Towards Holistic
Continuous Software
Performance Assessment

@QUDOS 2017

— 'Fvla o ——————————————————
delle di scienze http://benchflow.inf.us1i.ch
Svizzera informatiche
italiana

Yincenzo Ferme, Cesare Pautasso

http://benchflow.inf.usi.ch

Software Development Nowadays

> Rl
X 4 ~‘I
'l

. o
.. ®F

Continuous

Feedback

Software Development Nowadays

Continuous

Feedback

Continuous Feedback

Continuous Feedback

A) A JUnit

JUnit

What about performance?

APACHE
d LA a ™V ™
APACHE ~ APACHE
/JMeterTM erTM iy . rTM ™
=2 =2

{0 G abeennnes JUnité? JUnit @

What about performance?

X%AQAE;HE - r" APACHE
/ JMeter ==
e ler @‘ .

{0 G abeennnes JUnité? JUnit @

Continuous Deployment

4

Existing Performance Engineering Tools

particularly open-source ones

/ Meter" A

Existing Performance Engineering Tools

particularly open-source ones

// jﬁéter “"

/-’-D-\?NAMIC

SP@TTER

Existing Performance Engineering Tools

particularly open-source ones

/ Meter") A

/'-’-D-\?NAMIC

SP@TTER

® Neo =BlazeMeter

Existing Performance Engineering Tools

particularly open-source ones

DataMill

Existing Performance Engineering Tools

particularly open-source ones

DataMill Cloud WorkBench

Existing Performance Engineering Tools

particularly open-source ones

DataMill Cloud WorkBench

dieker

inspect|T

Limitations of Current Solutions

Not integrated in CSA
(E.g., Do not Leverage
Continuous Feedback)

CSA: Continuous Software Assessment

Limitations of Current Solutions

Not integrated in CSA
(E.g., Do not Leverage
Continuous Feedback)

Rarely Automating
the End-to-End Process

CSA: Continuous Software Assessment

DevOps: Professional Profiles Perspective

Yy ey A

Different Professional Profiles
(e.g., Developers, Q/A and Operations Engineers)

DevOps: Professional Profiles Perspective

Yy ey A

Different Professional Profiles
(e.g., Developers, Q/A and Operations Engineers)

G ™

Heterogeneous and Cross-Cutting Skills

8

Vision

Holistic Continuous
Software Performance
Assessment

Vision

Holistic Continuous
Software Performance
Assessment

Y

Vision

Holistic Continuous
Software Performance
Assessment

&xc

Vision

Holistic Continuous
Software Performance
Assessment

Cgr -
“..®F

Approach Overview

10

ACHE - APACHE ™
]z |/ IMeter i
| |

] @f """ JUnit

Approach Overview
_ Th....[L -

3 Main
Features

10

Approach Overview
_ Th... .. L -

Performance
Knowledge

3 Main

0 Features

Approach Overview
_ Th... .. mrm

;..’ 71 . ..°

A ‘\ u
PRI

. CSA Integration

G """ ‘ (DSL)

Performance
Knowledge

3 Main

0 Features

Approach Overview

... ‘

o. ‘

'. ° l

... .. '
PR QP
<« CSA Integrahon

Performance -,
Knowledge

Objective- 3 Main
driven Tests Features

10

Approach Overview

..°. ..'. :‘.~~
: x
b o L. \
IS ' :
l

g

. CSA Il(ﬂeg;'ahon
G °°°°° DSL Z
Performance 4 /‘f—z’
m m Knowledge

Fast Perf. Objective- 3 Main

Feedback . driven Tests Features

Approach Overview

..°. ..'. :‘.~~
: x
b o L. \
IS " :
l

bechf Low : g%_,

. CSA Il(ﬂeg;'ahon
G °°°°° DSL Z
Performance 4 /‘f—z’
m m Knowledge

Fast Perf. Objective- 3 Main

Feedback . driven Tests Features

Integration in
Development

Lifecycles (DSL)

DSL Overview (Literature)

Load Functions Workloads Simulated Users

QO

Masked cfn\ —
Test Data TestBed Client-side Perf.

Management Data Analysis

||
Definition of Coanurahon Tests

12

Main DSL Features
5 -

5

am="*

4
|
|
1

)

'\ Y 4
Y 4
“.

