
RESTful Web services:
principles, patterns, emerging
technologies

Cesare Pautasso

Abstract RESTful Web services are software services which are published on
the Web, taking full advantage and making correct use of the HTTP protocol.
This chapter gives an introduction to the REST architectural style and how
it can be used to design Web service APIs. We summarize the main design
constraints of the REST architectural style and discuss how they impact the
design of so-called RESTful Web service APIs. We give examples on how the
Web can be seen as a novel kind of software connector, which enables the
coordination of distributed, stateful and autonomous software services. We
conclude the chapter with a critical overview of a set of emerging technologies
which can be used to support the development and operation of RESTful Web
services.

1 Introduction

REST stands for REpresentational State Transfer [13]. It is the architectural
style that explains the quality attributes of the World Wide Web, seen as an
open, distributed and decentralized hypermedia application, which has scaled
from a few Web pages in 1990 up to billions of addressable Web resources
today [6, 4]. Even if it is no longer practical to take a global snapshot of
the Web architecture, seen as a large set of Web browsers, Web servers, and
their collective state, it is nevertheless possible to describe the style followed
by such Web architecture. The REST architectural style includes the design
constraints which have been followed to define the HTTP protocol [12], the
fundamental standard together with URI and HTML which has enabled to

Cesare Pautasso
Faculty of Informatics, University of Lugano, via Buffi 13, CH-6900, Lugano, Switzerland,

e-mail: c.pautasso@ieee.org

1

c.pautasso@ieee.org


2 Cesare Pautasso

build the Web [5]. These constraints make up the REST architectural style
and have been distilled by Roy Fielding in his PhD dissertation [11].

Over the last decade, the Web has grown from a large-scale hypermedia
application for publishing and discovering documents (i.e., Web pages) into a
programmable medium for sharing data and accessing remote software com-
ponents delivered as a service. As the Web became widespread, TCP/IP port
80 started to be left open by default on most Internet firewalls, making it
possible to use the HTTP protocol [12] (which by default runs on port 80) as
a universal mean for tunneling messages in business to business integration
scenarios. RESTful Web services — as opposed to plain (or Big [22]) Web
services — emphasize the correct and complete use of the HTTP protocol to
publish software systems on the Web [24]. More and more services published
on the Web are claiming to be designed using REST. As we are going to dis-
cuss, even if all make use of the HTTP protocol natively, not all of them do so
in full compliance with the constraints of the REST architectural style [16].

In this chapter we present how the Web can be seen as a novel kind of
software connector, which enables the coordination of distributed, stateful
and autonomous software services. We summarize the main design constraints
of the REST architectural style and discuss how they impact the design of
so-called RESTful Web service APIs. We conclude the chapter with a critical
overview of a set of emerging technologies which can be used to support the
development and operation of RESTful Web services.

2 Principles

Understanding the architectural principles underlying the World Wide Web
can lead to improving the design of other distributed systems, such as inte-
grated enterprise architectures. This is the claim of RESTful Web services,
designed following the REST architectural style [11], which emphasizes the
scalability of component interactions, promotes the reuse and generality of
component interfaces, reduces coupling between components, and makes use
of intermediary components to reduce interaction latency, enforce security,
and encapsulate legacy systems.

2.1 Design Constraints

The main design constraints of the REST architectural style are: global ad-
dressability through resource identification, uniform interface shared by all
resources, stateless interactions between services, self-describing messages,
and hypermedia as a mechanism for decentralized resource discovery by re-
ferral.



RESTful Web services: principles, patterns, emerging technologies 3

1. Addressability All resources that are published by a Web service should
be given a unique and stable identifier [17]. These identifiers are globally
meaningful, so that no central authority is involved in minting them, and
they can be dereferenced independently of any context. The concept of
a resource is kept very general as REST intentionally does not make any
assumptions on the corresponding implementation. A resource can be used
to publish some service capability, a view over the internal state of a
service, as well as any source of machine-processable data, which may
also include meta-data about the service.

2. Uniform Interface All resources interact through a uniform interface, which
provides a small, generic and functionally sufficient set of methods to sup-
port all possible interactions between services. Each method has a well
defined semantics in terms of its effect on the state of the resource. In
the context of the Web and its HTTP protocol, the uniform interface
comprises the methods (e.g., GET, PUT, DELETE, POST, HEAD, OP-
TIONS, etc.) that can be applied to all Web resource identifiers (e.g., URIs
which conform to the HTTP scheme). The set of methods can be extended
if necessary (e.g., PATCH has been recently proposed as an addition to
deal with partial resource updates [8]) and other protocols based on HTTP
such as WebDAV include additional methods [14]

3. Stateless Interactions Services do not establish any permanent session be-
tween them which spans across more than a single interaction. This ensures
that requests to a resource are independent from each other. At the end
of every interaction, there is no shared state that remains between clients
and servers. Requests may result in a state change of the resource, whose
new state becomes immediately visible to all of its clients.

4. Self-Describing Messages Services interact by exchanging request and re-
sponse messages, which contain both the data (or the representations of
resources) and the corresponding meta-data. Representations can vary ac-
cording to the client context, interests and abilities. For example, a mobile
client can retrieve a low-bandwidth representation of a resource. Likewise,
a Web browser can request a representation of a Web page in a particu-
lar language, according to its user preferences. This greatly enhances the
degree of intrinsic interoperability of a REST architecture, since a client
may dynamically negotiate the most appropriate representation format
(also called media type) with the resource as opposed to forcing all clients
and all resources to use the same format. Request and response messages
also should contain explicit meta-data about the representation so that
services do not need to assume any kind of out-of-band agreement on how
the representation should be parsed, processed and understood.

