
Rust

Nicholas Matsakis
Mozilla Research

What makes Rust different?

C++

More Control More Safety

Has
ke

ll
Ja

va ML

Rust: Control and safety

Why Mozilla?

Browsers need control.

Browsers need safety.

Servo: Next-generation
browser built in Rust.

What is control?
void example() {
 vector<string> vector;
 …
 auto& elem = vector[0];
 …
}

string[0]

…elem

vector

data

length

capacity

[0]

[n]

[…]

…

‘H’

…

‘e’

Stack and inline layout.

Lightweight references

Deterministic destruction

Stack Heap

C++

Zero-cost abstraction

Ability to define abstractions that
optimize away to nothing.

vector data

length

cap.

[0]

[…]

data cap.

‘H’

‘e’

[…]
Not just memory layout:
- Static dispatch
- Template expansion
- … Java

What is safety?
void example() {
 vector<string> vector;
 …
 auto& elem = vector[0];
 vector.push_back(some_string);
 cout << elem;
}

vector

data

length

capacity

[0]

…

[0]

[1]

elem
Aliasing: more than
one pointer to same
memory.

Dangling pointer: pointer
to freed memory.

C++

Mutating the vector
freed old contents.

What about GC?

No control.

Requires a runtime.

Insufficient to prevent related problems:
iterator invalidation, data races.

void foo(Foo &&f, …) {
 vec.push_back(f);
}

Gut it:

void foo(const Foo &f, …) {
 use(f.bar);
}

Read it:

void foo(Foo &f, …) {
 f.bar = …;
}

Write it:

void foo(unique_ptr<Foo> f, …) {
 …
}

Keep it:

C++

Definitely progress.
!
But definitely not safe:
!
- Iterator invalidation.
- Double moves.
- Pointers into stack or freed memory.
- Data races.
- … all that stuff I talked about before …
!
Ultimately, C++ mechanisms are unenforced.

The Rust Solution

Codify and enforce safe patterns
using the type system:
!
1. Always have a clear owner.
2. While iterating over a vector,

don’t change it.
3. …
!
No runtime required.

Credit where it is due

Rust borrows liberally from other great languages:

Rust has an active, amazing community.

❤

C++, Haskell, ML/Ocaml, Cyclone,
Erlang, Java, C#, …

The Rust type system

Observation

Aliasing Mutation

Danger arises from…

Hides dependencies. Causes memory
to be freed.

auto& e = v[0]; v.push_back(…);…{ }

Three basic patterns

fn foo(v: T) {
 …
}

Ownership

fn foo(v: &T) {
 …
}

Shared borrow

fn foo(v: &mut T) {
 …
}

Mutable borrow

Ownership!
!
n. The act, state, or right of possessing something.

Ownership (T)

Aliasing Mutation

vec

data

length

capacity

vec

data

length

capacity

1

2

fn give() {
 let mut vec = Vec::new();
 vec.push(1);
 vec.push(2);
 take(vec);
 …
}

fn take(vec: Vec<int>) {
 // …
}
!
!
!

Take ownership
of a Vec<int>

fn give() {
 let mut vec = Vec::new();
 vec.push(1);
 vec.push(2);
 take(vec);
 …
}
 vec.push(2);

Compiler enforces moves

fn take(vec: Vec<int>) {
 // …
}
!
!
!Error: vec has been moved

Prevents:
- use after free
- double moves
- …

Borrow!
!
v. To receive something with the promise of returning it.

Shared borrow (&T)

Aliasing Mutation

Mutable borrow (&mut T)

Aliasing Mutation

fn lender() {
 let mut vec = Vec::new();
 vec.push(1);
 vec.push(2);
 use(&vec);
 …
}

fn use(vec: &Vec<int>) {
 // …
}
!
!
!

1

2vec

data

length

capacity

vec

“Shared reference
to Vec<int>”

Loan out vec

elem1

elem2

sum

fn dot_product(vec1: &Vec<int>, vec2: &Vec<int>)
 -> int {
 let mut sum = 0;
 for (elem1, elem2) in vec1.iter().zip(vec2.iter()) {
 sum += (*elem1) * (*elem2);
 }
 return sum;
} walk down matching indices

elem1, elem2 are references into the vector

1

2

3

4

5

6
*

vec1 vec2

Why “shared” reference?

fn dot_product(vec1: &Vec<int>, vec2: &Vec<int>)
 -> int
{…}
!
fn magnitude(vec: &Vec<int>) -> int {
 sqrt(dot_product(vec, vec))
}

two shared references to the
same vector — OK!

fn use(vec: &Vec<int>) {
 vec.push(3);
 vec[1] += 2;
}

Shared references are immutable:

Error: cannot mutate shared reference

* Actually: mutation only in controlled circumstances

*

Aliasing Mutation

fn push_all(from: &Vec<int>, to: &mut Vec<int>) {
 for elem in from.iter() {
 to.push(*elem);
 }
}

Mutable references

mutable reference to Vec<int>

push() is legal

Mutable references

1

2

3

from

to

elem

1

2

3

…

fn push_all(from: &Vec<int>, to: &mut Vec<int>) {
 for elem in from.iter() {
 to.push(*elem);
 }
}

What if from and to are equal?