Integration in CSA

13

Main DSL Features
e B

4

\ /r,,%

X
©
&

“-—’

4
[|
I
|
\

4

Integrahon in CSA SUT-awareness

13

n DSL Features

\ /r,,%

X
o)
&

SUT-awareness

Collection and Analysis of
Performance Data

13

Collection and Analysis of
Performance Data

13

n DSL Features

\ /r,,%

X
©
&

SUT-awareness

Objective-Driven
Performance Testing

Objective-Driven
Performance Testing

|I

Objectives Taxonomy

Base Objectives (Test Types)
standard performance tests, e.g., load test, stress test,
spike test, and configuration test

15

Objectives Taxonomy

Obijectives
specific types of performance engineering activities, e.g.,
capacity planning and performance optimisations

15

Objectives Taxonomy

Meta-Objectives
defined from already collected performance knowledge,
e.g., comparing different systems using a benchmark

15

Example: Configuration Test

objective:

type: configuration

observation:

exploration_space:

termination_criteria:

16

Example: Configuration Test

observation:
service A:
- ram_avg
- cpu_avg

- response_time_90th_p

service B:

- FQ m_CI Vg service_

17

Example: Configuration Test

exploration_space:
service_A:
resources:
- memory:
range: 1GB... 5GB
step: +1GB
- CpuUsS:
range: 1...4
environment:
- SIZE_OF_THREADPOOL:
range: 5...100
step: +5

service_A

18

Example: Configuration Test

termination_criteria:

- max_exec_time = 1h

19

Example: Configuration Test

SIZE OF THREADPOOL

O“l CPUs

20

Example: Configuration Test

| -

Ie

O

B8

(o]

<

L

[+

L

—

I.I.I

O

I.ul

N

v

O“l CPUs
e
<«

20

Example: Configuration Test

| -

Ie

O

B8

(o]

<

L

[+

L

—

I.I.I

O

I.ul

N

v

O“l CPUs
e
o

20

Example: Configuration Test

service_A:

- ram_avg

1.
MARS B 5
o o o ST
Kriging & N
. < .
XY &% Ll &Y
ot o "
.-
observation: I-|
(1. :¢-.‘-
O
L
N
v

- cpu_avg

- response_time_90th_p
service_B:

- ram_avg

20

Objectives

- Capacity planning (also based on some

constraints)
e.g., CPU, RAM

21

Objectives

- Performance optimisation based on some
(resource) constraints
e.g., which configuration is optimal?

21

Example: Performance Optimisation

optimisation_target:
service_A:
- min(response_time_90th_p)
service_B:

- min([memory)

service_A

22

Example: Performance Optimisation

optimisation_target: ' .
service_A: . 'g M
- min(response_time_90th_p) g "
service_B: 5
, - = -
- min([memory) I:l_:
i
o »
MARS e w
N
Kriging e s
CPUs
(X X J (:-:;

23

Example: Performance Optimisation

optimisation_target:

I.‘
a *
q

‘SIZE_OF THREADPOOIL

service_A:
- min(response_time_90th_p)

service_B:

, 0
- min([memory)

MARS -

Kriging

23

Meta-Objectives

- Regression
is the performance, capacity or scalability still the same as
previous tests show?

24

Meta-Objectives

- What-If Analysis

what do we expect to happen to the output/dependent variables
if we change some of the input/independent variables?

24

Meta-Objectives

- Before-and-After

how has the performance changed given some features have

been added?

24

Meta-Objectives

- Benchmarking
how does the performance of different systems compare?

24

Fast Performance

Feedback

Different Types of Fast Feedback

Evaluating if the System is Ready for the Defined
Performance Test Objectives and Reaches Expected State

20

Different Types of Fast Feedback

Evaluating if the System is Ready for the Defined
Performance Test Objectives and Reaches Expected State