5. Hypermedia Resources may be related to each other. Hypermedia is about
embedding references to related resources inside resource representations
or in the corresponding meta-data. Clients can thus discover the identi-
fiers (or hyper-links) of related resources when processing representations
and choose to follow the link as they navigate the graph built out of rela-



4 Cesare Pautasso

tionships between resources. Hypermedia helps to deal with decentralized
resource discovery and is also used for dynamic discovery and description
of interaction protocols between services. Despite its usefulness, it is also
the constraint that has been the least used in most Web service APIs
claiming to be RESTful. Thus, sometimes Web service APIs which also
comply with this constraint are also named “Hypermedia APIs” [3].

2.2 Maturity Model

The main design constraints of the REST architectural style can also be
adopted incrementally, leading to the definition of a maturity model for
RESTful Web services as proposed by Leonard Richardson. This has led to
a discussion on whether only services that are fully mature can be actually
called RESTful. In the state of the practice, however, many services which
are classified in the lower levels of maturity already present themselves as
making use of REST.

• Level 0: HTTP as a tunnel These are all services which simply exchange
XML documents (sometimes referred to as Plain-Old-XML documents as
opposed to SOAP messages) over HTTP POST request and responses,
effectively following some kind of XML-RPC protocol [28]. A similar ap-
proach is followed by services which replace the XML payloads with JSON,
YAML or other formats which are used to serialize the input and out-
put parameters of a remote procedure call, which happens to be tunneled
through an open HTTP endpoint. Even if such services are not making
use of SOAP messages, they are not really making full use of the HTTP
protocol according to the REST constraints either. In particular, since all
messages go to the same endpoint URL, a service can distinguish between
different operations only by parsing such information out of the XML (or
JSON) payload.

• Level 1: Resources As opposed to using a single endpoint for tunneling
RPC messages through the HTTP protocol, services on maturity level 1
make use of multiple identifiers to distinguish different resources. Each
interaction is addressed to a specific resource, which can however still be
misused to identify different operations or methods to be performed on
the payload, or to identify different instances of object of a given class, to
which the request payload is addressed.

• Level 2: HTTP Verbs In addition to fine-grained resource identification,
services of maturity level 2 also make proper use of the REST uniform
interface in general and of the HTTP verbs in particular. This means that
not only clients can perform a GET, DELETE, PUT on a resource, in ad-
dition to POSTing to it, but also do so in compliance with the semantics of
such methods. For example, service designers ensure that GET, PUT and
DELETE requests to their service are idempotent. Since we can assume



RESTful Web services: principles, patterns, emerging technologies 5

that the HTTP methods are used according to their standard semantics,
we can use the corresponding safety and idempotency properties to opti-
mize the system by introducing intermediaries. For example, the results
of safe and side-effect free GET requests can be cached and failed PUT
and DELETE requests can be automatically retried. Additionally, services
make use of HTTP status codes correctly to, e.g., indicate whether meth-
ods are applicable to a given resource or to assign blame between which
party is responsible for a failed interaction.

• Level 3: Hypermedia These are the fully mature RESTful Web services,
which in addition to exposing multiple addressable resources which share
the same uniform interface also make use of hypermedia to model relation-
ship between resources. This is achieved by embedding so-called hyperme-
dia controls within resource representations [19]. Depending on the chosen
media type, hypermedia controls such as links or forms can be parsed,
recognized and interpreted by clients to drive their navigation within the
graph of related resources. Hypermedia controls will be typed according to
the semantics of the relationship and contain all information necessary for
a client to formulate a request to a related resource. As opposed to know-
ing in advance all the addresses of the resources that will be used, a client
can thus dynamically discover with which resource it should interact by
following links of a certain type. Key to achieving this level of maturity is
the choice of media types which support hypermedia controls (e.g., XML
or JSON do not, while ATOM, XHTML or JSON-LD do.). The ability
of a service to change the set of links that are given to a client based on
the current state of a resource is also known with the ugly HATEOAS
(Hypertext As The Engine Of Application State) acronym, to which now
the simpler “hypermedia” term is preferred [23].

The maturity level of a service also affects the quality attributes of the
architecture in which the service is embedded. Tunneling messages through
an open HTTP port (level 0) leads only to the basic ability to communicate
and exchange data, but – security issues notwithstanding – is likely to result
in brittle integrated systems, which are difficult to evolve and scale. Distin-
guishing multiple resources helps to apply divide and conquer techniques to
the design of a service interface and enable services to use global identifiers to
address each resource that is being published. Applying a standardized and
uniform interface to each resource removes unnecessary variations (as there
are only a few universally accepted methods applicable to a resource) and en-
ables all services to interact with all resources within the architecture, thus
promoting interoperability and serendipitous reuse [29]. Additionally the se-
mantics of the methods that make up the uniform interface can be adjusted
so that the scalability and reliability of the architecture are enhanced. How-
ever, only the dynamic discoverability of resources provided by hypermedia
contributes to minimize the coupling within the resulting architecture.



