
Journal of Web Engineering, Vol. 16, No. 5&6 (2017) 433–470
c© Rinton Press

ARCHITECTING LIQUID SOFTWARE

ANDREA GALLIDABINO, CESARE PAUTASSO

Software Institute, Faculty of Informatics, Università della Svizzera Italiana

Via Buffi 13, Lugano, 6900 Switzerland

andrea.gallidabino@usi.ch, cesare.pautasso@usi.ch

TOMMI MIKKONEN

Department of Computer Science, University of Helsinki
Gustav Hällströmin katu 2b, FI-00560 Helsinki, Finland

tommi.mikkonen@helsinki.fi

KARI SYSTÄ, JARI-PEKKA VOUTILAINEN

Department of Pervasive Computing, Tampere University of Technology
Korkeakoulunkatu 1, FI-33720 Tampere, Finland

kari.systa@tut.fi, jari.voutilainen@iki.fi

ANTERO TAIVALSAARI

Nokia Technologies
Hatanpään valtatie 30, FI-33100 Tampere, Finland

antero.taivalsaari@nokia.com

The Liquid Software metaphor refers to software that can operate seamlessly across
multiple devices owned by one or multiple users. Liquid Software applications can take

advantage of the computing, storage and communication resources available on all the

devices owned by the user. Liquid Software applications can also dynamically migrate
from one device to another, following the user’s attention and usage context. The key

design goal in Liquid Software development is to minimize the additional efforts arising
from multiple device ownership (e.g., installation, synchronization and general mainte-

nance of personal computers, smartphones, tablets, home and car displays, and wearable

devices), while keeping the users in full control of their devices, applications and data. In
this paper we present the design space for Liquid Software, categorizing and discussing

the most important architectural dimensions and technical choices. We also provide an

introduction and comparison of two frameworks implementing Liquid Software capabil-
ities in the context of the World Wide Web.

Keywords: Multi-device programming, multiple device ownership, software architecture,

design space, Liquid Software.

1. Introduction

Device shipment trends [1] indicate that number of Web-enabled devices grows very rapidly.

Every day, nearly four million new mobile devices, tablets and other types of connected devices

are activated worldwide – well over five times more than the number of babies born each day.

We are rapidly headed toward a future in which people own and use dozens of connected

computing devices – laptops, phones, tablets, game consoles, TVs, car displays, digital photo

frames, digital cameras, home appliances, watches, wearable computers, and so on. The users

433

434 Architecting Liquid Software

of these connected devices will expect interactive experiences with software designed to be

immediately available, capable of delivering meaningful value even in few moments, without

requiring active attention or explicit efforts dedicated to device management from the user’s

part, much in the fashion anticipated by Mark Weiser over twenty-five years ago [2].

In the era of multiple device ownership, software applications are no longer run only

on personal computers but also on smartphones, tablets, phablets, smart TVs as well as in

embedded devices found in houses, clothes and cars. Software usage patterns are changing

accordingly, as the users increasingly assume the ability to access their data and applications

on every applicable device, possibly even using many of those devices simultaneously [3].

However, the users are more and more exposed to the complexity that is caused by the large

number of connected devices. This complexity arises, e.g., from the fact that user content is

spread across several devices and services. Managing all the devices and services as separate

entities is a tedious task; the situation gets much worse as the number of devices increases.

The fundamental problem in multiple device ownership is that traditional software appli-

cations and operating systems have not been designed to offer user experiences that would

span multiple devices [4]. Instead, each device typically has its own set of applications that

are installed and managed separately. Furthermore, all the devices have their own file sys-

tems and settings that need to be managed explicitly. The cost of managing applications,

and ensuring that all the applications have access to all the relevant data files can become

unbearable as the number of devices in a person’s daily life grows.

At the same time, the users would simply want to focus on the task at hand, and use their

devices as casually, effortlessly and efficiently as possible. Cloud-based systems such as Apple’s

iClouda, Google Syncb and Samsung Flowc are already paving the way for automatically

synchronized devices. However, these systems are limited to devices supporting the same

native ecosystem; in other words, they lock the users in a single vendor ”silo”. Furthermore,

these systems do not yet provide seamless experiences and transitions across devices. Ideally,

when the user moves from one device or screen to another, the users should be able to continue

doing exactly what they were doing previously, e.g., continue playing the same game, watching

the same movie or listening to the same song on the other device. This type of truly liquid

usage of software applications is not generally supported yet, although such features may

already be available at the application level. For instance, the Spotify music player allows the

user to shift the currently playing music track from one device to another.

In this paper we explore Liquid Software [5, 6] – a paradigm in which computation and

user experience are expected to behave seamlessly across devices. Liquid Software applications

are assumed to follow the user and have the ability to migrate and adapt to different usage

contexts and device configurations. Liquid Software takes advantage of multiple heterogeneous

devices, whereby devices can be used sequentially or simultaneously to run software that

”roams” from one device to another, following the user’s attention. Ideally, the user should

be able to pick the best suited, most applicable device(s) for each situation, and use those

devices for completing the tasks at hand.

ahttp://www.icloud.com/
bhttp://www.google.com/sync/
chttp://www.samsung.com/samsungflow/

http://www.icloud.com/
http://www.google.com/sync/
http://www.samsung.com/samsungflow/

A. Gallidabino, C. Pautasso, T. Mikkonen, K. Systä, J-P Voutilainen, and A. Taivalsaari 435

We will outline the central design issues and architectural dimensions and provide an

architectural framework for building Liquid Software systems. We will first describe the con-

cept of Liquid Software from the user perspective (Section 2), and connect it to emerging

computing trends and related work (Section 3). We will then explore relevant architectural

considerations (Section 4) and present the design space needed for implementing the con-

cepts (Section 5). The resulting design space also provides a useful overview of emerging

technologies and frameworks that support the implementation of Liquid Software.

The paper expands our previous work in the field of Liquid Software [7, 8, 9] by providing

more detailed discussion and description of the architectural choices and dimensions. In

addition, the paper includes additional contributions in the form of two Web frameworks

for liquid Software – Liquid.js for DOM and Liquid.js for Polymer that are described and

compared in Section 6. Towards the end of the paper, we draw some final conclusions in

Section 7, and outline possible further research directions in Section 8.

2. Liquid Software User Experiences – Basic Use Cases and Scenarios

Designing applications that work seamlessly with a range of different devices – or even better,

are able to adapt their behavior in accordance to their deployment context – requires special

consideration in their design [3]. Broadly speaking, Liquid Software experiences can be divided

into the following categories [10].

� Sequential Use. A single user runs an application on different devices at different

times. The application adapts to the different devices capabilities while respecting the actual

user needs in different usage contexts.

� Simultaneous Use. A single user uses the services from several devices at the same

time, i.e., the session is open and running on multiple devices at same time. Different devices

may show an adapted view of the same user interface, or the system may have a distributed

user interface in which different devices play their own distinct roles.

� Collaborative Use. Several users run the same application on their devices. This

collaboration can be either sequential or simultaneous.

Two basic Liquid Software usage scenarios are presented in Fig. 1. In the image on the left,

the user is transferring a live application from one tablet to another (sequential collaborative

scenario). In the image on the right, the user is transferring application state from her tablet

to her car’s navigation and entertainment system (sequential single-user scenario). In both

cases, the assumption is that the users can continue doing what they were doing on one device

on the other devices, with seamless, instantaneous and fluid transition between the devices,

and taking advantage of the specific capabilities of each target device.

Two additional Liquid Software usage scenarios are presented in Fig. 2, depicting simul-

taneous, synchronized usage of multiple devices (this kind of behavior is also referred to as

device companionship). In both of these scenarios, the user is leveraging the screen of a

smaller device (in this case a mobile phone) as a control device for a larger device (in this case

a tablet) so that the contents shown on the larger screen remain unobstructed by the users

hands. Various similar use cases exist. For instance, nowadays it is already quite common to

use a tablet device as a synchronized remote control device for an internet-connected TV.

The scenarios above share the same technical challenges in adapting the user interface to

different devices and in synchronizing the data and state of the execution between devices.

436 Architecting Liquid Software

Fig. 1. Liquid Software Illustrated: Sequential Use Cases.

Fig. 2. Liquid Software Illustrated: Simultaneous Use Cases (Device Companionship).

Synchronization of the data and state are fundamental in the implementation of Liquid Soft-

ware because the devices and users need to be aware of the results of their actions previously

or simultaneously done in other devices. This is essential for transferring the work from one

device to another, thus enabling seamless, real-time device usage.

Finally, a truly Liquid Software ecosystem should support heterogeneous devices across

native software ecosystem boundaries. This way, developers would need to implement only

one application, which could then adapt itself to run on various types of devices. A viable

option in realizing such vision is to leverage the Web ecosystem – where applications already

now are deployed on demand and through Responsive Web Design [11] are adapted to fit on

the local device displays on the fly. Properties such as openness and freedom from proprietary

features make the Web a natural choice over native applications that are bound to a particular

operating system, manufacturer, or vendor-specific ecosystem [12].