G

Reusing Collected Performance Knowledge

20

Reuse Performance Knowledge

before the execution of a test

--=- |CSA Stepé;—> CSA Stepé —>> Stop Pipeline

=

Along the Workflow/Pipeline

27

Reuse Performance Knowledge

before the execution of a test

--=- |CSA Stepé;—> CSA Stepé —>> Stop Pipeline
: A B

Along the Workflow/Pipeline

27

Reuse Performance Knowledge

during the execution of a test

----- CSA Stepé;- ==

----- CSA Stepé;- ===

Cl Server

@

Across Different lterations of the Same Test

28

Reuse Performance Knowledge

during the execution of a test

""" CSA Sfep@|¢- S
4
. .| " CSA Sfepé; -----
Cl Server ¢
.. é
L

@

Across Different lterations of the Same Test

28

Reuse Performance Knowledge

during the execution of a test

----- CSA Stepé;- ==
----- C'S.A Stepé;- ===
A
3 L@
A= r

o S
o
s’
S
L =%

Across Different lterations of the Same Test

28

Reuse Performance Knowledge

after the execution of a test

,S_i,)ﬁ -2 [CsA Step@¢ -----
5_& .22 [CsA Stepé; -----

=,
Cross Branches

29

Reuse Performance Knowledge

after the execution of a test

,S_i,)ﬁ -2 CSA.Step@ -----
5_& S C.S;;\ Stepé; -----

A

v -
g
Q

s

o S
o
s’
S
L =%

Cross Branches

29

H

Limitations of Current Solutions

ghlights

Not integrated in CSA
(E.g., Do not Leverage
Continuous Feedback)

Rarely Automating
the End-to-End Process

CSA: Continuous Software Assessment

7

Current Solutions + Limitations

30

Highlight
Limitations of Current Solutions Approach OverVIew

Qﬁ* O, =l

A Pt .-:.,;' JUnit@'a"="" JUnit@?
g Repo Cl Server .

Not integrated in CSA : S &

(E.g., Do not Leverage Rarely Automating . « CSA Integration

-fo- . (DsL)
Continuous Feedback) the End-to-End Process . G /g
Performance
CSA: Continuous Software Assessment m m ______ Knowledge

Fast Perf. Objective- 3 Main

; Feedback 0 driven Tests Features

Current Solutions + Limitations Approach Overview

30

Highlight
Limitations of Current Solutions Approach OverVIew

Qﬁ\% O, =l

A P, ofr JUnit@'a"="" JUnit@?
g Repo Cl Server

H i
\ ’
K >
' \g
N‘(’Et mtggrafhid in CSA Rarely Automating “" .. CsAlntegration
9., Lo not Leverage the End-to-End Process G (ost) /g

Performance
CSA: Continuous Software Assessment m m ______ Knowledge

Fast Perf. Objective- 3 Main
Feedback driven Tests Features

Continuous Feedback)

7

Current Solutions + Limitations Approach Overview

In Depth Details

A

34

Approach Details

30

\ /

L)) < |
I\, ||

©Openchflon pitp://benchflow.inf.usi.ch

D4 vincenzo.ferme@usi.ch

32

http://benchflow.inf.usi.ch

Backup Slides

BenchFlow Tool Overview

Servers C] Containers

c
RS,
=)
>3
W]
)
X
LLl
'S
0
=

[F@ harness

Faban Drivers
0 Performance "”vaw
g Metrics cassandra
2 Performance
< KPls
ANALYSERS DATA
TRANSFORMERS

0) & benchflow

34

Instance
Database

Mir\io

SHOLO3T10D

Docker Performance

[IBM "14]
W. Felter, A. Ferreira, R, Rajamony, and |. Rubio. An updated performance

comparison of virtual machines and Linux containers. |BM Research
Report, 2014

“€Our results show that containers result in equal or
better performance than VMs in almost all cases. 99

¢¢Although containers themselves have almost no
overhead, Docker is not without performance
gotchas. Docker volumes have noticeably better performance
than files stored In AUFS. Dockers NAT also introduces
overhead for workloads with high packet rates. These features
represent a tradeoff between ease of management
and performance and should be considered on a
case-by-case basis. ¢y

BenchFlow Configures Docker for Performance by Default

35

BenchFlow: System Under Test

Docker Engine

36

BenchFlow: System Under Test

Docker Engine
[)[)Containers

36

BenchFlow: System Under Test

Docker Engine

[)[)Containers

36

BenchFlow: System Under Test

\\
-

Docker Swarm

Docker Engine

[)[)Containers

36

BenchFlow: System Under Test

\\
-

Docker Swarm

S
A& Servers
((\

Docker Engine
[)[)Containers

36

BenchFlow: System Under Test

\\
-

Docker Swarm

S
A& Servers
((\

Docker Engine
[)[)Containers

Docker Compose

36

BenchFlow: System Under Test

\\
-

Docker Swarm

S
A& Servers
((\

Docker Engine
[)[)Containers

Docker Compose
SUT’s Deployment Conf.