6 Cesare Pautasso

2.3 Comparing REST vs. WS-*

The maturity model can also be used to give a rough comparison between
RESTful Web services and WS-* Web Services (Figure 1). A more detailed
comparison can be found in [22].

As the maturity level increases, the service will switch from using a single
communication endpoint to many URIs (on the resource identification axis).
Likewise, the set of possible methods (or operations) will be limited to the
ones of the uniform interface as opposed to designing each service with its own
set of operations explicitly described in a WSDL document. From a REST
perspective, all WSDL operations are tunneled through a single HTTP verb
(POST), thus reducing the expressiveness of HTTP seen as an application
protocol, which is used as a transport protocol for tunneling messages. In
WSDL several communication endpoints can be associated with the same
service although these endpoints are not intended for distinguising HTTP
resources but may be used to access the same service through alternative
communication mechanisms.

The third axis is not directly reflected in the maturity model but is also im-
portant for understanding the difference between the two technology stacks,
one having a foundation in the SOAP protocol and the XML format, while
the other leaves open the choice of which message format should be used
(shown on the representations axis) so that clients and services can negotiate
the most suitable format to achieve interoperability.

Fig. 1 Design Space: RESTful Web Services vs. WS-* Web Services



RESTful Web services: principles, patterns, emerging technologies 7

3 Example

As inspiration for this example we use the Doodle REST API, which
gives programmatic access to the Doodle poll Web service available at
(http://www.doodle.ch). Doodle is a very popular service, which allows to
minimize the number of emails exchanged in order to find an agreement
among a set of people. The service allows to initiate polls by configuring a
set of options (which can be a set of dates for scheduling a meeting, but
can also be a set of arbitrary strings). The link to the poll is then mailed
out to the participants, who are invited to answer the poll by selecting the
preferred options. The current state of the poll can be polled at any time by
the initiator, who will typically inform the participants of the outcome with
a second email message.

Fig. 2 Simple Doodle REST API

The Simple Doodle REST API (Figure 2) publishes two kinds of resources:
polls (a set of options once can choose from) and votes (choices of people
within a given poll). There is a natural containment relationship between
the two kinds of resources, which fits naturally into the convention to use
/ as a path separator in URIs. Thus the service publishes a /poll root
resource, which contains a set of /poll/{id} poll instances, which include
the corresponding set of votes /poll/{id}/vote/{id}.



8 Cesare Pautasso

3.1 Listing active polls

The root /poll resource is used to retrieve (with GET) the list of links to
the polls which have been instantiated:

⇒GET /poll

Accept: text/uri-list

⇐200 OK

Content-Type: text/uri-list

http://doodle.api/poll/201204301

http://doodle.api/poll/201204302

http://doodle.api/poll/201205011

3.2 Creating new polls

The same /poll resource acts as factory resource which accepts POST re-
quests to create new poll instances. The identifier of the newly created poll
is returned as a link associated with the Location response header.

⇒POST /poll

Content-Type: application/xml

<options>A,B,C</options>

⇐201 Created

Location: /poll/201205012

3.3 Fetching the current state of a poll

The current state of a poll instance can be read with GET, modified with
PUT (e.g., to change the set of possible options or to close the poll). Poll
instances can also be removed with DELETE.

⇒GET /poll/201205012

Accept: application/xml



RESTful Web services: principles, patterns, emerging technologies 9

⇐200 OK

Content-Type: application/xml

<poll>

<options>A,B,C</options>

<votes href="/poll/201205012/vote"/>

</poll>

The representation of a newly created poll resource, in addition to the set
of options provided by the client, also contains a link to the resource used
to cast votes. Clients can follow the link to express their opinion and make
a choice. The nested vote resource acts as a factory resource for individual
votes.

3.4 Casting votes

⇒POST /poll/201205012/vote

Content-Type: application/xml

<vote>

<name>C. Pautasso</name>

<choice>B</choice>

</vote>

⇐201 Created

Location: /poll/201205012/vote/1

After the previous request has been processed a new vote has been cast
and the state of the poll has changed. Retrieving it will now return a different
representation, which includes the information about the vote.

⇒GET /poll/201205012

Accept: application/xml

⇐200 OK

Content-Type: application/xml

<poll>

<options>A,B,C</options>

<votes href="/poll/201205012/vote">

<vote id="1">

<name>C. Pautasso</name>

<choice>B</choice>

</vote>

</votes>

</poll>



10 Cesare Pautasso

3.5 Changing votes

Since each vote gets its own URI it is also possible to manipulate its state with
PUT and DELETE. For example, clients may want to retract a vote (with
DELETE) or modify the choice (with PUT) as in the following example.

⇒PUT /poll/201205012/vote/1

Content-Type: application/xml

<vote>

<name>C. Pautasso</name>

<choice>C</choice>

</vote>

⇐200 OK

3.6 Interacting with votes

In general, it is not always possible nor it is necessary for a resource to re-
spond to requests which make use of all possible methods of the uniform
interface. In the context of the Simple Doodle REST API, as shown in Fig-
ure 2, it has been chosen not to support PUT and DELETE on the /poll

and /poll/{id}/vote resources. Also POST requests to individual instances
/poll/{id} or /poll/{id}/vote/{id} are not supported. Such requests do
not have a meaningful effect on the state of the resource and are thus disal-
lowed. Clients attempting to issue them will receive an erroneous response:

⇒POST /poll/201205012/vote/1

⇐405 Method not allowed

Clients can also inquire which methods are allowed before attempting to
perform them on a resource making use of the OPTIONS method as follows

⇒OPTIONS /poll/201205012/vote/1

⇐204 No Content

Allow: GET, PUT, DELETE

An OPTIONS request will return a list of the methods which are currently
applicable to a resource in the response Allow header. The set of allowed
methods may change depending on the state of the resource.