3. Background and Related Work

There have been numerous attempts to tackle the issues arising from multiple device owner-

ship, with different design drivers. The very term Liquid Software was coined by Hartman,

A. Gallidabino, C. Pautasso, T. Mikkonen, K. Systä, J-P Voutilainen, and A. Taivalsaari 437

Manber, Peterson and Proebsting in a technical report back in 1996 [5]. Their seminal re-

search culminated in the design of Joust [4] – a system that was based on synchronizing Java

applications between virtual machines running in different computers.

Fluid computing [13] denotes the replication and real-time synchronization of application

states on several devices. The application state flows like a ’fluid’ between devices, simi-

larly as we propose Liquid Software to do. The authors list three main application areas:

1) multi-device applications, where several devices may be temporarily coupled to behave as

one single device (for example, a mobile and a stationary device); 2) mitigation of the effects

of unreliable connectivity, where applications on ubiquitous devices can exploit full or inter-

mittent connectivity; 3) collaboration, where multi-user applications enable several users to

collaborate on a shared document. Technically the platform associated with fluid computing

consists of middleware that replicates data on multiple devices, and achieves coordination of

these devices through synchronization. Each device has a replica of the application state,

allowing the device to operate autonomously; a special synchronization protocol is used for

keeping the replicas consistent.

From the user interface perspective, the roots of Liquid Software can be traced back to

Computer-Supported Collaborative Work (CSCW), where the focus is on enabling collabora-

tion between multiple users rather than among the different devices owned by a single user

[14]. A typical example of a collaborative, multi-device, component-based, thin client group-

ware system is presented in [15]. The design is based on Web technologies of the time, allowing

incorporation of mobile devices as well as native clients in the same system. However, unlike

in our view of Liquid Software, the approach focuses on groupware. Thus, while features

associated with collaboration and multi-device use are built in, there is limited support for

the seamless transfer of the actual state of the application.

Cloud computing systems, thin client environments and Web-based applications that ad-

here to the Software as a Service (SaaS) principles [16, 17] naturally possess many of the

qualities required by Liquid Software. For instance, since in cloud-based applications the

majority of the data resides in the cloud, in principle all the clients using the same applica-

tion will stay in sync automatically. However, in the absence of mechanisms that notify the

clients of changes made by other clients, in practice all the locally stored or cached client-side

data will quickly go out of sync. In desktop-based systems that utilize the Web browser as

the client environment, these problems are usually mitigated by explicitly reloading the page

containing the Web application. In mobile Web computing environments such as Firefox OSd

or Cloudberry [18] explicit use of notification mechanisms (e.g., push notifications) is required

at the application level if multiple clients are to be kept in sync.

In the wider area of mobile computing, the authors of [19] list various trends that can be

related to Liquid Software. In the era of wearable computing, omnipresent connectivity, and

increasingly smart devices, it is clear that techniques that enable seamless use of multiple

devices will become fundamental. In addition to enabling a Liquid User Experience, such

techniques can be used for offloading resource-intensive tasks to save the limited resources of

mobile devices [20].

Responsive Web Design [11] is an established technique for adapting the user interface of

applications to different devices capabilities. As in Liquid Software, the assumption is that

dhttps://developer.mozilla.org/docs/Mozilla/Firefox_OS

https://developer.mozilla.org/docs/Mozilla/Firefox_OS

438 Architecting Liquid Software

users may use different types of devices to access the application, with the user interface

automatically adapting to the capabilities of the current device. However, in simultaneous or

collaborative usage scenarios, it becomes important for a liquid Web application to adapt to

the set of devices at the same time instead of just one device. Thus, Liquid Software pushes

the boundaries for responsive UI capabilities even further.

Today, perhaps the most illustrative example of liquid Software behavior is the Hando�

capability (also known as ”Continuity” capability) in Apple’s iOS ecosystem [21]. A typical

Handoff use case is a situation in which a person starts composing an email on an iPhone but

then decides to finish the e-mail on a personal computer (Mac) that has a much larger screen

and a physical keyboard. The participating devices need to be registered in the iCloud service

with the same user identity, and the devices must be able to communicate over Bluetooth.

When using Handoff, applications need to be written explicitly to take advantage of the Hand-

off API; furthermore, the applications must be pre-installed across all devices. Most of the

built-in Apple applications are already compatible with Handoff, thus supporting continuity

across devices. Each device runs a specific version of the application, and hence their user

interface is implicitly capable of adapting to take advantage of the device capabilities (e.g.,

multi-touch, screen size and specific screen resolution).

Another example of software that allows liquid-like user experiences on mobile devices is

Android Baton from Nextbit [22]; Baton runs on the Android ecosystem and provides features

similar to Handoff. Thanks to the cloud backend it allows the users to synchronize any files

between all the registered devices. It can also migrate the work the users are currently

doing on a device to another one without losing the view that they had in the previous

device. Baton has the same limitations as Apple Continuity: native Android apps need to

be explicitly developed using this proprietary API to support migration and synchronization

across devices.

Windows Continuum [23] is a small physical device (box) that can be connected to mobile

devices running Windows 10. Once a mobile device is tethered to the box, Continuum can

then be attached with a cable to screens, keyboards and mouses around the user using it.

Any hardware attached to the Continuum box is interfaced with the mobile device, making

it possible to seamlessly migrate from the mobile view on the device to a desktop-like expe-

rience on the attached screen. With Continuum there is no need to use a cloud service for

synchronizing data nor to have communication between multiple devices; the box itself reads

the data from the mobile devices and maps the view displayed on the phone with a responsive

desktop view that is displayed on the connected screen. From the users’ point of view the

work they are doing is migrated from the mobile device to the screen. Google Chromecaste

uses the same concepts as the Windows Continuum; thanks to external hardware Chromecast

can interface multiple devices with a television, allowing migration of supported applications

into an external screen.

The cross-device user interfaces research area [24] proposes new techniques for enhancing

cross-device interactions (see, e.g., Ctat [25]). Di Geronimo et al. propose new paradigms for

interacting and sharing data between multiple mobile devices with intuitive gestures. Frame-

works such as XD-MVC [26] provide developers with the information about the underlying

hardware of each device in the system. Developers are encouraged to use the hardware infor-

ehttps://www.google.com/chromecast/tv/?discover

https://www.google.com/chromecast/tv/?discover

A. Gallidabino, C. Pautasso, T. Mikkonen, K. Syst•a, J-P Voutilainen, and A. Taivalsaari 439

mation in order to divide pieces of the user interface of the application among a dynamic set of
heterogeneous devices. The framework provides apattern library that allows the application
to be split across multiple devices following prede�ned patterns (e.g., controller-view pattern).
The framework also allows the discovery of devices based on contact lists and the physical
location of the devices [27]. In XD-MVC data synchronization occurs through a peer-to-peer
network instead of relying on the cloud.

In our own work, we have built numerous experimental systems [28, 29, 30, 18, 31, 32, 33,
34, 35, 36, 37] to explore the boundaries of Liquid Software. However, there is still plenty of
room for future experimentation and research prototypes both in the design space of Liquid
Software as well as in understanding how the users perceive and use liquid applications. We
have recently distilled the overall vision into the Liquid Software Manifesto [6], and described
the main challenges in applying the vision to Web applications [7]. We have also introduced an
architectural style for liquid Web services [30]. All of these techniques, following the principles
laid out in [38], demonstrate how liquid applications can ow from computer to computer in
a simple, straightforward fashion.

We will discuss the basic technical and architectural considerations in implementing Liquid
Software in the next section.

4. Liquid Software { Essential Architectural Considerations

Liquid Software is by no means a single technology but rather a mindset for developing
applications to be executed on multiple, heterogeneous computing devices [6]. Automatic
synchronization of multiple computing devices today is at best supported only partially, usu-
ally within select ecosystems only, and even then the user must commonly turn it on explicitly.
However, we believe that multiple device ownership will soon be so ubiquitous that automatic
synchronization will become the norm rather than the exception. While Liquid Software
requires a lot of underlying implementation e�ort, Liquid Software is really all about creat-
ing a seamless userexperiencethat the underlying software environment or application must
carefully nurture by following a number of principles and architectural considerations.

In the following, we discuss the most essential architectural considerations in individual
subsections, covering adaptation, data and state migration as well as client vs. server appli-
cation partitioning. These entail a number of key design decisions that form the design space
of Liquid Software. We will dive into the design space in more detail in Section 5. Comments
written in boldface within parentheses (Example) below refer to speci�c design dimensions
that will be covered in more detail in Section 5.

4.1. User Interface Adaptation to Di�erent Devices and Contexts

An essential characteristics of Liquid Software is its ability to adapt to take advantage of each
and every device that it runs on either sequentially or in parallel (Device Usage).

The Liquid User Experience must consider and operate with the di�erent input methods
of the devices, such as the keyboard or the touch screen; for example, a small device might
show only the most meaningful data as opposed to a device with a larger display. The use
of companion devicesmakes responsiveness more challenging since the user interface needs to
adapt to a combination of complementary devices. Thus, in general, the user interfaces of

440 Architecting Liquid Software

liquid applications should be responsive and adapt to theset of devices where they currently
run (UI Adaptation).

While traditional, single-computer software expects the input and output channels to
operate on the same device, Liquid Software does not have such restriction; liquid applications
may well allow multiple input channels as well as multiple output channels from di�erent
devices. The users are free to use their devices as they please, making it possible to use
the devices as comfortably as possible { for example by using the keyboard attached to one
computer to type on the smartphone in which the liquid application has been deployed. In
the simplest case, this could be achieved with basic input/output forwarding, without the
need to actually migrate, fork or clone the software (Primitives).