36

Server-side Data and Metrics Collection

Servers C] Containers =
{ Web]]

c

@)

e} Service

- i}

9 // 2 2

o

LLI

g WfMS J
“ || . harness T

Faban Drivers (i DB MS)

37

Server-side Data and Metrics Collection

Servers C] Containers =
{ Web]]

Service
A T

Test Execution

["~ harness

Faban Drivers

37

Server-side Data and Metrics Collection

@ Servers D Containers ya]]

Web
Sr—arvi_ge
_ A

" harness
\ [E
Faban Drivers [i DBMS) I:I

Test Execution

Monitors’ Characteristics: Examples of Monitors:
- RESTful services - CPU usage
- Lightweight (written in Go) - Database state

- As less invasive on the SUT as possible

38

Server-side Data and Metrics Collection

@ Servers D Containers ya D

{ Web
SeArvil_ge
. CPU
WIMS jE’lonitor}
" harness

Faban Drivers [i DBM@ fMonltorj I:l

Test Execution

Monitors’ Characteristics: Examples of Monitors:
- RESTful services - CPU usage
- Lightweight (written in Go) - Database state

- As less invasive on the SUT as possible

38

Server-side Data and Metrics Collection

Servers D Containers [,]J

g Web

e Service

8 At

X =

i WIMS

|_

. harness ——— L

‘(/7—. Ll

Faban Drivers (@ DBM S)

39

Server-side Data and Metrics Collection

Servers D Containers ya
[Web]J

Service
A e

Test Execution

W

. harness T

Faban Drivers [@ DBM 53\

~ e
__/
Instance

Database
N~

SYO.LO3IT10D

Analyses

39

Server-side Data and Metrics Collection

Servers D Containers -
S Web
E / Service
LL(-
2 WIMS
|_
F@ harness T
Faban Drivers (Ej DBMS) Ij

Collectors’ Characteristics: Examples of Collectors:

- RESTful services - Container’s Stats (e.g., CPU usage)

- Lightweight (written in Go) - Database dump

- Two types: online and offline - Applications Logs

- Buffer data locally

40

Server-side Data and Metrics Collection

Servers D Containers -
5 - [Web]}
= Service
;= =
Stats
=
é WIMS j EollectoJ
= harness .
Faban Drivers (Ej DBMS? tCoIIectorj Ij
Collectors’ Characteristics: Examples of Collectors:
- RESTful services - Container’s Stats (e.g., CPU usage)
- Lightweight (written in Go) - Database dump
- Two types: online and offline - Applications Logs

- Buffer data locally

40

Test Execution

Analyses

Performance Metrics and KPls
coordinate data collection and data transformation

Servers D Containers

<

e

[F@ harness

Web
Serwce

Faban Drivers

E
Stats
WIMS JEollectoJ

(Ej DB"SU tCollectol)

>

41

T

Instance

Database
N~

Performance Metrics and KPls
coordinate data collection and data transformation

Servers D Containers

Web
Service

/

[

L
I_I . g
. ’

.

] y 2

e Stats
WIEMS JEollector

”
| AN
P
4 S
ey pd
v
1y

([To8m5) (oo

A high-throughput :~
kafka distributed
messaging system =

./
/

: 1

i)

3

-

0

X [I harness
I

7

|2 Faban Drivers

7))

Q

)
2

S 7
< K

41

~ N
N— B

Instance

Database
N~

1037700

Performance Metrics and KPls
coordinate data collection and data transformation

Servers D Containers

Web
Service

/]

e Stats
WIEMS JEollector

'\

(Ej DBMS’ tCoIIector

A high-throughput -
kafka distributed :
messaging system

./
/

: 1

i)

3

-

0

X [I harness
I

7

|2 Faban Drivers

7))

Q

)
2

S 7
< K

41

Instance

Database
N~

1037700

Test Execution

Analyses

Performance Metrics and KPls
coordinate data collection and data transformation

Servers D Containers

e

e

[F@ harness

Web
Service

/]

Faban Drivers

e Stats
WIEMS JEollector

(Ej DBMS’ tCoIIector

A high-throughput .-'
kafka distributed :
messaging system

1037700

41

Instance

Database
N~

Test Execution

Analyses

Performance Metrics and KPls
coordinate data collection and data transformation

Servers D Containers

e

e

[F@ harness

Web
Service

/]

Faban Drivers

e Stats
WIEMS JEollector

(Ej DBMS’ tCoIIector

A high-throughput -
kafka distributed :
messaging system =

1037700

41

Instance

Database
N~