RESTful Web services: principles, patterns, emerging technologies 11

3.7 Removing a poll

Once a poll has received enough votes and a decision has been made, its state
will be kept indefinitely by the service until an explicit request to remove it
is made by a client.

⇒DELETE /poll/201205012

⇐200 OK

Subsequent requests directed to the delete poll instance will also receive
an erroneous response.

⇒GET /poll/201205012

⇐404 Not Found

4 Patterns

Once the basic architectural principles for the design of RESTful Web services
are established, it remains sometimes difficult to apply them directly to the
design of specific Web service APIs. In this Section we collect a small number
of design patterns, which provide some guidance on how to deal with resource
creation, long running operations and concurrent updates. Additional known
patterns address features such event notifications, enhancing the reliability
of interactions, atomicity and transactions and supporting the evolution of
service interfaces. In general, applying one of these patterns requires to make
use of some existing feature of the standard HTTP protocol, which may need
to be augmented with some conventions and shared assumptions on how
to interpret its status code and headers. The current understanding within
the REST community is that it should be possible to design fully functional
service APIs that do not require any non-standard extension to the HTTP
protocol.

The example patterns included in this chapter is not intended to be com-
plete, for additional guidance on how to design RESTful Web services, we
refer the interested reader to [1, 7, 10, 25, 30].

4.1 Resource creation

The instantiation of resources is a key feature of most RESTful Web services,
which enable clients to create new resource identifiers and set the correspond-
ing state to an initial value. The resource identifier can either be set by the
client or by the service. It is easier to guarantee that URIs created by the



12 Cesare Pautasso

service are unique, while it is possible that multiple clients will generate the
same identifier.

When using a single HTTP interaction to create a resource, there are two
possible verbs that can be used: PUT or POST. The basic semantics of PUT
requests is to update the state of the corresponding resource with the pro-
vided payload. If no resource is found with the given identifier, a new resource
is created. This has the advantage of using idempotent requests to create a
resource, but requires clients to avoid mixing up resource identifiers. POST
on the other hand assumes that the server will create a new resource iden-
tifier. Since POST is not idempotent, there have been a number of patterns
that have been proposed to address this limitation and avoid the so-called
“duplicated POST submission” problem. The convention is to use some kind
of “factory” resource, to which POST requests are directed for creating new
resources. However, repeating such requests in case of failure would lead to
potentially multiple, different instances to be created by the factory.

The pattern is based on the idea of splitting the centralized generation of
the new resource identifier on the service-side from the initialization of its
state with the payload provided by the client. The pattern makes combined
usage of both POST and PUT requests as follows.

⇒POST /factory

<Empty Payload>

⇐303 See Other

Location: /factory/id

⇒PUT /factory/id

<Initialization Payload>

⇐200 OK

The first POST request returns a new unique resource identifier /factory/id
but does not initialize its corresponding resource since the payload is empty.
The second request PUTs the initial state on the new resource. In the worst
case, failures during the first POST request will lead to lost resource identi-
fiers, which however can be garbage collected by the server since the corre-
sponding resource has not been initialized. Likewise, clients may fail between
the two requests and thus could forget to follow up with the PUT request.
The designer of the service needs to make reasonable assumptions on the
maximum allowed delay between the two interactions. If a client is too late
and the resource identifier has been already garbage collected by the server,
then another one can be simply retrieved by repeating the first POST request.

Variations of this pattern have been proposed which replace the initial
POST with a GET request, which in the same way returns a new unique
identifier every time it is invoked. Similarly, the response payload of the first
request could be used to provide the client with a representation template,
i.e., a form to be completed with the information required to initialize the
new resource.



RESTful Web services: principles, patterns, emerging technologies 13

4.2 Long Running Operations

HTTP is a client/server protocol which does not assume that every request
is followed by a response indicating that the work has completed. For long
running operations, which may result in a timeout of the network commu-
nication, it is possible to break the connection and avoid blocking the client
for too long. This is particularly useful to invoke service operations that –
depending on the size of the input provided by clients or by the complex-
ity of their internal implementation – may require a long time to complete
processing it.

The pattern is based on turning the long running operation into a resource,
whose identifier can be returned immediately to the client submitting the
corresponding job.

⇒POST /job

Input data payload

⇐202 Accepted

Content-Location: /job/201205019

<job>

<status>pending</status>

<message>Your job has been queued for processing</message>

<ping-time>2012-05-01T05:22:12Z</ping-time>

</job>

The 202 Accepted status code implies that the service has verified the
request input payload and has accepted it, but no immediate response can
be given. The client should follow the link given in the Content-Location

header to inquire (with GET) about the status of the pending request.

⇒GET /job/201205019

⇐200 OK

<job>

<status>processing</status>

<message>Your job is being processed</message>

<ping-time>2012-05-01T06:22:09Z</ping-time>

</job>

Clients can send GET requests to the job resource at any time to track
its progress. In addition to the status, the response also contains a hint (in
the ping-time element) on when the next poll request should be performed
in order to reduce network traffic and service load due to excessive polling.