4.2. Data and State Synchronization

In software migration it is important to distinguish between persistent application data and
dynamic application state [38]. By persistent data we refer to the static content (e.g., doc-
uments, images, media �les) that the users store persistently across usage sessions, while
dynamic state is the runtime information that the application needs during its execution.

In existing designs, persistent data { such as images and other content { is commonly
stored locally on each device and can be synchronized using di�erent cloud-based storage
services [39]. Unfortunately, many of the cloud-based storage systems are limited to individual
applications, speci�c data types or certain native operating system ecosystems (e.g., Apple's
iCloud or Google Sync).

In addition to the persistent data consumed and produced by an application, Liquid
Software is also concerned with the runtime (ephemeral, dynamic) state of the application.
This runtime execution state can be captured at di�erent levels of granularity , from the
values of relevant variables (e.g., storing user interface con�guration settings) or the entire
volatile memory storage of an application. In traditional software applications, such data is
not persisted after an application is switched o�. However, in Liquid Software, the seamless
operation of applications across devices requires theIdenti�cation , persistence, migration,
Replication and Synchronization of such state in order to create a true sense of continuity
to the user.

4.3. Client/Server Partitioning

When architecting liquid applications { in particular those implemented with Web tech-
nologies { the partitioning between the client and the server is a key design decision [40]
(Layering). One extreme is to design applications so that they are run entirely on a backend
server; the client is just a user interface that delegates the processing of all the events to the
server. For instance, Ruby on Railsf is a prime example of this approach. Similar ultra thin
techniques exist in the native realm where a virtual desktop is o�ered for remote use (e.g., in
SunRay terminals [41]). In contrast with the server-centric view, there is the client-oriented
approach where focus is placed on the software running on the client. Originating from Ajax
[42], we today have single-page Web applications that use Backend as a Service (BaaS) APIs
such as Firebaseg deployed on a central server, providing persistent storage and noti�cation

f http://rubyonrails.org
ghttps://www.firebase.com/

A. Gallidabino, C. Pautasso, T. Mikkonen, K. Syst•a, J-P Voutilainen, and A. Taivalsaari 441

services that are shared among all clients. In the realm of native clients, the most obvious
approach is to use reection for transmitting the state of a Java application from one virtual
machine to another, as originally proposed in the context of Liquid Software [4].

In practice, development can be both client- and server-centric, as many applications
have both a rich client and separate server-side components. For instance, frameworks such
as Vaadin [43] or Google Web Toolkith allow the development of powerful user interfaces,
while the focal point for developers is on the server side. In the context of liquid applica-
tions, the balance between centralization and decentralization can even change dynamically
(Topology). Di�erent devices have di�erent capabilities, and thus optimal con�gurations
may vary. Therefore, Liquid Software frameworks should o�er capabilities for o�oading com-
putation from clients to servers and vice versa. Since the capabilities of computing devices
may vary considerably, we anticipate a full range of architectural choices from ultra thin (all
computations performed in server side) to ultra thick (clients are completely self-contained)
solutions.

4.4. Security

The users should generally remain in full control over dynamic deployment and transfer of
applications and data. If certain functionality or data should be accessible only on a speci�c
device, the user should be able to de�ne this in a simple, intuitive fashion. For instance,
in the aforementioned SunRay terminals, the user's session was secured with a smartcard
that the user had to enter in the terminal in order to open the session [41]. Likewise, when
migrating applications to foreign devices, either belonging to other users or shared public
devices, suitable access control policies need to be established and enforced. While security
aspects are often downplayed for software running on multiple devices belonging to the same
user, there is a need to assess and evaluate to which extent existing security solutions can be
applied to Liquid Software. An in-depth treatment of this matter falls beyond the scope of
this paper.

5. The Design Space of Liquid Software

A Liquid User Experience (LUE) can be implemented in a number of di�erent ways. The
design space of Liquid Software arises from issues and choices in replicating and synchroniz-
ing the software components and their state, and there can be various motivations behind
the design decisions. For instance, the users who switch the device in the middle of a task
do not appreciate if they have to restart their work from scratch; rather, they expect con-
tinuity in the hand-o� of the work between devices, including seamless availability of their
data [21]. It is important to discuss whether such synchronization relies on a centralized or
a decentralized architecture. In a centralized architecture all the software components and
their state are backed up in the cloud, and the devices synchronize their state via centralized
servers. Alternatively, in a decentralized approach Liquid Software ows directly between
devices, leveraging peer-to-peer (P2P) connectivity for direct state synchronization across
devices. The granularity of the software components that need to be migrated also impacts
the Liquid User Experience, especially when deploying a liquid Web application over multiple
devices that are intended to be used at the same time.
hhttp://www.gwtproject.org/

442 Architecting Liquid Software

To sketch the design space for Liquid Software, we will next discuss the relationships and
dependencies between a number of design issues and alternatives (see Fig. 3). The design
space model can be read from top to bottom following the relationships between the various
alternatives in the design space. Some alternatives are exclusive (e.g., the di�erent levels
of Granularity), while others can be selected together (e.g., which Liquid User Experience
Primitives are supported). We also indicate how the di�erent alternatives constrain each
other.

Table 1 characterizes and positions di�erent technologies within the design space. The goal
is to provide proof-of-existence for each design space alternative by citing concrete technology
examples supporting it. However, we do not intend to present a complete survey/review of
existing technologies for Liquid Software.

5.1. Topology

The topology of a liquid architecture can be centralized, with a single, well-de�ned host that
maintains the master copy of the application state and an image of the software to be de-
ployed and run on each device. This centralized host is usually available in the cloud, taking
advantage of the high availability and virtually unlimited capacity of data centers, potentially
at the expense of the privacy of the data that is no longer con�ned only to user-controlled
devices. Liquid Software thus ows up and down from the cloud onto various user devices
that are thereby implicitly backed up and synchronized as long as a connection to the cloud
is available.

Alternatively, Liquid Software architectures can be designed with a decentralized topol-
ogy in which software, the state of the applications and their data are exchanged directly
between devices in a peer-to-peer (P2P) fashion, leveraging local connectivity between de-
vices. While peer-to-peer approaches can work by restricting the deployment of software onto
speci�c devices that are under the user's control, such amulti-master approach (as opposed
to centralized master-slave approach) makes it more challenging to resolve synchronization
conicts since there is no single master copy. Furthermore, while an individual device may
have perfect Internet connectivity, it is unlikely that all the user's devices are always on-
line at the same time. Thus, special care must be taken to ensure successful migration and
synchronization of state across all paired devices. Conict handling can become especially
problematic if a device has been used actively in o�ine mode for a long time (e.g., during
long intercontinental ights).

This basic topology decision { centralized versus decentralized design { can be regarded as
a fundamental dimension in the context of Liquid Software. Granted, with a central server, it
is easier to manage software as well as data content. However, the decentralized alternative
can o�er signi�cant bene�ts as well, since only local connectivity is needed for migrating state
from one device to another, and the user's data can be kept outside the reach of major cloud
providers. Hybrid approaches as possible, too, with the cloud serving as an additional "peer",
e.g., for backup purposes; this approach was used, e.g., in Nokia's EDB system [39].

5.1.1. State Replication Topology

In real-life implementations, the borderline between the two basic topologies is not always
clear. For instance in [45], implementation techniques forced the design to use a central-

A. Gallidabino, C. Pautasso, T. Mikkonen, K. Syst•a, J-P Voutilainen, and A. Taivalsaari 443

Fig. 3. Overview: the Design Space of Liquid Software. Mandatory arrows indicate that a child
feature is required; optional arrows indicate that the child feature is optional; alternative arrows
indicate that only one child feature must be selected; or arrows indicate that at least one child
feature must be selected.

444 Architecting Liquid Software

Table 1. Technologies Positioned in the Liquid Software Design Space

Sun Ray [41]

Joust [4]

Fluid Computing [13]

Apple Continuity [21]

Android Baton[22]

Cloudberry [18] Cloudbrowser [44]

Continuum
[23]

XD-MVC [26]

Liquid.js DOM
[32]

Liquid.js for Polymer [33]
1997 1999 2005 2014 2014 2014 2015 2015 2016 2016

Topology
Centralized D D D D

Decentralized D
Hybrid D D D D D

Application Source Topology
Single repository D D D D D D

Multiple repositories D D D
Client repositories D D

State Replication Topology
Master-slave D D D D

Multiple masters D D D D D D
Layering

Ultra Thin Client D - D
Thin Client D

Thick Client D D D D D D D
Client Deployment

Preinstalled D D D D D
On-Demand D D D D

Cached D D D
Granularity

OS D D
VM/Container

Application D D D D D D

A
rc

hi
te

ct
ur

e

Component D D D
State Identi�cation

Implicit D D
Explicit D D D D D D D D

Synchronization
Trickle D D D D D D D D

S
ta

te

Batch D D D D D
Device Usage

Sequential D D D D D D D D
Parallel D D D D D D

UI Adaptation
Manual D D D D D

Responsive D D D D D
Complementary D D D D D

Primitives
Forwarding D D D D

Migration D D D D D
Forking D D D
Cloning D D D D D

Discovery
Shared URL D D D D D D

QR Code D D D
Bluetooth D D D

WiFi D D
SmartCard D

Contact List D

Li
qu

id
U

se
r

E
xp

er
ie

nc
e

Geolocation D

A. Gallidabino, C. Pautasso, T. Mikkonen, K. Syst•a, J-P Voutilainen, and A. Taivalsaari 445

Fig. 4. State Replication Topology Alternatives

ized server for communication, while conceptually migration was handled in a distributed
fashion. It should also be noted that the sharing of the user's data, synchronization of the
application state, and application deployment do not need to be organized according to the
same topology; the �nal architecture may be a mixture of centralization and decentralization.
Thus, we further distinguish state replication topology from application source topology. More
speci�cally, the state replication topology (see Fig. 4) alternatives are:

� Master-slave : state replication is centralized. There is one single master, such as the
Cloud or a Web server, which owns the master copy of the state and makes sure that all
connected clients (slaves) receive consistent updates. Each time a client updates the state
it must communicate with the master; the master can drop the request or accept it; in the
latter case the update is propagated to all the other slaves. The master-slave approach can
be burdening for the node acting as a master because all the requests are managed by a single
node.