1

2

3

from

to

elem

1

2

3

…

1

fn push_all(from: &Vec<int>, to: &mut Vec<int>) {
 for elem in from.iter() {
 to.push(*elem);
 }
} dangling pointer

fn push_all(from: &Vec<int>, to: &mut Vec<int>) {…}
!
fn caller() {
 let mut vec = …;
 push_all(&vec, &mut vec);
}

shared reference
Error: cannot have both shared
and mutable reference at same
time

A &mut T is the only way to access
the memory it points at

{
 let mut vec = Vec::new();
 …
 for i in range(0, vec.len()) {
 let elem: &int = &vec[i];
 …
 vec.push(…);
 }
 …
 vec.push(…);
}

Borrows restrict access to
the original path for their
duration.

Error: vec[i] is borrowed,
cannot mutate

OK. loan expired.

&
&mut

no writes, no moves
no access at all

Abstraction!
!

n. freedom from representational qualities in art.

Rust is an extensible language

• Zero-cost abstraction
• Rich libraries:
- Containers
- Memory management
- Parallelism
- …

• Ownership and borrowing
let libraries enforce safety.

fn example() {
 let x: Rc<T> = Rc::new(…);
 {
 let y = x.clone();
 let z = &*y;
 …
 } // runs destructor for y
} // runs destructor for x

[0]x

y

1

…

Stack Heap

2 1

z

Borrowing and Rc
fn deref<‘a,T>(r: &’a Rc<T>) -> &’a T {
 …
}

Given a borrowed reference
to an `Rc<T>`…

…return a reference to the
`T` inside with same extent

New reference can be thought of as a kind of sublease.
Returned reference cannot outlast the original.

fn example() -> &T {
 let x: Rc<T> = Rc::new(…);
 return &*x;
} // runs destructor for x

Error: extent of borrow
exceeds lifetime of `x`

Concurrency!
!
n. several computations executing simultaneously, and
potentially interacting with each other

Data race

Two unsynchronized threads
accessing same data!

where at least one writes.

✎ ✎
✎ ✎

Aliasing

Mutation

No ordering

Data race

Sound familiar?

Messaging!
(ownership)

data

length

capacity

data

length

capacity

fn parent() {
 let (tx, rx) = channel();
 spawn(proc() {…});
 let m = rx.recv();
}

proc() {
 let m = Vec::new();
 …
 tx.send(m);
}

rx

tx

tx

m

Shared read-only access!
(ownership, borrowing)

Arc<Vec<int>>

&Vec<int>

ref_count

data

length

capacity

[0]

[1]

Shared reference, so
Vec<int> is immutable.

Vec<int>Owned, so no aliases.

(ARC = Atomic Reference Count)

Locked mutable access!
(ownership, borrowing)

✎
✎

fn sync_inc(mutex: &Mutex<int>) {
 let mut data = mutex.lock();
 *data += 1;
}

Destructor releases lock
Yields a mutable reference to data

Destructor runs here

And beyond…

Parallelism is an area of active development.
!

Either already have or have plans for:
- Atomic primitives
- Non-blocking queues
- Concurrent hashtables
- Lightweight thread pools
- Futures
- CILK-style fork-join concurrency
- etc.

Always data-race free

Parallel!
!
adj. occurring or existing at the same time

Concurrent vs parallel

Blocks

Concurrent threads Parallel jobs

fn qsort(vec: &mut [int]) {
 let pivot = vec[random(vec.len())];
 let mid = vec.partition(vec, pivot);
 let (less, greater) = vec.mut_split_at(mid);
 qsort(less);
 qsort(greater);
}

[0] [1] [2] [3] […] [n]

let vec: &mut [int] = …;

less greater

fn parallel_qsort(vec: &mut [int]) {
 let pivot = vec[random(vec.len())];
 let mid = vec.partition(vec, pivot);
 let (less, greater) = vec.mut_split(mid);
 parallel::do(&[
 || parallel_qsort(less),
 || parallel_qsort(greater)
]);
}

[0] [1] [2] [3] […] [n]

let vec: &mut [int] = …;

less greater

Unsafe!
!
adj. not safe; hazardous

Safe abstractions

unsafe {
 …
}

• Uninitialized memory
• Interfacing with C code
• Building parallel abstractions like ARC
• …

Trust me.

fn something_safe(…) {
!
!
!
!
}

Validates input, etc.

Status of Rust

“Rapidly stabilizing.”!
!
!
Goal for 1.0:
- Stable syntax, core type system
- Minimal set of core libraries

Conclusions

• Rust gives control without compromising safety:
• Zero-cost abstractions
• Zero-cost safety

• Guarantees beyond dangling pointers:
• Iterator invalidation in a broader sense
• Data race freedom