Once the job has been completed, the response to the poll request will
redirect the client to another resource from which the final result can be
retrieved.

⇒GET /job/201205019



14 Cesare Pautasso

⇐303 See Other

Location: /job/201205019/output

<job>

<status>done</status>

<message>Your job has been successfully completed</message>

</job>

The client can then follow the link found in the Location header to retrieve
(with GET) the output of the completed job. The link could also be shared
among different clients interested in reading the output of the original POST
request.

⇒GET /job/201205019/output

⇐200 OK

Output data payload

In case the client is no longer interested in retrieving the results, it is pos-
sible to cancel the resource job and thus remove it from the queue of pending
requests. The client thus issues a DELETE request on the job resource, which
will be allowed as long as the job has not yet completed its execution.

⇒DELETE /job/201205019

⇐200 OK

After a request has completed it is no longer possible to cancel it. In this
case, a similar DELETE request can be performed on the resource represent-
ing the output results of the job when the client has completed downloading
them and it is no longer interested in keeping the results stored on the server.

⇒DELETE /job/201205019/output

⇐200 OK

If clients do not remember to clean up after themselves the server can end
up storing a copy of all long running requests and potentially run out of space.
Still, a garbage collection mechanism can be implemented to automatically
remove old results through the same DELETE request.

This pattern shows how to deal with long running operations by applying
a general design principle of turning “everything into a resource” [24]. In this
case the resource represents the long running request which is managed by
the client through the HTTP uniform interface.



RESTful Web services: principles, patterns, emerging technologies 15

4.3 Optimistic Locking

RESTful Web services are stateful services, which associate to each resource
URI a representation which is produced based on the current state of the cor-
responding resource. It is thus important to deal with concurrent state mod-
ifications without violating the stateless constraint, which prevents clients
to establish a session with a service in which the resource is updated. The
problem addressed by this pattern is thus the one of dealing with concurrent
resource updates in compliance with the stateless constraint. The solution
adopted by the HTTP protocol makes use of a form of optimistic locking, as
follows.

1. The client retrieves the current state of a resource.
⇒GET /resource

⇐200 OK

ETag: 1

Current representation

Together with the representation of the resource, the client is given through
the ETag header some meta-data which identifies the current version of the
resource.

2. The client updates the state of a resource. While doing so, the client uses
the If-Match header to make the request conditional.
⇒PUT /resource

If-Match: 1

New representation

⇐200 OK

ETag: 2

Updated representation

The server will execute the PUT request only if the version of the resource
(on the server-side) matches the version provided within the client request.
If there is a mismatch, another client has already updated the resource in
the meanwhile and an update conflict has been detected. This is indicated
using the standard 409 Conflict status code. To recover the client should
start again from step 1. by retrieving the latest state of the resource. After
recomputing the change locally, the client can once again attempt to update
the resource.

As with most optimistic protocols, this solution works well if the ratio of
updates (PUT or POST) to reads (GET) is small. The pattern should not be
used for resources that are hotly contested between multiple clients, or in
case the cost of re-trying a failed update is expensive.



16 Cesare Pautasso

5 Technologies

Over the past few years, REST has evolved from the original state in which
an apparent lack of tooling support was limiting the adoption of the technol-
ogy [27] and there have been quite a few frameworks that have been proposed
for most programming languages and service delivery platforms (Table 1). In-
deed, as a reaction to the complexity of WS-* technology stacks, REST was
initially positioned as a lightweight alternative where no tools beyond a Web
browser and some standard HTTP library were necessary to develop RESTful
Web services. The situation has changed and with the growth in popularity
of REST also a number of development frameworks have appeared.

5.1 Frameworks

Most frameworks support both client-side consumption of resources as well
as server-side publishing of resources. However, some frameworks are start-
ing to appear which specifically target the development of loosely coupled
clients (e.g., RESTAgent or Guzzle). Some frameworks (e.g., ActiveResource,
Compojure-rest, the Django REST Framework) are built as an extension
of existing Web/MVC application development frameworks. Others (e.g.,
Persevere) come with a standalone HTTP server stack. Concerning the
Java language, the oldest framework is RESTlet, while others (e.g., Jersey,
RESTEasy, ApacheCXF) implement the JSR-311 [15] standard, which de-
fines how to publish Java code as a RESTful Web service using source code
annotations. With the 3.5 release of the .NET framework, also the Windows
Communication Framework (WCF) technology stack supports REST. Like-
wise many existing WS-* technology frameworks (e.g., ApacheCXF) have
begun to offer SOAP-less bindings to plain HTTP and started to support the
use of JSON inside HTTP payloads.