� Multiple masters : state replication is decentralized. All the clients act as masters,
which discard or accept state changes and propagate them to the other clients that need to
agree with them. In case of multiple masters, conict resolution becomes more challenging as
it requires the implementation of a suitable distributed consensus protocol [46].

5.1.2. Application Source Topology

In the area of application source topology (see Fig. 5) we recognize the following alternatives:

� Single Repository : the master copy of an application is stored on a single node such
as a server in the cloud or a Web server. The single repository structure is the simplest to
implement; whenever the liquid application is requested, clients will look for it in this node.
As new versions of the application are released, it is su�cient to replace the master copy of
the application with the new one. Moreover, the single repository also stores the dependencies
of the application that can be retrieved together with the application.

� Multiple Repositories : the master copy of an application is stored in multiple nodes,
such as multiple Web servers. In the multiple repository structure, the master copy of an
application can be replicated and stored on multiple nodes, and the application and its de-
pendencies can be stored separately from one another. As new versions of the application are
implemented, they must be pushed/propagaged to all the repositories (e.g., using a content

446 Architecting Liquid Software

Fig. 5. Application Source Topology Alternatives

delivery network). In the case of full replication of the nodes, it is possible to retrieve an
application even if one the nodes fails, because another node can provide the application on
its behalf.

� Client Repositories : in this option the clients store the application and can share it
with the other clients. This solution can be implemented in decentralized topologies if the
clients are able to communicate with each other through peer-to-peer communication [47].
In this alternative it is di�cult to manage versions of the application as they are pushed to
clients, because two clients could be running di�erent application versions. In this case clients
should be able to recognize if they are using the same version of an application and update
the newer one if they are not.

The selection of topology depends also on the expected user experience behavior when
dealing with temporary device outages and o�ine scenarios. When the user is moving se-
quentially from one device to another, there might be signi�cant gaps between executions {
e.g., if the target device is not online when the previously used device has been switched o�.
A centralized topology can introduce a store-and-forward functionality that allows migration
in sequential usage scenarios despite the temporary unavailability of some devices.

5.2. Discovery

An important aspect is to de�ne how Liquid Software becomes aware of the set of target
devices on which it can run. The discovery mechanisms are concerned with the existence
of the devices, their location/proximity, their current reachability (online/o�ine) and their
ownership. In centralized topologies, the registry of devices is usually kept in the cloud.

A. Gallidabino, C. Pautasso, T. Mikkonen, K. Syst•a, J-P Voutilainen, and A. Taivalsaari 447

On the device side, several technologies are readily available for discovery, includingshared
URLs, QR codes, Bluetooth service discovery mechanisms,Wi-Fi access point connectivity,
and special purpose hardware such assmartcards. Discovery can also be based on social
interactions between the users, e.g., by employingcontact lists that connect the devices that
the user wants to use together.

Existence Discovery: Identifying all the available devices is the minimum requirement
any Liquid Software system has to ful�ll in order to enable a Liquid User Experience. Many
techniques can be employed in order to make the Liquid Software system aware of the available
devices: by creating a Local Area Network or Personal Area Network whenever access to the
Internet is not necessary or possible (e.g., Wi-Fi or Bluetooth); or by accessing the same Web
server and communicating through the Internet when a wider network is needed (e.g., Shared
Link or QR codes). In the former case the devices can be identi�ed by their MAC addresses,
while the IP address can be used in the latter case. In either solution the user has to connect
to a shared network and know in advance the access point or the server's URL. The less
con�guration setup operations the user has to perform, the better. Some solutions, such as
scanning a QR code, hide the complexity of entering long URL addresses from the user, while
in the Wi-Fi scenario, the discovery can be transparent if the application is con�gured to
automatically connect to a default access point whenever its SSID is detected.

Location Discovery: Location discovery focuses onlocating the relative position of all
the connected devices with respect to each other. The relative location information is not
a strict requirement but it can highly enhance a Liquid User Experience. For instance,
by knowing the relative position of two devices, it is possible to know the direction and
distance between the two, making it possible to support speci�c gestures for migration, forking
and cloning. A notorious example in this area was the Microsoft Surface Table prototype
that allowed phones to share pictures as they were placed on top of the table display. A
Liquid Software system built on top of popular local area network technologies such as Wi-
Fi or Bluetooth can easily compute the relative location of the connected device by using
�ngerprinting algorithms [48]. A Liquid Software system built on top of the Web can use more
complex geolocation technologies such as GPS that are more energy consuming compared to
RSSI-based approaches [49].

Ownership Discovery: Ownership discovery focuses onassigning users to devices. It is
critical to ensure that only authorized software can run on a device and that the users can
control where their data is replicated to. Devices belonging to the same user can have a
higher level of trust than devices temporarily paired between di�erent users. Some devices
(e.g., public displays) may be shared temporarily among multiple users (e.g., linked by a given
social networking relationship); for quite obvious reasons, no information should be automat-
ically replicated to such devices. Ownership discovery requires the users to authenticate their
identity on each device. This may happen in a number of di�erent ways: with a passcode, a
user/password login prompt that is veri�ed by a third party, a shared secret among all devices
(which can be propagated along using QR codes), a smart card, or a combination thereof.

5.3. Layering

Today, the majority of Web applications include both server and client (end-user device)
layers. There are multiple ways to split the application between the server and the client.

448 Architecting Liquid Software

Applications that perform the majority of their computation on the client side are known
as thick client applications, or more commonly rich client applications [50]. Applications in
which the vast majority of computation occurs on the server side are known asthin client
applications. There are even extremeultra thin approaches { such as SunRay [41] { in which
the primary function of the end user device is to render pixels, only acting as a remote display
and terminal to access software that is otherwise run entirely on the server. In thick client
applications the majority of computations run on the client, and the server's role is usually
limited primarily to data storage.

Naturally, there is a full spectrum of architectural alternatives between purely thin and
thick client architectures [9]. In Fig. 6, we enumerate di�erent logical layers of a Web
application designed according to the Model-View-Controller (MVC) pattern [51]. While
thin clients only run the View layer, thick clients may run all the layers or only leave the
Model to be handled by the server.

The typical criteria [20] and tradeo�s for selecting between thin and thick client architec-
tures include the following:

� Computing power. While servers typically have more powerful CPUs and more memory,
these resources may be shared by several users. The more limited (but potentially still
substantial) resources available on clients are usually dedicated to one user only.

� Battery and energy consumption. The users care about the length of the time they can
use their devices between charging. The less computation is done in battery-operated
client devices, the longer the batteries can generally be expected to last. However,
since it is often network tra�c that dominates power consumption, overall battery life
sometimes improves considerably by performing more computation on the clients.

� Perceived performance. The users typically enjoy highly interactive applications. Fre-
quent network requests may cause delays. To improve the perceived performance of
Web applications, technologies such as Ajax [42] and single-page applications [52] have
emerged.

� Required bandwidth. Available bandwidth is one of the key considerations in driving
and de�ning practical use cases for Liquid Software. The longer it takes to migrate the
execution from one device to another, the less appealing it will be to use the mechanisms
supporting multi-device usage.

� O�ine operation . Thin client applications are typically unusable if the network connec-
tion is down, while thick client applications may continue their execution even without
active network connection.

� Direct hardware access. Thin client applications that run in a sandbox often have limited
access to the capabilities of the underlying local runtime environment. In contrast, thick
client applications can usually directly utilize local hardware resources such as cameras,
sensors, GPU, and the �le system.

� Engineering challenges. Applications whose computation and data are distributed be-
tween the client and the server are more di�cult to develop and maintain than appli-
cations that are deployed only on the client or on the server [40].

In the context of liquid applications, the balance between server and client execution
can even change dynamically. Heterogeneous devices may have highly divergent computing
capabilities, input mechanisms and other resources, and thus optimal con�gurations may vary.

A. Gallidabino, C. Pautasso, T. Mikkonen, K. Syst•a, J-P Voutilainen, and A. Taivalsaari 449

Fig. 6. Layering Alternatives [9]

Therefore, Liquid Software frameworks should o�er capabilities for dynamically migrating
computation from servers to clients and vice versa.

