworth,

, Jan 2007

Jesse James Garrett,

, Feb 2005

Chris Anderson,

, July 2006,

Tim O'Reilly,

, Sept 2005

The Other Road Ahead (On the advantages of Web applications)

(http://www.paulgraham.com/road.html)

Why AJAX Failed (Then Succeeded) (http://www.eweek.com/c/a/IT-

Infrastructure/Googles-Bosworth-Why-AJAX-Failed-Then-Succeeded/)

Ajax: A New Approach to Web Applications

(http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications)

The Long Tail: Why the Future of Business is Selling Less of More

(http://www.thelongtail.com)

What Is Web 2.0 - Design Patterns and Business Models for the Next

Generation of Software (http://oreilly.com/web2/archive/what-is-web-20.html)

36 / 37