5.2 Guidelines for framework selection

In general, it currently remains challenging to find a suitable framework which
gives simple and correct guidance [32] to the service developer according to
the REST constraints and which at the same time gives full access and control
over the raw HTTP interactions. Even if it is possible to reuse or extend
existing Web application development frameworks based on the Model-View-
Controller (MVC) pattern, these may only offer limited support for processing
both incoming and outgoing representations in customized non-HTML media
types. Like in [26], we collect and discuss here a set of basic features that



RESTful Web services: principles, patterns, emerging technologies 17

Framework Language/Platform Project Homepage

ActiveResource Ruby/Rails http://api.rubyonrails.org/classes/

ActiveResource/Base.html

apache2rest PERL http://code.google.com/p/apache2rest/

ApacheCXF Java http://cxf.apache.org/

Bowler Scala http://bowlerframework.org/

C2Serve C++ http://www.c2serve.eu/

Compojure-rest Clojure http://github.com/ordnungswidrig/

compojure-rest

Crochet Scala https://github.com/xllora/Crochet

Django REST Python/Django http://django-rest-framework.org/

Exyus .NET http://code.google.com/p/exyus/

FRAPI PHP/Zend http://getfrapi.com/

Guzzle PHP http://guzzlephp.org/

Jersey Java http://jersey.java.net/

OpenRASTA .NET https://github.com/openrasta/openrasta/wiki

Persevere JavaScript http://www.persvr.org/

Pinky Scala https://github.com/pk11/pinky/wiki

Piston Python/Django https://bitbucket.org/jespern/django-piston/

wiki/Home

prestans Python/WSGI http://prestans.googlecode.com/

Recess PHP http://www.recessframework.org/

RESTAgent Java http://restagent.codeplex.com/

RESTEasy Java http://www.jboss.org/resteasy.html

RESTfulie Ruby, Java, C http://restfulie.caelum.com.br/

RESTify JavaScript/Node http://mcavage.github.com/node-restify/

RESTlet Java http://www.restlet.org/

RESTSharp .NET http://restsharp.org/

Scotty Haskell https://github.com/xich/scotty

Spray Scala/Akka http://spray.cc/

Taimen Java, Clojure https://bitbucket.org/kumarshantanu/taimen/

Tonic PHP http://peej.github.com/tonic/

Webmachine Erlang http://wiki.basho.com/Webmachine.html

Yesod Haskell http://www.yesodweb.com/

WCF .NET http://msdn.microsoft.com/en-us/library/

vstudio/bb412169.aspx

WebPy Python http://webpy.org/

Wink Java http://incubator.apache.org/wink/

Table 1 Technology: Frameworks for developing and hosting RESTful Web Services
(Homepage links verified as of 1st October 2012)

should be supported by a fully featured framework for developing RESTful
Web services.

• Can requests be routed to the corresponding service logic based on both
resource identifiers and HTTP methods? Some frameworks only use re-
source identifiers and ignore methods, leaving it up to the developer to
run different logic based on the request method.

• Are custom or extended HTTP verbs supported? Can the framework sup-
port different URI schemes or is it tied to HTTP/HTTPS URIs? Even if

http://api.rubyonrails.org/classes/ActiveResource/Base.html
http://api.rubyonrails.org/classes/ActiveResource/Base.html
http://code.google.com/p/apache2rest/
http://cxf.apache.org/
http://bowlerframework.org/
http://www.c2serve.eu/
http://github.com/ordnungswidrig/compojure-rest
http://github.com/ordnungswidrig/compojure-rest
https://github.com/xllora/Crochet
http://django-rest-framework.org/
http://code.google.com/p/exyus/
http://getfrapi.com/
http://guzzlephp.org/
 http://jersey.java.net/ 
https://github.com/openrasta/openrasta/wiki
http://www.persvr.org/
https://github.com/pk11/pinky/wiki
https://bitbucket.org/jespern/django-piston/wiki/Home
https://bitbucket.org/jespern/django-piston/wiki/Home
http://prestans.googlecode.com/
http://www.recessframework.org/
http://restagent.codeplex.com/
http://www.jboss.org/resteasy.html
http://restfulie.caelum.com.br/
http://mcavage.github.com/node-restify/
http://www.restlet.org/
http://restsharp.org/
https://github.com/xich/scotty
http://spray.cc/
https://bitbucket.org/kumarshantanu/taimen/
http://peej.github.com/tonic/
http://wiki.basho.com/Webmachine.html
http://www.yesodweb.com/
http://msdn.microsoft.com/en-us/library/vstudio/bb412169.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb412169.aspx
http://webpy.org/
http://incubator.apache.org/wink/


18 Cesare Pautasso

REST does not make any assumption about the actual uniform interface,
most frameworks are tightly couled with the HTTP protocol and thus
assume that only the HTTP methods will be used.

• Does the framework enforce the semantics of the HTTP uniform interface
(i.e., read-only GET, idempotent PUT and DELETE)?

• What is the abstraction level required to handle content type negotiation?
Can the same service logic be easily reused for responses returned using
different representation formats? Is the developer required to manually
work with HTTP headers? Can custom media types be defined?

• Are ETags headers automatically computed and checked? How does the
framework deal with conflicting updates?

• What are the assumptions made by the framework concerning the lifecy-
cle of a resource? Can different business logic be invoked depending on
the state of a resource? Is the state of a resource persisted implicitly or
explicitly across server reboots?

• How easy is it to embed links to related resources in a representation being
sent back to the client?

• Are URI templates supported for request routing and link generation?
Must URI templates be embedded in the source code, or can they be
read from configuration files, or can they be dynamically discovered and
remotely updated?

• Does the framework transparently handles redirects to new resource iden-
tifiers?

• How easy is it to configure caching support without rebuilding the service
logic and without relying on external caching proxies?

• How does the framework map internal exceptions of the service logic to
HTTP status codes? Can such mapping be customized?

• Does the framework present REST as an optional “transport protocol
binding” next to WS-* technology, or is REST the default, or the only
option?