5.4. Granularity

While the majority of use cases for Liquid Software are concerned with the migration of
entire software applications, we have recognized a variety of use cases that call for liquidity
at di�erent levels of granularity. In the following we show which layer(s) of the software stack
can be made responsible for migration and synchronization (Fig. 7).

� Operating system level. The operating system and its underlying resources such as the
�le system, communication middleware and user interface follow the Liquid Software princi-
ples. Technically this means that operating processes can fork and migrate across di�erent
devices, state synchronization is seamless and all the data is automatically available to all
devices. For the end user this means the liquidity is not limited to speci�c applications and
that all the applications are liquid by default. Implementing Liquid Software at the operating
system (OS) level is the most comprehensive but also the most complex approach since it
needs to deal with hardware di�erences, security, resource consumption, live process migra-
tion, and various other issues. One obvious limitation is that all devices participating in liquid
experience need to run the same operating system.

� Virtual machine/Container level . Probably the most commonly used mechanism for
migration today is to utilize virtual machines that enable the transfer of running applications
between various computing devices. The technology is widely used in data centers, e.g., to
bring applications and content closer to the edge of the network, and consolidate multiple
virtual machines to run on the same physical resources to save energy. Like virtual machines,
containers are widely used in cloud systems, with the advantage of reduced footprint and more
�ne-grained control on which parts of the system can be migrated. While limitations are also
similar between the two approaches above, in the context of containers problems related to
bandwidth can be at least partially solved by carefully selecting the parts of the system that
must move.

450 Architecting Liquid Software

Fig. 7. Granularity Alternatives

� Application level. Moving a speci�c application as it is running is probably the most
natural way to consider migration; application developers are commonly o�ered a framework
that they can utilize for implementing state synchronization at the application level. The
framework may o�er capabilities that the developers can use to control which parts of the
state and data are migrated.

� Component level. Migrating application components from one device to another enables
custom and exible designs, where only parts of applications that need to be present in
the target device are transferred. This level of granularity becomes especially interesting in
companion scenarios in which multiple devices are used at the same time. This can be an
e�cient way to implement the complementary screening scenario in which di�erent devices
are used for presenting di�erent visual components and controls of the same application.

Design decisions related to granularity are heavily dependent on the capabilities of target
devices. For instance, with ultra thin clients only the visual presentations (in the extreme
case only "pixels") need to transferred to the target client. In contrast, a thick client typically
requires at least application level liquidity support.

5.5. Client Deployment

There are numerous di�erent ways to implement client software deployment (Fig. 9) and
installation. In one end of the spectrum there arepreinstalled applications that are statically
installed, similarly to the applications in personal computers. This method is used for native
applications in major mobile platforms such as Android, iOS and Windows Phone. Even Web

A. Gallidabino, C. Pautasso, T. Mikkonen, K. Syst•a, J-P Voutilainen, and A. Taivalsaari 451

applications in some platforms, such as Tizeni and Firefox OS follow the same paradigm: the
applications are prepackaged, transferred to the device (often by downloading them from an
application store), and then installed in the traditional fashion. On many of the current native
mobile platforms, a cloud service (e.g., iCloud) will automatically (and entirely transparently
from the user's viewpoint) install previously acquired applications when the user takes a new
device in use.

In the other end of the spectrum there areon-demand Web applications that are run
simply by pointing the Web browser or Web runtime to a speci�c URL. These applications
are typically downloaded on the y for each execution, and are only available in the presence
of a network connection. In such systems code deployment means nothing more than passing
on the URL of the application from one device to another, giving access to a server running
on premises, in the cloud, or on a hub installed in the smart home of the end-user.

In Cloudberry HTML5 mobile phone platform [18], applications were run by giving the
URL to the Web engine; the application code was thencachedusing the HTML5 Application
Cache [53]. The application cache would keep the necessary �les available so that dynamic
code downloads were subsequently needed only if some of the implementation components of
the application actually changed.

Although the deployment mechanisms are technically independent of each other, there
are some logical connections. The following combinations can be encountered commonly in
real-life implementations (Fig. 8):

� Thin client, on-demand deployment. For thin client applications o�ine operation is not
necessary and thus on-demand deployment is a feasible option.

� Thin client, pre-installation . In thin clients the majority of functionality resides on the
server; application updates are also server-driven. In many frameworks the client application
is generated dynamically and may change in response to changes on the server side.

� Thick client, on-demand deployment. One of the main bene�ts of thick client appli-
cations is the built-in support for o�ine use when network connection is not available. In
Web applications, this bene�t can only be achieved if Application Cache is used (at the time
of writing the journal version of this paper, the HTML5 Application Cache mechanism was
being deprecated from major Web browsers).

� Thick client, pre-installation . This combination resembles the traditional, native, in-
stallable binary applications. Obviously, o�ine use of such applications is possible by default
unless the application logic itself relies on network connectivity.

In the extreme ultra thin systems there is no application installation to end user devices
at all. Rather, all the installations take place on the centralized server. Conversely, in ultra
thick designs, especially those leveraging peer-to-peer synchronization, the server might not
be needed at all since everything is managed by the clients themselves.

5.6. Liquid User Experience

True Liquid User Experience consists of two parts { primitives that are to be supported, and
adaptation techniques that are applied when an application is moving from one device to
another, where the characteristics of the device are di�erent. These will be discussed next.

i https://developer.tizen.org/

452 Architecting Liquid Software

Fig. 8. Code Deployment alternatives

5.6.1. Primitives

From the user's perspective, on an individual device Liquid Software acts just like any other
software. However, in order to create a seamless user experience reecting the mobility of
software [38] from one device to another, a combination of the following four primitives is
used (Fig. 9):

� Forwarding: the ability to transparently forward the output and redirect the input
gathered on one device to the application remotely running on the other device.

� Migration : the ability to partially or completely move the current instance of the liquid
application from one device to another e�ortlessly.

� Forking : the ability to partially or completely create a copy of the current instance of
the liquid application on a di�erent device.

� Cloning: the ability to partially or completely create a copy of the current instance
of the liquid application on a di�erent device (i.e., forking) while keeping the two instances
synchronized thereafter.

According to the Liquid Software Manifesto [6], the user is supposed to remain in full
control of where the software is running: forwarding, migration , forking and cloning primitives
allow the user to roam from a device to another. Themigration primitive is used mainly in
sequential screening, enabling the single user to move the liquid application among the user's
own devices. This establishes continuity in the use of the application across multiple devices;
for example, when the user is watching a movie on the phone during a daily commute, the
movie will continue playing from the same position on the large screen TV when the user
arrives at home.

The forking and cloning primitives are more suited for parallel and collaborative screening
scenarios, where the state of an application must be shared among many users or devices.
This establishes a complementary, companionship role among multiple devices that are used
at the same time. For example, a user going through a checkout process on an e-commerce

A. Gallidabino, C. Pautasso, T. Mikkonen, K. Syst•a, J-P Voutilainen, and A. Taivalsaari 453

Fig. 9. Liquid User Experience Primitives

Website accessed via the desktop Web browser may simultaneously use the secure �ngerprint
reader of his smartphone to validate the ongoing credit card payment transaction.

5.6.2. User Interface Adaptation

There are di�erent possible alternatives { manual, responsiveand complementary { for decid-
ing how to perform the user interface adaptation to the set of devices that are used for running
the application [3]. With a manual approach, the users may directly activate the Liquid User
Experience primitives to control how the user interface is deployed onto devices. From the
developer's perspective, the manual alternative requires the development of N versions of the
application, one for each device targeted by the deployment. While this is a common practice
for mobile smartphone platforms, the costs of this approach for further growing the supported
number of platforms and device types could become prohibitively expensive.

In contrast, a responsive design is used for adapting the same application software to
the device's features such as its screen size. It adjusts the user interface by considering the
di�erent input and output capabilities of the target devices. For example, a small device
might show only the most meaningful data as opposed to a larger device that would display
the full contents. Existing mechanisms and design practices such as Responsive Web Design
[11] pave the way to automatically treating this dimension, although still requiring careful
attention and consideration from the UI designers and application developers.

Overall, Liquid Software can �ll all the available devices and provide not only a responsive
user experience (where the user interface is adapted to each devices capabilities), but also a
complementary user experience (where the capabilities of all the devices are fully exploited
by the application with a distributed user interface).

454 Architecting Liquid Software

It must be kept in mind that Liquid Software behavior is always to some extent an illusion
{ a lot of technical grunt work is often needed under the hood in order to maintain a seamless
user experience and the users' impression that software is truly "owing" across devices.
For instance, in many cases the developer may use pre-rendered bitmaps instead of constant
repainting in order to create an impression of smooth application transfer. A signi�cant part
of the designers' and developers' work is concerned with maintaining such an experience.

5.7. State and Data in Liquid Software

Broadly speaking, Liquid Software systems deal with two kinds of data: 1) persistent user
data and 2) ephemeral runtime application state. Persistent user data needs to be made
available across di�erent devices and usage contexts. Likewise, the ephemeral, dynamic state
of running applications must be stored in a form that allows the state to be e�ortlessly
migrated or synchronized across devices, either fully or partially. Thestate identi�cation can
happen implicitly , where all parts of the application are addressed, orexplicitly, where only
relevant parts are synchronized.

