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Existing Performance Engineering Tools

particularly open-source ones
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Limitations of Current Solutions

Not integrated in CSA
(E.g., Do not Leverage
Continuous Feedback)
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DevOps: Professional Profiles Perspective
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Approach Overview
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DSL Overview (Literature)
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Objectives Taxonomy

Base Objectives (Test Types)
standard performance tests, e.g., load test, stress test,
spike test, and configuration test

15



Objectives Taxonomy

Obijectives
specific types of performance engineering activities, e.g.,
capacity planning and performance optimisations
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Objectives Taxonomy

Meta-Objectives
defined from already collected performance knowledge,
e.g., comparing different systems using a benchmark
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Example: Configuration Test

objective:

type: configuration

observation:

exploration_space:

termination_criteria:
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Example: Configuration Test

observation:
service A:
- ram_avg
- cpu_avg

- response_time_90th_p

service B:

- FQ m_CI Vg service_
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Example: Configuration Test

exploration_space:
service_A:
resources:
- memory:
range: 1GB... 5GB
step: +1GB
- CpuUsS:
range: 1...4
environment:
- SIZE_OF_THREADPOOL:
range: 5...100
step: +5

service_A
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Example: Configuration Test

termination_criteria:

- max_exec_time = 1h
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Example: Configuration Test
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Example: Configuration Test
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Example: Configuration Test

service_A:

- ram_avg
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- cpu_avg

- response_time_90th_p
service_B:

- ram_avg

20



Objectives

- Capacity planning (also based on some

constraints)
e.g., CPU, RAM
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Objectives

- Performance optimisation based on some
(resource) constraints
e.g., which configuration is optimal?
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Example: Performance Optimisation

optimisation_target:
service_A:
- min(response_time_90th_p)
service_B:

- min([memory)

service_A
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Example: Performance Optimisation
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Example: Performance Optimisation

optimisation_target:

I.‘
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service_A:
- min(response_time_90th_p)

service_B:

, 0
- min([memory)
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Meta-Objectives

- Regression
is the performance, capacity or scalability still the same as
previous tests show?
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Meta-Objectives

- What-If Analysis

what do we expect to happen to the output/dependent variables
if we change some of the input/independent variables?
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Meta-Objectives

- Before-and-After

how has the performance changed given some features have

been added?
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Meta-Objectives

- Benchmarking
how does the performance of different systems compare?
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Different Types of Fast Feedback

Evaluating if the System is Ready for the Defined
Performance Test Objectives and Reaches Expected State
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Reusing Collected Performance Knowledge
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Reuse Performance Knowledge

before the execution of a test
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Along the Workflow/Pipeline
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Reuse Performance Knowledge

during the execution of a test
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Reuse Performance Knowledge

during the execution of a test
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Reuse Performance Knowledge

after the execution of a test
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Reuse Performance Knowledge

after the execution of a test
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Limitations of Current Solutions
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Not integrated in CSA
(E.g., Do not Leverage
Continuous Feedback)

Rarely Automating
the End-to-End Process

CSA: Continuous Software Assessment
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BenchFlow Tool Overview
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Docker Performance

[IBM "14]
W. Felter, A. Ferreira, R, Rajamony, and |. Rubio. An updated performance

comparison of virtual machines and Linux containers. |BM Research
Report, 2014

“€Our results show that containers result in equal or
better performance than VMs in almost all cases. 99

¢¢Although containers themselves have almost no
overhead, Docker is not without performance
gotchas. Docker volumes have noticeably better performance
than files stored In AUFS. Dockers NAT also introduces
overhead for workloads with high packet rates. These features
represent a tradeoff between ease of management
and performance and should be considered on a
case-by-case basis. ¢y

BenchFlow Configures Docker for Performance by Default
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BenchFlow: System Under Test

Docker Engine
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BenchFlow: System Under Test
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BenchFlow: System Under Test
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Server-side Data and Metrics Collection
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Server-side Data and Metrics Collection
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Server-side Data and Metrics Collection
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Test Execution

Monitors’ Characteristics: Examples of Monitors:
- RESTful services - CPU usage
- Lightweight (written in Go) - Database state

- As less invasive on the SUT as possible

38



Server-side Data and Metrics Collection
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Server-side Data and Metrics Collection
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Server-side Data and Metrics Collection
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Server-side Data and Metrics Collection
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Collectors’ Characteristics: Examples of Collectors:

- RESTful services - Container’s Stats (e.g., CPU usage)

- Lightweight (written in Go) - Database dump

- Two types: online and offline - Applications Logs

- Buffer data locally
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Server-side Data and Metrics Collection
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Test Execution

Analyses

Performance Metrics and KPls
coordinate data collection and data transformation
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Performance Metrics and KPls
coordinate data collection and data transformation
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Performance Metrics and KPls
coordinate data collection and data transformation
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Test Execution
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Performance Metrics and KPls
coordinate data collection and data transformation

Servers D Containers

e

e

[ F@ harness

Web
Service

/ ]

Faban Drivers

e Stats
WIEMS JEollector

(Ej DBMS’ tCoIIector

A high-throughput .-'
kafka distributed :
messaging system

1037700

41

Instance

Database
N~




Test Execution

Analyses

Performance Metrics and KPls
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