• How difficult is to configure the framework to use HTTPS?
• Does the framework support some notion of service interface description?

Can such description be generated automatically for documentation pur-
poses? Can code be generated from the description?

• Does the framework allow to automatically scale-out the service on multi-
ple parallel processing units in a multicore or a cluster environment? How
does the framework deal with concurrency?

These questions should be considered when evaluating the adoption of one
of the currently emerging frameworks for supporting the development and
operation of RESTful Web service APIs. Due to space limitations and given
the current state of flux of the technology, we have chosen not to include any
assessment on how the various frameworks listed in Table 1 would comply
with the features mentioned in the previous checklist. A very good survey ad-
dressing a subset of the features and of the frameworks has recently appeared
in [32].



RESTful Web services: principles, patterns, emerging technologies 19

6 Discussion

Service-oriented architectures promote the design of distributed and inte-
grated systems out of the composition of reusable and autonomous ser-
vices [18, 9]. The goal is not only to reduce integration costs through the
standardization of interface contracts and the interoperability of middleware
tools [2], but also to lower the efforts needed to manage the evolution of the
integrated systems thanks to the loose coupling that is established among
its constituent services. The design constraints of the REST architectural
style help to achieve such quality attributes not only in the context of the
Web but also when applied to the design of Web service APIs. In particular,
reuse [29] and loose coupling [20] are emphasized by employing a uniform
interface for all elements within the same architecture; performance and scal-
ability are supported by ensuring the visibility of the interactions, which are
kept stateless, and introducing intermediary caching layers where appropri-
ate; interoperability is fostered by the wide-reaching standardization of the
underlying technologies (i.e., HTTP, URIs, SSL) as well as the opportunity
for dynamic negotiation of the most understandable representation format;
reliability is enhanced through the use of idempotent interactions, which can
be automatically retried in case of failures.

In the context of service oriented architectures, REST promotes the use of
a novel (or different) kind of software connector to coordinate the interactions
between a set of distributed services. As opposed to traditional bus connectors
for services which enable to use primitives such as synchronous remote proce-
dure calls (RPC) or asynchronous messaging (à la publish/subscribe), REST
resources enable the reliable transfer and sharing of state between multiple
services. As illustrated in this chapter’s example, the state of a poll resource
can be shared by multiple participants by means of its resource identifier. By
initializing a new poll, one client can post information – literally on the Web
– with the intention of sharing this information with other clients, which can
then manipulate it to find an agreement. Whereas each interaction between
the client and the resource makes use of synchronous HTTP request/response
rounds, the overall end-to-end interaction between multiple clients mediated
by the resource is completely asynchronous. As long as the various clients can
discover the identifier of the shared resource, they can exchange information
through it without ever being directly in contact with one another. To this
extent, REST introduces a different interaction style between services that
is more similar to the one enabled by a blackboard or a tuple-space software
connector, rather than a messaging and publish/subscribe system used in
most traditional service-oriented architectures.



20 Cesare Pautasso

7 Conclusion

The Web can be seen as an existence proof that it is known how to build
highly scalable, decentralized and loosely coupled distributed systems. The
architectural principles explaining how the Web works can thus be adopted
to build integrated, service-oriented systems that could also be expected to
feature similar quality attributes. This is the claim of RESTful Web services,
which advocate the correct and complete use of the HTTP protocol for the
design and the delivery of Web service APIs. Over time a number of patterns
have appeared to complement the basic guidance found within the original
design constraints of the REST architectural style. These patterns describe
conventional solutions for specific design problems within the context of the
existing standard HTTP protocol. From the technology perspective, a clear
need for supporting the automated development and hosting of RESTful Web
services has been addressed by the growing number of emerging frameworks
with variable degrees of stability and maturity.

8 More information

In addition to the original formulation of REST in Dr. Fielding’s disser-
tation [11], more information about REST and RESTful Web services can
be found in several books that have been published on the subject in the
past few years. [24] introduces the term RESTful Web services; [1] provides
a collection of best practices explaining how to make correct usage of the
HTTP protocol; [30] gives an extensive and well written discussion on how
to use the Web as an integration platform; [25] has a similar goal but tar-
gets the German-speaking audience; [31] is a collection of research-oriented,
application-oriented and practice-oriented writings on REST; [3] promotes
the term Hypermedia API, focusing on the least known aspects of REST.
[10] gives an in-depth discussion of the relationship between SOA and REST.
More design patterns for RESTful Web services can be found in [7].

Acknowledgements Many thanks to Erik Wilde for all the help in preparing and running
four editions of a successful WWW and ICWE tutorial on RESTful Web Services.



RESTful Web services: principles, patterns, emerging technologies 21

References

1. Allamaraju, S.: RESTful Web Services Cookbook. O’Reilly & Associates, Sebastopol,

California (2010)
2. Alonso, G.: Myths around web services. Bulletin of the Technical Committee on Data

Engineering 25(4), 3–9 (2002)
3. Amundsen, M.: Building Hypermedia APIs with HTML5 and Node. O’Reilly (2011)

4. Berners-Lee, T.: Long live the web. Scientific American (12) (2010)

5. Berners-Lee, T., Cailliau, R., Luotonen, A., Frystyk Nielsen, H., Secret, A.: The world
wide web. Communications of the ACM 37(8), 76–82 (1994). DOI 10.1145/179606.