Conict handling and consistency. Di�erent user experiences impose di�erent require-
ments on state synchronization. Sequential screening { the user moving from one device to
another to continue activities { does not generate conicts, since there is only one active device
at each time. In contrast, parallel and collaborative use of devices { when multiple devices
are used simultaneously to complete a task { require close to real-time updates and may lead
to conicting updates to the same data. In general, if multiple devices are active at the same
time, conicts between their states may become an issue. Some of these problems need to be
solved in the application level, but ideally the underlying application or OS framework should
guarantee the eventual consistency in data synchronization.

At the implementation level, state synchronization can take place in two di�erent ways:
trickle and batch updates. In the former case, two or more devices are kept in sync by incremen-
tally forwarding the state changes as soon as they occur. Alternatively, it is possible to bu�er
a larger set of changes, and migrate them to other devices as a batch. For seamless real-time
updates at the user interface level, the trickle approach is pretty much mandatory. However,
since many devices partaking in Liquid Software scenarios may be o�ine for prolonged peri-
ods of time, batch updates typically need to be supported as well, so that previously recorded
changes can be "played back" on other devices as those devices become available online again.
An obvious challenge in bu�ering changes and transmitting them later when connectivity is
restored is that devices may be in inconsistent state and require reconciliation [54].

No matter which approach is chosen, a procedure that synchronizes the entire system is
needed when initiating the execution of an application on new devices. Depending on the
mechanism that is used for launching new applications, this can take place either using a
central server or in a peer-to-peer fashion. In addition, conict resolution between di�erent
devices requires a protocol for agreeing over the common state. Depending on the situation,
this may again happen via a central server or, e.g., by voting among the clients themselves. A
simple but e�ective solution chosen in [39] was to allow the latest change to override any past
conicting changes in order to avoid any deadlocks or communication overhead associated
with voting.

A. Gallidabino, C. Pautasso, T. Mikkonen, K. Syst•a, J-P Voutilainen, and A. Taivalsaari 455

The choice of the state synchronization alternative may also impact the way how the de-
veloper controls the synchronization and how synchronized elements of the data are identi�ed.
While the migration [55] or the synchronization [56] of the state of an entire virtual machine
can be done as a batch operation, the trickle approach can also work with �ner-grained ab-
stractions, such as applications or individual components. To do so the developer should
have mechanisms to explicitly indicate which parts of the state should be moved to the new
location.

Federation of synchronization. An important consideration in Liquid Software system de-
velopment is the federation of devices that can partake in the migration of data and state.
In multi-device scenarios it is important to be able to carefully manage access control rights
and grant permissions depending on the ownership of the device on which the software dy-
namically �nds itself running on. We identify two basic permissions controlling the direction
of synchronization:

� Publishing: the ability to send/push data to paired devices.

� Subscribing: the ability to receive/pull data from paired devices.

These permissions are particularly useful in multi-user scenarios, to make sure both parties
agree to exchange data.

5.8. Security Considerations

The success of computing platforms supporting liquid behavior is fundamentally dependent
on security. As summarized in [6], the ability of Liquid Software to readily ow from device
to device is both a blessing and a curse. It is a blessing because it enables a new computing
paradigm { virtualized but personal computing environment that is independent of any speci�c
computer or device. However, the very mobility of Liquid Software is a curse because it can
open potentially huge security holes. The notion of the user's entire computing environment
{ most of the applications and data { being accessible from any of the user's devices can make
the system vulnerable from a security and privacy perspective. For instance, if even one of
the user's devices is stolen, there is a possibility that his entire computing environment could
be compromised.

As a starting point for security and device federation, there are well-known techniques
for secure communications, device pairing and trust establishment, user authentication and
authorization that are needed for implementing security features for any liquid application.
These techniques have been maturing for years in the context of computer networks, the Web,
cloud computing, and mobile devices. These already existing mechanisms can largely be used
to satisfy the requirements for privacy, cohesion, authentication, authorization, and audit.

A basic principle de�ned in [6] is to keep the user in full control of the liquidity of applica-
tions and data. This calls for a security approach that is exible yet simple and straightforward
in layman terms, not assuming special skills or a deep understanding from the end user's part.
For example, the SunRay ultra thin network terminals [41] provided a secure smart card au-
thentication system that would connect the client device to the remote user session, making
it appear truly as if the user's earlier computing session had instantly migrated to the present
target terminal. More work is needed to investigate which authentication techniques and
security practices can be accepted by the end users in di�erent usage scenarios.

456 Architecting Liquid Software

6. Web Frameworks for Liquid Software

As a part of this research we have independently composed two frameworks to study di�erent
design alternatives for Liquid Software. These frameworks are calledLiquid.js for DOM and
Liquid.js for Polymer . They have been created using the DOM manipulation capabilities
and Web componentsj using the Polymer framework, respectively. The comparison here
addresses the architectural design issues mentioned earlier in this paper, including topology
and code deployment, data and state management, migration granularity, and user interface
adaptation.

6.1. Liquid.js for DOM

The Liquid.js for DOM framework (we shall use the abbreviationLfD henceforth) provides
easy-to-use mechanisms for migrating the DOM (Document Object Model) tree of the ap-
plication to a di�erent Web browser [32]. LfD is designed to automatically synchronize the
contents of the DOM, and especially all the application state that is stored in the DOM. To
synchronize the other parts of the local state the developer can register variables and func-
tions to be synchronized together with the DOM. Figure 10 shows the features selected by
Liquid.js for DOM with respect to the Feature model shown in Figure 3.

Fig. 10. Feature model choices for Liquid.js for DOM. The selected features are highlighted.

j https://www.webcomponents.org/

A. Gallidabino, C. Pautasso, T. Mikkonen, K. Syst•a, J-P Voutilainen, and A. Taivalsaari 457

1 // in i t ia l izat ion
2 var Liquid = require (' l iquid . js ') ;
3 var l iquid = new Liquid () ;
4
5 // Add data - handler =" removeItem " to removeButton
6 removeButton . setAttr ibute ('data - handler ' , ' removeItem ') ;
7
8 // Register removeTodo event handler to bind
9 // click - event to DOM element with data - handler removeItem

10 liquid . registerHandler (' removeItem ' , { ' cl ick ': removeTodo }) ;

Fig. 11. Initializing Liquid.js for DOM framework and registering functions for it.

6.1.1. Overview

LfD leveragesvirtual DOM technology that was originally designed for fast manipulation of
DOM trees through an abstraction layer and popularized by React.js [57]. The framework is
based on modern browser technologies, so that any desktop or mobile browser should work as
long as the underlying technologies are supported. The basic idea of virtual DOM is to build
an abstract version of the DOM tree instead of manipulating the DOM tree directly. This
abstraction makes DOM manipulation signi�cantly faster, especially when it is coupled with
e�cient comparison algorithms and operations on selected sub-trees. LfD is implemented as
a JavaScript library that runs completely in the Web browser (on the client side), therefore
requiring that it is included in the application. In addition, the application has to include
some initialization code. After that the actual data migration can be automated. Since the
virtual DOM can only handle data residing in the DOM, the initialization code must register
variables and functions residing in JavaScript namespace to the framework for automatic
migration. Example of initialization and function registeration is provided in Fig. 11.

6.1.2. Topology and Code Deployment

LfD is designed as a client-side framework, and thus it is deployed on an on-demand basis
together with the application { it can be deployed even with a static Web page. The trans-
parent caching mechanisms of the infrastructure have no e�ect on the deployment of the code.
After deployment, the framework follows the thick client paradigm; in fact, it does not require
a server at all.

LfD could be implemented both for a centralized and decentralized topology. In our
proof-of-concept implementation, WebSockets are used for transferring the data, and this
tra�c ows through a centralized server. However, the library is implemented so that the
communication mechanisms can be replaced practically with any communication technology.
Thus the actual topology depends on the chosen transfer mechanism. Since LfD transfers
only the state of the application, the code needs to come from a separate Web server.

6.1.3. Granularity

The entire application is always kept synchronized { it is not possible to keep one part of the
application private and migrate only the other part. However, since only di�erences in the
state are sent, the actual new content is limited to a subset of the DOM tree.

458 Architecting Liquid Software

6.1.4. Liquid User Experience

LfD can support migration , forking and cloning from the Liquid User Experience primitives.
LfD was designed with migration in mind; thus, it is implemented so that second device
downloads the application from the server with the state transferred from another device.
This state is applied to the initial state on the second application and the application on the
�rst device can then be shut down. Forking is essentially similar except that the original
browser continues its execution. Cloning can also be implemented { in that case the state
synchronization is started.

6.1.5. User Interface Adaptation

Since LfD is directly based on DOM trees, it automatically supports DOM-based responsive
user interfaces. For example, Bootstrapk and Foundationl libraries both implement their
responsiveness using CSS classes; these classes are migrated with the DOM so they will work
without any complications in di�erent devices.

6.1.6. Data and State

The cornerstone of LfD is the initial state of the application. Once the framework is initial-
ized, the initial state is stored as a virtual DOM tree within the framework. At any time
the application is migrated, its current state is compared against the initial state, and the
di�erences between the states are sent to another browser. The browser receiving the data
will then apply the di�erences to its initial state in virtual DOM, and apply results to the
actual DOM in the browser. The process is depicted in Fig. 12.

Fig. 12. Migrating the current DOM tree to another browser using Liquid.js for DOM.

If the application developer has declared relevant variables and functions that are mi-
grated with the DOM tree, these are rebound after migration. Since everything in JavaScript
namespace is not migrated, there might be some di�erences between di�erent browsers in
what the variables actually contain; it is left to the application developer to ensure that all
the important variables of the application are migrated.

k http://getbootstrap.com/
l http://foundation.zurb.com/

A. Gallidabino, C. Pautasso, T. Mikkonen, K. Syst•a, J-P Voutilainen, and A. Taivalsaari 459

The application developer can de�ne when the synchronization is triggered. It may be
triggered by some application speci�c event, or in the extreme case automatically in response
to each and every change in the DOM tree. The choice depends on the application and required
scenarios. Our design relies on the initial state, and therefore the old state in the receiving
browser is always discarded during migration. This is a perfect match tosequential use.
However, if the application is implemented to migrate after every state change immediately,
simultaneous usecan be supported rather well since the risk of conicts is minimized.

Our framework supports both trickle and batch updates in synchronization. While com-
paring application state to the initial state, this in essence results in a batch update, since
di�erences to the original state are transmitted. Trickle updates could be supported if the
application is implemented so that migration is triggered when a change occurs in the ap-
plication state. In practice migrations can be executed almost in real time. The application
developer is in control how and how often the migrations will occur; this can range from the
actions of the end user to speci�c browser events upon which the user has no control.

A live example of the LfD framework can be found inhttps://liquidjs.herokuapp.com/
that de�nes a simple Todo application. The framework and the example are presented in detail
in [32].

6.2. Liquid.js for Polymer

The Liquid.js for Polymer (LfP) framework enables the development of liquid Web applica-
tions developed with the Polymer framework { a framework developed by Google on top of
Web Components [58]. Web Components allow the creation of reusable components in a Web
application. LfP exploits the latest HTML5 standards, and thus applications behave correctly
in all the Web browsers complying with them such as Google Chrome or Mozilla Firefox. The
framework has been demonstrated in the WWW2016 and ICWE2016 conferences [34, 59].
More detailed information on the LfP API can be found in [33]. Figure 13 shows the features
selected by Liquid.js for Polymer with respect to the Feature model shown in Figure 3.

6.2.1. Overview

LfP expects that applications are developed using a component-based approach, where the
user interface of the Web application is composed out of one or more Web Components. The
components of a Liquid application are built on top of the Polymer frameworkm, with the
injection of the liquid behavior and the addition of annotations provided by the LfP library
to transform a Polymer Web component in a Liquid component.

LfP annotations de�ne which components should manifest the Liquid User Experience and
which parts of the state of an instantiated component are meant to be shared among other
components. This process is accomplished simply by importing theLiquidBehavior class
inside the de�nition of a component and by explicitly de�ning which properties are liquid
(see Fig. 14). Once the developers add their own annotations, LfP will transparently manage
the deployment of the application as well as the state and data synchronization of a Liquid
component; the framework also exposes APIs meant for the development of ad hoc Liquid
User Experiences.

mhttps://www.polymer-project.org/1.0/

460 Architecting Liquid Software

Fig. 13. Feature model choices for Liquid.js for Polymer. The selected features are highlighted.

LfP can be used for developing Liquid applications supporting bothsequential screening
and parallel screeningscenarios, working either collaboratively with multiple users devices or
among the devices of a single user.

More information about LfP (including a demo) can be found at http://liquid.inf.
usi.ch . A demonstration of the tool and explanations on how to build a Liquid application
can be found in [34].

6.2.2. Topology and Code Deployment

The LfP topology aims to be as decentralized as possible. Initially the master copy of the
assets of an application resides in a Web server (which can be replicated following themultiple
repository approach). Whenever clients request pieces of an application in the form of Liquid
components (on-demand), they may decide to cache any asset inside the indexDB database
of their Web browser. Afterwards any client can request another client to send their own
copy of the application, which in turn can exchange it with anyone else. This approach allows
LfP to take advantage of both multiple repositories and client repository as the source of the
application (Fig. 15).

The exchange of assets happen through a Peer-to-Peer (P2P) mesh that is established
dynamically at runtime. The P2P channels are created using the WebRTC'sRTCDataChannel
API available in modern Web browsers.

6.2.3. Granularity

The client of LfP is thick. Liquid Web applications developed in LfP are component-based

A. Gallidabino, C. Pautasso, T. Mikkonen, K. Syst•a, J-P Voutilainen, and A. Taivalsaari 461

1 <dom - module id=" liquid - component - example ">
2 <template >
3 <!- - HTML here -->
4 </ template >
5 <script >
6 Polymer ({
7 is : ' l iquid - component - example ' ,
8 behaviors : [L iquidBehavior] , // Import ing the behavior
9 propert ies : {

10 exampleProperty : { l iquid : true } // Annotat ing a property
11 },
12 }) ;
13 </script >
14 </dom -module >

Fig. 14. Importing the LiquidBehavior and annotating properties

Fig. 15. LfP hybrid application deployment. Initially an application is stored in multiple Web
servers. Clients that do not hold a copy of the application can request it from any server; when
clients receive a copy from the servers they can start sharing it with other clients directly.

and all components can be shared between the set of devices. The client is responsible for
transparently creating the P2P channels; moreover, it hides the complexity of data and state
synchronization by hiding the protocol used and by taking care of data consistency among
the devices. This approach allows LfP to migrate only small pieces of an application instead
of migrating the entire application. By migrating Liquid components it is possible to migrate
only parts of the UI from a device to another without loading the entire application on all
devices.

6.2.4. Liquid User Experience

LfP exposes APIs that provide the mechanisms for creating the Liquid User Experience (LUE)
the developers are looking for. LfP APIs give the developers the freedom to use LUE primitives
directly, in particular LfP implements the Migrate, Fork, and Clone methods. It does not
currently provide an implementation of the Forwarding method.

LfP also provides additional methods that allow developers to directly interact with four
di�erent levels of abstraction inside the framework (Fig. 16):

462 Architecting Liquid Software

� Device level : the set of devices connected is the top level of abstraction of the frame-
work, developers have access to the API and can use it to connect devices and send message
among them at runtime. Lower levels of abstractions use this API automatically whenever
API methods are called, but a developer may decide to use it directly if he so desires.
By introducing this level of abstraction it is possible to broadcast requests to all the devices;
for example, it is possible to broadcast requests coming from a lower level of abstraction such
as forking or cloning a component to all the devices.
The three primitives { migrate, fork and clone { can be applied at the device level. Moving a
device refers to to taking all the components instantiated inside the device and moving them
to another one; forking a device refers to instantiating a copy of all the components inside a
device to another one;cloning a device refers to instantiating a copy of all the components
inside a device to another one and synchronizing them for future state changes.

� Assets level : LfP exposes some methods to interact with the assets (static resources)
of an application, such as requesting assets from a server or from another client directly. This
API also allows caching and retrieval of assets in the indexDB database of the Web browser.

� Liquid component level : this level of abstraction allows the developer to instantiate
components in a device. Any component that has a component model described in Polymer
with the addition of LfP annotations can be used as a parameter of the set of methods exposed
to this level of abstraction.
It is possible to apply the three Liquid primitives to the component instances: migrate a
component somewhere else (on the same device but contained a di�erent element in the
DOM or on another device), fork a component: create a copy somewhere else, andclone a
component: fork it and keep its state synchronized.
A Liquid component is the basic construction block of the Liquid application. Whenever a
component is migrated, forked or cloned LfP takes care of sending both the state and the
component model (asset) of the Liquid Component to the correct device and instantiating
it. The model of a Liquid component is the de�nition of the component itself written with
Polymer syntax and LfP annotations.

� Liquid property level : the annotations of LfP allow developers to de�ne which prop-
erties are liquid. The framework exposes an API for pairing annotated properties directly
between di�erent components inside the same or di�erent devices.

Fig. 16. The four levels of abstraction of Liquid.js for Polymer. Devices contain a set of assets and
components. Components are instantiated from the Component Model described with Polymer
and contain properties. A property is the state shared among components running on di�erent
devices and can be de�ned through the annotation included in the Component Model

Application created in LfP can adapt its user interface to di�erent devices through CSS;

A. Gallidabino, C. Pautasso, T. Mikkonen, K. Syst•a, J-P Voutilainen, and A. Taivalsaari 463

however, currently LfP does not provide any automated mechanism for adapting an applica-
tion to the set of connected devices. Rather, the users are expected tomanually drag and
drop the application components on the devices they want to deploy them on. Additionally,
LfP exposes an API that allows the developers to build their own policies, e.g., to recompute
the layout of the application when some device disappears.

6.2.5. State and Data in Liquid User Experience

Data and state of an application are synchronized among the devices through the P2P channels
described previously. The annotations of LfP make it possible toexplicitly identify which parts
of an applications should be exchanged and synchronized between devices. Data is usually
stored in the clients of the applications using the multiple masters paradigm. However,
developers are allowed to decide that data { which should be available to every single client
connected { could be stored inside a Web server (thus shifting tomaster-slaveparadigm for
data replication). The same happens to the state of an application { the state is stored inside
the clients and is directly exchanged between them through the P2P mesh. This can be
accomplished with a special annotation on the Web Component that cannot be changed at
runtime.