179671

6. Berners-Lee, T., Fischetti, M., Dertouzos, M.: Weaving the Web. HarperCollins, San
Francisco, California (1999)

7. Daigneau, R.: Service Design Patterns: Fundamental Design Solutions for

SOAP/WSDL and RESTful Web Services. Addison Wesley (2011)
8. Dusseault, L., Snell, J.M.: Patch method for http. Internet RFC 5789 (2010)

9. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice

Hall (2005)
10. Erl, T., Carlyle, B., Pautasso, C., Balasubramanian, R.: SOA with REST: Principles,

Patterns and Constraints for Building Enterprise Solutions with REST. Prentice Hall
(2012)

11. Fielding, R.T.: Architectural styles and the design of network-based software architec-

tures. Ph.D. thesis, University of California, Irvine, Irvine, California (2000)
12. Fielding, R.T., Gettys, J., Mogul, J.C., Frystyk Nielsen, H., Masinter, L., Leach, P.J.,

Berners-Lee, T.: Hypertext transfer protocol — http/1.1. Internet RFC 2616 (1999)

13. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM
Transactions on Internet Technology 2(2), 115–150 (2002). DOI 10.1145/337180.

337228

14. Goland, Y.Y., Whitehead, E.J., Faizi, A., Carter, S., Jensen, D.: Http extensions for
distributed authoring — webdav. Internet RFC 2518 (1999)

15. Hadley, M., Sandoz, P.: Jax-rs: The java api for restful web services. Java Specification

Request (JSR) 311 (2009)
16. Maleshkova, M., Pedrinaci, C., Domingue, J.: Investigating web apis on the world wide

web. In: Proc. of the 8th IEEE European Conference on Web Services (ECOWS2010),
pp. 107–114 (2010). DOI 10.1109/ECOWS.2010.9

17. Nielsen, J.: User interface directions for the web. Communications of the ACM 42(1),

65–72 (1999). DOI 10.1145/291469.291470
18. Papazoglou, M.P., van den Heuvel, W.J.: Service oriented architectures: approaches,

technologies and research issues. VLDB Journal 16, 389–415 (2007)

19. Parastatidis, S., Webber, J., Silveira, G., Robinson, I.: The role of hypermedia in
distributed system development. In: Pautasso et al. [21], pp. 16–22. DOI 10.1145/

1798354.1798379

20. Pautasso, C., Wilde, E.: Why is the web loosely coupled? a multi-faceted metric for ser-
vice design. In: J. Quemada, G. León, Y.S. Maarek, W. Nejdl (eds.) 18th International

World Wide Web Conference, pp. 911–920. ACM Press, Madrid, Spain (2009)
21. Pautasso, C., Wilde, E., Marinos, A. (eds.): First International Workshop on RESTful

Design (WS-REST 2010). Raleigh, North Carolina (2010)

22. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. ”big” web ser-
vices: Making the right architectural decision. In: J. Huai, R. Chen, H.W. Hon, Y. Liu,

W.Y. Ma, A. Tomkins, X. Zhang (eds.) 17th International World Wide Web Confer-

ence, pp. 805–814. ACM Press, Beijing, China (2008)
23. Richardson, L.: Developers like hypermedia, but they don’t like web browsers. In:

Pautasso et al. [21], pp. 4–9. DOI 10.1145/1798354.1798377



22 Cesare Pautasso

24. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly & Associates, Sebastopol,

California (2007)
25. Tilkov, S.: REST und HTTP: Einsatz der Architektur des Web für Integrationsszenar-

ien. dpunkt.verlag, Heidelberg, Germany (2009)

26. Tilkov, S.: REST litmus test for web frameworks (2010). http://www.innoq.com/blog/
st/2010/07/rest_litmus_test_for_web_frame.html

27. Vinoski, S.: Restful web services development checklist. IEEE Internet Computing

12(6), 94–96 (2008). DOI 10.1109/MIC.2008.130
28. Vinoski, S.: Rpc and rest: Dilemma, disruption, and displacement. IEEE Internet

Computing 12(5), 92–95 (2008)
29. Vinoski, S.: Serendipitous reuse. IEEE Internet Computing 12(1), 84–87 (2008). DOI

10.1109/MIC.2008.20

30. Webber, J., Parastatidis, S., Robinson, I.: REST in Practice: Hypermedia and Systems
Architecture. O’Reilly & Associates, Sebastopol, California (2010)

31. Wilde, E., Pautasso, C. (eds.): REST: From Research to Practice. Springer-Verlag,

Heidelberg, Germany (2011)
32. Zuzak, I., Schreier, S.: Arrested development: Guidelines for designing REST frame-

works. Internet Computing 16(4), 26–35 (2012)

http://www.innoq.com/blog/st/2010/07/rest_litmus_test_for_web_frame.html
http://www.innoq.com/blog/st/2010/07/rest_litmus_test_for_web_frame.html

	RESTful Web services:principles, patterns, emerging technologies
	Cesare Pautasso
	Introduction
	Principles
	Design Constraints
	Maturity Model
	Comparing REST vs. WS-*

	Example
	Listing active polls
	Creating new polls
	Fetching the current state of a poll
	Casting votes
	Changing votes
	Interacting with votes
	Removing a poll

	Patterns
	Resource creation
	Long Running Operations
	Optimistic Locking

	Technologies
	Frameworks
	Guidelines for framework selection

	Discussion
	Conclusion
	More information
	References