Ensuring consistency of data and state using a P2P architecture is a costly operation
compared to a centralized approach, although it shifts the bandwidth usage and resource
consumption from the server to the clients. Changes in the data and state are forwarded to
all the clients as trickle updates, in which LfP framework sends incremental updates as soon
as they are detected.

Finally, LfP allows clients to decide their own federation of synchronization with annota-
tions. A client may decide to publish their own updates as well as subscribe to receive changes
from other clients.

The state of a component is de�ned by its properties; an annotated property will be
considered in the LfP framework aLiquid Property . Properties can be Javascriptbooleans,
strings, numbers, arrays or objects; any of these properties can be annotated and LfP will
manage them di�erently depending on their type. The framework will create a copy of the
annotated properties and will ensure consistency whenever a property has to be synchronized
among multiple devices using Yjs [60] (Fig. 17 and Fig. 18).

6.3. Comparison

Although LfD and LfP have been designed independently, there are many similarities be-
tween the frameworks. They are both client-based and both can use browser-to-browser
communication, although some help from a central server is required, too.

The following characteristics distinguish the two frameworks:

� LfD focuses on the DOM, hence it targets the View of the Web application; LfP is
designed to clearly separate between the View (rendered by each Web Component) and
the Model (synchronized and migrated by the framework) of the Web application.

� LfP moves both code and state, while LfD moves only data. Thus, LfP supports more
exible architectures { even simple mobile agents could be developed with LfP.

464 Architecting Liquid Software

Fig. 17. In LfP every annotated property is copied, the framework will ensure that the state of
the annotated property is consistent among all devices. The framework uses the copy as a proxy
to detect live changes of the value of the property and �res event whenever one is detected.

component property2 copy2 copy2 property2 component

init

create

init

create

pairProperty

pair

ack

event

changed

sync

propagate

ack

ack

Fig. 18. Sequence diagram for property synchronization in LfP. The diagram is connected to the
example shown in Fig. 17. When the component initializes it checks if a property is annotated.
Whenever an annotated property is detected, a copy of it is created. If a property is paired and a
change is detected, the property is synchronized automatically.

A. Gallidabino, C. Pautasso, T. Mikkonen, K. Syst•a, J-P Voutilainen, and A. Taivalsaari 465

Table 2. Comparison

Liquid.js for DOM (LfD) Liquid.js for Polymer (LfP)

Layer Thick (Server required only for deploy-
ment).

Thick (Model Synchronization).

Adaptation Responsive Web Design. Each component can adapt its UI to
the device capabilities using Responsive
Web Design techniques. Users need to
manually choose on which device each
component should run on.

Data migration Only data that is located in the DOM
tree is synchronized automatically; all
other data must be registered with the
framework for migration.

Fine-grained, explicit control over
which data is migrated. Possible to
migrate data directly between peers or
also via the server.

State migration Application level synchronization based
on DOM; must be taken into account at
design time for each application.

Component level synchronization based
on Polymer properties; Fine-grained fa-
cilities explicitly allow programmers to
control which component property is
paired and where it should be stored.

Client
deployment

Runs on client, but the application
needs to be downloaded only once.

Runs on a client, but the application
needs to be downloaded from the server
only once. Creating the P2P communi-
cation channels with the WebRTC API
requires a signaling server.

Discovery Shared URL, also rendered as QR-code. Shared URL, also rendered as QR-code.
Security No authorization or authentication im-

plemented yet; secure communications
supported.

No authorization or authentication im-
plemented yet; secure communications
supported.

� LfP dictates the technology platform (Polymer/Web Components), while LfD is rather
exible (any Web browser).

� Concerning adaptation { LfD can use standard techniques such as Responsive Web
Design, whereas LfP assumes that each Web component includes suitable adaptation
mechanisms. On the other hand, LfP allows the developers to manually choose which
components to deploy and run on each device.

� LfP provides the programmers means to control which component properties are liquid,
wheres LfD does not as it synchronizes the content of the DOM.

� LfP provides means to de�ne the master copy of the data, whereas LfD does not.

� LfP synchronizes state that is annotated explicitly (liquid properties of Web Compo-
nents), whereas LfD synchronizes the entire DOM tree.

� LfD is focused on parallel, simultaneous device usage, with the ability to synchronize
the DOM between two di�erent Web browsers running at the same time. LfP sup-
ports both sequential and parallel usage scenarios, as it deals with both migration and
synchronization of the liquid state of Web Components.

A detailed summary of similarities and di�erences between LfD and LfP are presented in
Table 2. In addition to the features listed in the table, a key di�erence is that LfD is deep down

466 Architecting Liquid Software

based on the DOM, a data structure that is central in any Web application, whereas LfP builds
on more recent technology that requires a component-based approach in the design of Web
applications. While Web Components are supported by most modern browsers, they are not
yet completely adopted by most Web applications. Both LfP and LfD use newly standardized
features for browser-to-browser communication to circumvent the need for a central server
that would host or relay the data. However, a server is still required for establishing the
WebRTC communication channels between the browsers.

In general, we �nd that LfD can be helpful when aiming at enabling some liquid features in
already existing applications, as it is directly building on the facilities that are at the very core
of the browser. In contrast, LfP can be regarded as a more comprehensive Web application
framework that builds on new technologies and can therefore provide more sophisticated
support for building new liquid Web applications.

7. Conclusions

We take it for granted that we are at yet another turning point in the computing industry.
The dominant era of PCs and smartphones is about to come to an end. So far, standalone
devices have been the norm, and software has been primarily attached to a single device at
a time. We believe that in the computing environment of the future, the users will have a
considerably larger number of internet-connected devices in their daily lives.

The paradigm shift arising from ubiquitous multiple device ownership has inspired us to
examine software architectures to enable what is known as Liquid Software. In this paper we
have collected and presented the most important design decisions related to Liquid Software.
We discussed the tradeo�s and characterized the impact, constraints and dependencies of each
alternative. Moreover, we have identi�ed di�erent technology platforms for building Liquid
Software, and speci�c Liquid Web Applications that �t in di�erent niches in the presented
design space.

As part of this work, we have constructed, presented and compared two Web frameworks
for Liquid Software. Out of these two frameworks, Liquid.js for Polymer (LfP) provides more
advanced support for building liquid component-based Web applications, while Liquid.js for
DOM (LfD) allows the \liqui�cation" of many existing Web applications with relatively little
additional e�ort.

A. Gallidabino, C. Pautasso, T. Mikkonen, K. Syst•a, J-P Voutilainen, and A. Taivalsaari 467

8. Future Work

There are plenty of potential avenues for further research in the area of Liquid Software.
The presented design space includes numerous combinations that impact and constrain the
resulting Liquid User Experience. Only some of these combinations have been explored so far.
In the future the entire design space needs to explored in detail since there are many interesting
combinations and tradeo�s, e.g., related to centralization and consistency vs. decentralization
and privacy, as well as manual vs. automatic UI adaptation vs. usability and control.

The Web will keep playing a prominent role in the area Liquid Software, since the Web can
act as a platform-independent execution environment that provides abstractions for serializa-
tion, migration, relocation, and adaptation that are needed for developing such applications.
All the facilities already exist today, but require the use of special frameworks such as XD-
MVC [26], Liquid.js for DOM [32], Liquid.js for Polymer [33], or even application-speci�c
code. Ideally, the primitives required by Liquid Software should be standardized by bodies
such as W3C, and be included in next-generation Web browsers as well as in native software
development frameworks.

Especially security aspects require a lot more work; the challenge is to maximize ease of use
and convenience while keeping the users in full control of their devices in a dynamic execution
environment that may comprise both personal, shared and public devices. For example, an
interesting area for further future work is to consider the use of public displays, or shared
tabletop surfaces { where security related challenges require signi�cantly more attention than
in single-user, single-device cases.

One especially interesting area for future work for us is the emergence of the Internet of
Things (IoT) as well as its Web-oriented counterpart, Web of Things (WoT [61]). In IoT and
WoT solutions the number of computing units is usually dramatically larger than in tradi-
tional computing environments. For instance, within 10-15 years, our homes and o�ces can
be expected to contain at least hundreds if not thousands of network-connected devices. The
multiplication of connected devices in our surroundings will amplify the challenges associated
with multiple device ownership. For instance, managing a very large number of computing
units, storage and sensors/actuators that are not pre-allocated or pre-con�gured simply falls
beyond what existing application models can handle. We believe that Liquid Software tech-
nologies are essential in constructing and modeling the behavior of software that is deployed
in such complex, dynamic, heterogeneous, and pervasive environments.

Acknowledgments

This work has been supported by the Academy of Finland (project 295913). This work is
also partially supported by the SNF and the Hasler Foundation with the Fundamentals of
Parallel Programming for Platform-as-a-Service Clouds (SNF-200021153560) and the Liquid
Software Architecture (LiSA) grants. In addition, we wish to thank the individuals who have
participated in the design and implementation of the di�erent Liquid Software experiments.

References

1. Di Geronimo, L., Husmann, M., and Norrie, M. C. (2016) Surveying personal device ecosystems
with cross-device applications in mind. Proc. of the 5th ACM International Symposium on Per-

